Safe and efficacious vaccines are arguably the most successful medical interventions of all time. Yet the ongoing discovery of new pathogens, along with emergence of antibiotic-resistant pathogens and a burgeoning population at risk of such infections, imposes unprecedented public health challenges. To meet these challenges, innovative strategies to discover and develop new or improved anti-infective vaccines are necessary. These approaches must intersect the most meaningful insights into protective immunity and advanced technologies with capabilities to deliver immunogens for optimal immune protection. This goal is considered through several recent advances in host-pathogen relationships, conceptual strides in vaccinology, and emerging technologies. Given a clear and growing risk of pandemic disease should the threat of infection go unmet, developing vaccines that optimize protective immunity against high-priority and antibiotic-resistant pathogens represents an urgent and unifying imperative.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Rappuoli R, Pizza M, Del Giudice G, De Gregorio E. 1.  2014. Vaccines, new opportunities for a new society. PNAS 111:12288–93 [Google Scholar]
  2. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D. 2.  et al. 2008. Global trends in emerging infectious diseases. Nature 451:990–93 [Google Scholar]
  3. Nelson MI, Viboud C, Vincent AL, Culhane MR, Detmer SE. 3.  et al. 2015. Global migration of influenza A viruses in swine. Nat. Commun. 6:6696 [Google Scholar]
  4. Fauci AS, Morens DM. 4.  2016. Zika virus in the Americas—yet another arbovirus threat. N. Engl. J. Med. 374:601–4 [Google Scholar]
  5. Pfeiffer JK, Virgin HW. 5.  2016. Transkingdom control of viral infection and immunity in the mammalian intestine. Science 351:aad5872 [Google Scholar]
  6. Kwong JC, Ratnasingham S, Campitelli MA, Daneman N, Deeks SL. 6.  et al. 2012. The impact of infection on population health: results of the Ontario Burden of Infectious Diseases Study. PLOS ONE 7:e44103 [Google Scholar]
  7. Llor C, Bjerrum L. 7.  2014. Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem. Ther. Adv. Drug Saf. 5:229–41 [Google Scholar]
  8. Michael GB, Freitag C, Wendlandt S, Eidam C, Fessler AT. 8.  et al. 2015. Emerging issues in antimicrobial resistance of bacteria from food-producing animals. Future Microbiol 10:427–43 [Google Scholar]
  9. Fernandes P. 9.  2015. The global challenge of new classes of antibacterial agents: an industry perspective. Curr. Opin. Pharmacol. 24:7–11 [Google Scholar]
  10. Bax R, Green S. 10.  2015. Antibiotics: the changing regulatory and pharmaceutical industry paradigm. J. Antimicrob. Chemother. 70:1281–84 [Google Scholar]
  11. Thabit AK, Crandon JL, Nicolau DP. 11.  2015. Antimicrobial resistance: impact on clinical and economic outcomes and the need for new antimicrobials. Expert Opin. Pharmacother. 16:159–77 [Google Scholar]
  12. Mack A, Snair MR, Choffnes ER. 12.  2016. Global health risk framework: governance for global health: workshop summary Washington, DC: Natl. Acad. Press
  13. Ashiru-Oredope D, Hopkins S. 13.  2015. Antimicrobial resistance: moving from professional engagement to public action. J. Antimicrob. Chemother. 70:2927–30 [Google Scholar]
  14. Manjelievskaia J, Erck D, Piracha S, Schrager L. 14.  2016. Drug-resistant TB: deadly, costly and in need of a vaccine. Trans. R. Soc. Trop. Med. Hyg 110:186–91 [Google Scholar]
  15. Zowawi HM, Harris PN, Roberts MJ, Tambyah PA, Schembri MA. 15.  et al. 2015. The emerging threat of multidrug-resistant Gram-negative bacteria in urology. Nat. Rev. Urol. 12:570–84 [Google Scholar]
  16. Unemo M, Shafer WM. 16.  2014. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future. Clin. Microbiol. Rev. 27:587–613 [Google Scholar]
  17. Kaplan G, Roitburd-Berman A, Lewis GK, Gershoni JM. 17.  2016. The range of CD4-bound conformations of HIV-1 gp120, as defined using conditional CD4-induced antibodies. J. Virol. 90:4481–93 [Google Scholar]
  18. Tran TT, Munita JM, Arias CA. 18.  2015. Mechanisms of drug resistance: daptomycin resistance. Ann. N. Y. Acad. Sci. 1354:32–53 [Google Scholar]
  19. Huang JS, Jiang ZD, Garey KW, Lasco T, Dupont HL. 19.  2013. Use of rifamycin drugs and development of infection by rifamycin-resistant strains of Clostridium difficile. Antimicrob. Agents Chemother. 57:2690–93 [Google Scholar]
  20. Albataineh MT, Sutton DA, Fothergill AW, Wiederhold NP. 20.  2016. Update from the laboratory: clinical identification and susceptibility testing of fungi and trends in antifungal resistance. Infect. Dis. Clin. North Am. 30:13–35 [Google Scholar]
  21. Alcazar-Fuoli L, Mellado E. 21.  2014. Current status of antifungal resistance and its impact on clinical practice. Br. J. Haematol. 166:471–84 [Google Scholar]
  22. Verlinden BK, Louw A, Birkholtz LM. 22.  2016. Resisting resistance: Is there a solution for malaria?. Expert Opin. Drug Discov. 11:395–406 [Google Scholar]
  23. Langhorne J, Duffy PE. 23.  2016. Expanding the antimalarial toolkit: targeting host-parasite interactions. J. Exp. Med. 213:143–53 [Google Scholar]
  24. Naqqash MN, Gokce A, Bakhsh A, Salim M. 24.  2016. Insecticide resistance and its molecular basis in urban insect pests. Parasitol. Res. 115:1363–73 [Google Scholar]
  25. Kline KA, Bowdish DM. 25.  2016. Infection in an aging population. Curr. Opin. Microbiol. 29:63–67 [Google Scholar]
  26. 26. WHO (World Health Organ.) 2012. Are you ready? What you need to know about ageing World Health Day 2012 Toolkit Event Organ. http://www.who.int/world-health-day/2012/toolkit/background/en/
  27. 27. US Dep. State 2007. Why population aging matters: a global perspective. Rep., Publ. No. 07-6134, US Natl. Inst. Health, US Natl. Inst. Aging, US Dep. Health Hum. Serv. https://www.nia.nih.gov/research/publication/why-population-aging-matters-global-perspective
  28. Frasca D, Blomberg BB. 28.  2015. Aging, cytomegalovirus (CMV) and influenza vaccine responses. Hum. Vaccines Immunother. 12:682–90 [Google Scholar]
  29. Thompson WW, Shay DK, Weintraub E, Brammer L, Cox N. 29.  et al. 2003. Mortality associated with influenza and respiratory syncytial virus in the United States. JAMA 289:179–86 [Google Scholar]
  30. Schuts EC, Hulscher ME, Mouton JW, Verduin CM, Stuart JW. 30.  et al. 2016. Current evidence on hospital antimicrobial stewardship objectives: a systematic review and meta-analysis. Lancet Infect. Dis. 16:847–56 [Google Scholar]
  31. Liu L, Johnson HL, Cousens S, Perin J, Scott S. 31.  et al. 2012. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet 379:2151–61 [Google Scholar]
  32. Dorrington MG, Bowdish DM. 32.  2013. Immunosenescence and novel vaccination strategies for the elderly. Front. Immunol. 4:171 [Google Scholar]
  33. Thursky KA, Worth LJ. 33.  2015. Can mortality of cancer patients with fever and neutropenia be improved?. Curr. Opin. Infect. Dis. 28:505–13 [Google Scholar]
  34. Truong J, Lee EK, Trudeau ME, Chan KK. 34.  2016. Interpreting febrile neutropenia rates from randomized, controlled trials for consideration of primary prophylaxis in the real world: a systematic review and meta-analysis. Ann. Oncol. 27:608–18 [Google Scholar]
  35. Holland T, Fowler VG Jr., Shelburne SA III. 35.  2014. Invasive gram-positive bacterial infection in cancer patients. Clin. Infect. Dis. 59:Suppl. 5S331–34 [Google Scholar]
  36. Hayat MJ, Howlader N, Reichman ME, Edwards BK. 36.  2007. Cancer statistics, trends, and multiple primary cancer analyses from the Surveillance, Epidemiology, and End Results (SEER) Program. Oncologist 12:20–37 [Google Scholar]
  37. Stewart BW, Wild CP. 37.  2014. World cancer report 2014. Rep., Int. Agency Res. Cancer, World Health Organ., Geneva. http://www.who.int/cancer/publications/WRC_2014/en/
  38. Owens PL, Barrett ML, Raetzman S, Maggard-Gibbons M, Steiner CA. 38.  2014. Surgical site infections following ambulatory surgery procedures. JAMA 311:709–16 [Google Scholar]
  39. Anderson DJ, Sexton DJ. 39.  2015. Epidemiology of surgical site infection in adults. UpToDate A Harris, EL Baron Alphen aan den Rijn, Neth.: Wolters Kluwer http://www.uptodate.com/contents/epidemiology-of-surgical-site-infection-in-adults [Google Scholar]
  40. Wiseman JT, Fernandes-Taylor S, Barnes ML, Saunders RS, Saha S. 40.  et al. 2015. Predictors of surgical site infection after hospital discharge in patients undergoing major vascular surgery. J. Vasc. Surg. 62:1023–31.e5 [Google Scholar]
  41. Leekha S, Lahr BD, Thompson RL, Sampathkumar P, Duncan AA, Orenstein R. 41.  2016. Preoperative risk prediction of surgical site infection requiring hospitalization or reoperation in patients undergoing vascular surgery. J. Vasc. Surg. 64:177–84 [Google Scholar]
  42. Dorschner P, McElroy LM, Ison MG. 42.  2014. Nosocomial infections within the first month of solid organ transplantation. Transpl. Infect. Dis. 16:171–87 [Google Scholar]
  43. Kotton CN, Fishman JA. 43.  2005. Viral infection in the renal transplant recipient. J. Am. Soc. Nephrol. 16:1758–74 [Google Scholar]
  44. Smith JM, Dharnidharka VR. 44.  2015. Viral surveillance and subclinical viral infection in pediatric kidney transplantation. Pediatr. Nephrol. 30:741–48 [Google Scholar]
  45. Kim SI. 45.  2014. Bacterial infection after liver transplantation. World J. Gastroenterol. 20:6211–20 [Google Scholar]
  46. Polvi EJ, Li X, O'Meara TR, Leach MD, Cowen LE. 46.  2015. Opportunistic yeast pathogens: reservoirs, virulence mechanisms, and therapeutic strategies. Cell. Mol. Life Sci. 72:2261–87 [Google Scholar]
  47. Demir Z, Frange P, Lacaille F. 47.  2016. Vaccinations, response, and controls before and after intestinal transplantation in children. Pediatr. Transplant. 20:449–55 [Google Scholar]
  48. 48. NIH (Natl. Inst. Health) 2011. Autoimmune Diseases Bethesda, MD: Natl. Inst. Allergy Infect. Dis https://www.niaid.nih.gov/diseases-conditions/autoimmune-diseases
  49. Shoenfeld Y, Selmi C, Zimlichman E, Gershwin ME. 49.  2008. The autoimmunologist: geoepidemiology, a new center of gravity, and prime time for autoimmunity. J. Autoimmun. 31:325–30 [Google Scholar]
  50. Agmon-Levin N, Lian Z, Shoenfeld Y. 50.  2011. Explosion of autoimmune diseases and the mosaic of old and novel factors. Cell. Mol. Immunol. 8:189–92 [Google Scholar]
  51. Gabriel SE, Michaud K. 51.  2009. Epidemiological studies in incidence, prevalence, mortality, and comorbidity of the rheumatic diseases. Arthritis Res. Ther. 11:229 [Google Scholar]
  52. Walsh SJ, Rau LM. 52.  2000. Autoimmune diseases: a leading cause of death among young and middle-aged women in the United States. Am. J. Public Health 90:1463–66 [Google Scholar]
  53. 53. Natl. Inst. Health 2009. Biennial report of the director, fiscal years 2008–2009. Rep., Natl. Inst. Health, Bethesda, MD. https://report.nih.gov/biennialreport0809/
  54. 54. Am. Autoimmune Relat. Dis. Assoc 2011. The cost burden of autoimmune disease: the latest front in the war on healthcare spending. Rep., AARDA, Eastpoint, MI.
  55. Winkelmann A, Loebermann M, Reisinger EC, Hartung HP, Zettl UK. 55.  2016. Disease-modifying therapies and infectious risks in multiple sclerosis. Nat. Rev. Neurol. 12:217–33 [Google Scholar]
  56. Ide Y, Imamura Y, Ohfuji S, Fukushima W, Ide S. 56.  et al. 2014. Immunogenicity of a monovalent influenza A(H1N1)pdm09 vaccine in patients with hematological malignancies. Hum. Vaccines Immunother. 10:2387–94 [Google Scholar]
  57. Murdaca G, Orsi A, Spano F, Faccio V, Puppo F. 57.  et al. 2016. Vaccine-preventable infections in Systemic Lupus Erythematosus. Hum. Vaccines Immunother. 12:632–43 [Google Scholar]
  58. McMichael A, Picker LJ, Moore JP, Burton DR. 58.  2013. Another HIV vaccine failure: Where to next?. Nat. Med. 19:1576–77 [Google Scholar]
  59. Flemming A. 59.  2014. Vaccines: HIV vaccine failure due to induction of immune suppressors?. Nat. Rev. Drug Discov. 13:574–75 [Google Scholar]
  60. McCormick AL, Mocarski ES. 60.  2015. The immunological underpinnings of vaccinations to prevent cytomegalovirus disease. Cell. Mol. Immunol. 12:170–79 [Google Scholar]
  61. Johnson RM, Brunham RC. 61.  2016. Tissue-resident T cells as the central paradigm of chlamydia immunity. Infect. Immun. 84:868–73 [Google Scholar]
  62. Edwards JL, Jennings MP, Apicella MA, Seib KL. 62.  2016. Is gonococcal disease preventable? The importance of understanding immunity and pathogenesis in vaccine development. Crit. Rev. Microbiol. 42:928–41 [Google Scholar]
  63. Dockrell HM. 63.  2016. Towards new TB vaccines: What are the challenges?. Pathogens Dis 74:ftw016 [Google Scholar]
  64. Fowler VG, Allen KB, Moreira ED, Moustafa M, Isgro F. 64.  et al. 2013. Effect of an investigational vaccine for preventing Staphylococcus aureus infections after cardiothoracic surgery: a randomized trial. JAMA 309:1368–78 [Google Scholar]
  65. Wykes MN. 65.  2013. Why haven't we made an efficacious vaccine for malaria?. EMBO Rep 14:661 [Google Scholar]
  66. Hoffman SL, Vekemans J, Richie TL, Duffy PE. 66.  2015. The march toward malaria vaccines. Am. J. Prev. Med. 49:S319–33 [Google Scholar]
  67. Fowler VG Jr., Proctor RA. 67.  2014. Where does a Staphylococcus aureus vaccine stand?. Clin. Microbiol. Infect. 20:Suppl. 566–75 [Google Scholar]
  68. Wiedermann U, Garner-Spitzer E, Wagner A. 68.  2016. Primary vaccine failure to routine vaccines: Why and what to do?. Hum. Vaccines Immunother. 12:239–43 [Google Scholar]
  69. Cherry JD. 69.  2012. Why do pertussis vaccines fail?. Pediatrics 129:968–70 [Google Scholar]
  70. McGuire VA, Arthur JS. 70.  2015. Subverting Toll-like receptor signaling by bacterial pathogens. Front. Immunol. 6:607 [Google Scholar]
  71. Oth T, Vanderlocht J, Van Elssen CH, Bos GM, Germeraad WT. 71.  2016. Pathogen-associated molecular patterns induced crosstalk between dendritic cells, T helper cells, and natural killer helper cells can improve dendritic cell vaccination. Med. Inflamm. 2016:5740373 [Google Scholar]
  72. Thaiss CA, Levy M, Itav S, Elinav E. 72.  2016. Integration of innate immune signaling. Trends Immunol 37:84–101 [Google Scholar]
  73. Motta V, Soares F, Sun T, Philpott DJ. 73.  2015. NOD-like receptors: versatile cytosolic sentinels. Physiol. Rev. 95:149–78 [Google Scholar]
  74. Suresh R, Mosser DM. 74.  2013. Pattern recognition receptors in innate immunity, host defense, and immunopathology. Adv. Physiol. Educ. 37:284–91 [Google Scholar]
  75. Nestle FO, Di Meglio P, Qin JZ, Nickoloff BJ. 75.  2009. Skin immune sentinels in health and disease. Nat. Rev. Immunol. 9:679–91 [Google Scholar]
  76. Renner ED, Rylaarsdam S, Aňover-Sombke S, Rack AL, Reichenbach J. 76.  et al. 2008. Novel signal transducer and activator of transcription 3 (STAT3) mutations, reduced TH17 cell numbers, and variably defective STAT3 phosphorylation in hyper-IgE syndrome. J. Allergy Clin. Immunol. 122:181–87 [Google Scholar]
  77. de Luca A, Smeekens SP, Casagrande A, Iannitti R, Conway KL. 77.  et al. 2014. IL-1 receptor blockade restores autophagy and reduces inflammation in chronic granulomatous disease in mice and in humans. PNAS 111:3526–31 [Google Scholar]
  78. Miller LS, Pietras EM, Uricchio LH, Hirano K, Rao S. 78.  et al. 2007. Inflammasome-mediated production of IL-1β is required for neutrophil recruitment against Staphylococcus aureus in vivo. J. Immunol. 179:6933–42 [Google Scholar]
  79. Junt T, Barchet W. 79.  2015. Translating nucleic acid-sensing pathways into therapies. Nat. Rev. Immunol. 15:529–44 [Google Scholar]
  80. Mohammadi S, Shahbazi Mojarrad J, Zakeri-Milani P, Shirani A, Mussa Farkhani S. 80.  et al. 2015. Synthesis and in vitro evaluation of amphiphilic peptides and their nanostructured conjugates. Adv. Pharm. Bull. 5:41–49 [Google Scholar]
  81. De Gregorio E. 81.  2015. The path forward. Vaccine 33:Suppl. 2B60–63 [Google Scholar]
  82. Baumgartner CK, Malherbe LP. 82.  2010. Regulation of CD4 T-cell receptor diversity by vaccine adjuvants. Immunology 130:16–22 [Google Scholar]
  83. Park CO, Kupper TS. 83.  2015. The emerging role of resident memory T cells in protective immunity and inflammatory disease. Nat. Med. 21:688–97 [Google Scholar]
  84. Kurosaki T, Kometani K, Ise W. 84.  2015. Memory B cells. Nat. Rev. Immunol. 15:149–59 [Google Scholar]
  85. Rivino L. 85.  2016. T cell immunity to dengue virus and implications for vaccine design. Expert Rev. Vaccines 15:443–53 [Google Scholar]
  86. Green AM, Beatty PR, Hadjilaou A, Harris E. 86.  2014. Innate immunity to dengue virus infection and subversion of antiviral responses. J. Mol. Biol. 426:1148–60 [Google Scholar]
  87. Yang OO, Ali A, Kasahara N, Faure-Kumar E, Bae JY. 87.  et al. 2015. Short conserved sequences of HIV-1 are highly immunogenic and shift immunodominance. J. Virol. 89:1195–204 [Google Scholar]
  88. Weiskopf D, Angelo MA, Sidney J, Peters B, Shresta S, Sette A. 88.  2014. Immunodominance changes as a function of the infecting dengue virus serotype and primary versus secondary infection. J. Virol. 88:11383–94 [Google Scholar]
  89. Arlehamn CSL, Sidney J, Henderson R, Greenbaum JA, James EA. 89.  et al. 2012. Dissecting mechanisms of immunodominance to the common tuberculosis antigens ESAT-6, CFP10, Rv2031c (hspX), Rv2654c (TB7.7), and Rv1038c (EsxJ). J. Immunol. 188:5020–31 [Google Scholar]
  90. Murillo LA, Tenjo FA, Clavijo OP, Orozco MA, Sampaio S. 90.  et al. 1992. A specific T-cell receptor genotype preference in the immune response to a synthetic Plasmodium falciparum malaria vaccine. Parasite Immunol 14:87–94 [Google Scholar]
  91. DeGregorio MW, Lee WMF, Ries CA. 91.  1982. Candida infections in patients with acute leukemia: ineffectiveness of nystatin prophylaxis and relationship between oropharyngeal and systemic candidiasis. Cancer 50:2780–84 [Google Scholar]
  92. Akram A, Inman RD. 92.  2012. Immunodominance: a pivotal principle in host response to viral infections. Clin. Immunol. 143:99–115 [Google Scholar]
  93. Yeaman MR, Filler SG, Schmidt CS, Ibrahim AS, Edwards JE Jr, Hennessey JP Jr. 93.  2014. Applying convergent immunity to innovative vaccines targeting Staphylococcus aureus. Front. Immunol. 5:463 [Google Scholar]
  94. Sun M, Ma Y, Xu Y, Yang H, Shi L. 94.  et al. 2014. Dynamic profiles of neutralizing antibody responses elicited in rhesus monkeys immunized with a combined tetravalent DTaP-Sabin IPV candidate vaccine. Vaccine 32:1100–6 [Google Scholar]
  95. Wang X, Maynard JA, Hewlett EL. 95.  2015. The Bordetella adenylate cyclase repeat-in-toxin (RTX) domain is immunodominant and elicits neutralizing antibodies. J. Biol. Chem. 290:3576–91 [Google Scholar]
  96. Cooper D, Yu X, Sidhu M, Nahm MH, Fernsten P, Jansen KU. 96.  2011. The 13-valent pneumococcal conjugate vaccine (PCV13) elicits cross-functional opsonophagocytic killing responses in humans to Streptococcus pneumoniae serotypes 6C and 7A. Vaccine 29:7207–11 [Google Scholar]
  97. Humphries HE, Brookes C, Allen L, Kuisma E, Gorringe A, Taylor S. 97.  2015. Seroprevalence of antibody-mediated, complement-dependent opsonophagocytic activity against Neisseria meningitidis serogroup B in England. Clin. Vaccine Immunol. 22:503–9 [Google Scholar]
  98. Rodriguez-Pinto D, Saravia NG, McMahon-Pratt D. 98.  2014. CD4 T cell activation by B cells in human Leishmania (Viannia) infection. BMC Infect. Dis. 14:108 [Google Scholar]
  99. Barnett LG, Simkins HM, Barnett BE, Korn LL, Johnson AL. 99.  et al. 2014. B cell antigen presentation in the initiation of follicular helper T cell and germinal center differentiation. J. Immunol. 192:3607–17 [Google Scholar]
  100. Harvey BP, Raycroft MT, Quan TE, Rudenga BJ, Roman RM. 100.  et al. 2014. Transfer of antigen from human B cells to dendritic cells. Mol. Immunol. 58:56–65 [Google Scholar]
  101. Kuklin NA, Clark DJ, Secore S, Cook J, Cope LD. 101.  et al. 2006. A novel Staphylococcus aureus vaccine: iron surface determinant B induces rapid antibody responses in rhesus macaques and specific increased survival in a murine S. aureus sepsis model. Infect. Immun. 74:2215–23 [Google Scholar]
  102. Zapotoczna M, Jevnikar Z, Miajlovic H, Kos J, Foster TJ. 102.  2013. Iron-regulated surface determinant B (IsdB) promotes Staphylococcus aureus adherence to and internalization by non-phagocytic human cells. Cell. Microbiol. 15:1026–41 [Google Scholar]
  103. McNeely TB, Shah NA, Fridman A, Joshi A, Hartzel JS. 103.  et al. 2014. Mortality among recipients of the Merck V710 Staphylococcus aureus vaccine after postoperative S. aureus infections: an analysis of possible contributing host factors. Hum. Vaccines Immunother. 10:3513–16 [Google Scholar]
  104. Rose WE, Eickhoff JC, Shukla SK, Pantrangi M, Rooijakkers S. 104.  et al. 2012. Elevated serum interleukin-10 at time of hospital admission is predictive of mortality in patients with Staphylococcus aureus bacteremia. J. Infect. Dis. 206:1604–11 [Google Scholar]
  105. Rose W, Sakoulas G, Berti A, Mizet V, Shukla S. 105.  2013. Biomarkers in Staphylococcus aureus bacteremia predicting bacteremia duration or patient mortality. Presented at Intersci. Conf. Antimicrob. Agents Chemother., Sept. 10–13, Denver, Abstr. B-1432
  106. Offit P. 106.  2007. Vaccinated: One Man's Quest to Defeat the World's Deadliest Diseases New York: Smithson. Books
  107. Bennett JW, Yadava A, Tosh D, Sattabongkot J, Komisar J. 107.  et al. 2016. Phase 1/2a trial of Plasmodium vivax malaria vaccine candidate VMP001/AS01B in malaria-naive adults: safety, immunogenicity, and efficacy. PLOS Neglected Trop. Dis. 10:e0004423 [Google Scholar]
  108. Chia WN, Goh YS, Renia L. 108.  2014. Novel approaches to identify protective malaria vaccine candidates. Front. Microbiol. 5:586 [Google Scholar]
  109. Excler JL, Ake J, Robb ML, Kim JH, Plotkin SA. 109.  2014. Nonneutralizing functional antibodies: a new “old” paradigm for HIV vaccines. Clin. Vaccine Immunol. 21:1023–36 [Google Scholar]
  110. Davies AM, Sutton BJ. 110.  2015. Human IgG4: a structural perspective. Immunol. Rev. 268:139–59 [Google Scholar]
  111. Aalberse RC, Stapel SO, Schuurman J, Rispens T. 111.  2009. Immunoglobulin G4: an odd antibody. Clin. Exp. Allergy 39:469–77 [Google Scholar]
  112. de Martino M, Rossi ME, Azzari C, Chiarelli F, Galli L, Vierucci A. 112.  1999. Low IgG3 and high IgG4 subclass levels in children with advanced human immunodeficiency virus-type 1 infection and elevated IgE levels. Ann. Allergy Asthma Immunol. 83:160–64 [Google Scholar]
  113. Ae Veen W, Stanic B, Yaman G, Wawrzyniak M, Sollner S. 113.  et al. 2013. IgG4 production is confined to human IL-10-producing regulatory B cells that suppress antigen-specific immune responses. J. Allergy Clin. Immunol. 131:1204–12 [Google Scholar]
  114. Centlivre M, Combadière B. 114.  2015. New challenges in modern vaccinology. BMC Immunol 16:18 [Google Scholar]
  115. Mwangoka G, Ogutu B, Msambichaka B, Mzee T, Salim N. 115.  et al. 2013. Experience and challenges from clinical trials with malaria vaccines in Africa. Malaria J 12:86 [Google Scholar]
  116. Migueles SA, Connors M. 116.  2015. Success and failure of the cellular immune response against HIV-1. Nat. Immunol. 16:563–70 [Google Scholar]
  117. Stary G, Olive A, Radovic-Moreno AF, Gondek D, Alvarez D. 117.  et al. 2015. A mucosal vaccine against Chlamydia trachomatis generates two waves of protective memory T cells. Science 348:aaa8205 [Google Scholar]
  118. Bergstresser PR, Tigelaar RE, Dees JH, Streilein JW. 118.  1983. Thy-1 antigen-bearing dendritic cells populate murine epidermis. J. Investig. Dermatol. 81:286–88 [Google Scholar]
  119. McLoughlin RM, Solinga RM, Rich J, Zaleski KJ, Cocchiaro JL. 119.  et al. 2006. CD4+ T cells and CXC chemokines modulate the pathogenesis of Staphylococcus aureus wound infections. PNAS 103:10408–13 [Google Scholar]
  120. Ishigame H, Kakuta S, Nagai T, Kadoki M, Nambu A. 120.  et al. 2009. Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity 30:108–19 [Google Scholar]
  121. Yount NY, Yeaman MR. 121.  2012. Emerging themes and therapeutic prospects for anti-infective peptides. Annu. Rev. Pharmacol. Toxicol. 52:337–60 [Google Scholar]
  122. Yeaman MR, Yount NY. 122.  2007. Unifying themes in host defence effector polypeptides. Nat. Rev. Microbiol. 5:727–40 [Google Scholar]
  123. Yeaman MR, Yount NY. 123.  2003. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55:27–55 [Google Scholar]
  124. Dawson MJ, Scott RW. 124.  2012. New horizons for host defense peptides and lantibiotics. Curr. Opin. Pharmacol. 12:545–50 [Google Scholar]
  125. Schindler D, Gutierrez MG, Beineke A, Rauter Y, Rohde M. 125.  et al. 2012. Dendritic cells are central coordinators of the host immune response to Staphylococcus aureus bloodstream infection. Am. J. Pathol. 181:1327–37 [Google Scholar]
  126. Greenlee-Wacker MC, Rigby KM, Kobayashi SD, Porter AR, DeLeo FR, Nauseef WM. 126.  2014. Phagocytosis of Staphylococcus aureus by human neutrophils prevents macrophage efferocytosis and induces programmed necrosis. J. Immunol. 192:4709–17 [Google Scholar]
  127. Doisne JM, Soulard V, Becourt C, Amniai L, Henrot P. 127.  et al. 2011. Cutting edge: crucial role of IL-1 and IL-23 in the innate IL-17 response of peripheral lymph node NK1.1 invariant NKT cells to bacteria. J. Immunol. 186:662–66 [Google Scholar]
  128. Pujol J, Bouillenne F, Farnir F, Dufrasne I, Mainil J. 128.  et al. 2015. Generation of a soluble recombinant trimeric form of bovine CD40L and its potential use as a vaccine adjuvant in cows. Veterinary Immunol. Immunopathol. 168:1–13 [Google Scholar]
  129. Degauque N, Brouard S, Soulillou J-P. 129.  2016. Cross-reactivity of TCR repertoire: current concepts, challenges and implication for allotransplantation. Front. Immunol. 7:89 [Google Scholar]
  130. Unanue ER, Turk V, Neefjes J. 130.  2016. Variations in MHC class II antigen processing and presentation in health and disease. Annu. Rev. Immunol. 34:265–97 [Google Scholar]
  131. Yeaman MR, Filler SG, Chaili S, Barr K, Wang H. 131.  et al. 2014. Mechanisms of NDV-3 vaccine efficacy in MRSA skin versus invasive infection. PNAS 111:E5555–63 [Google Scholar]
  132. Cho JS, Zussman J, Donegan NP, Ramos RI, Garcia NC. 132.  et al. 2011. Noninvasive in vivo imaging to evaluate immune responses and antimicrobial therapy against Staphylococcus aureus and USA300 MRSA skin infections. J. Investig. Dermatol. 131:907–15 [Google Scholar]
  133. McDonald DR. 133.  2012. TH17 deficiency in human disease. J. Allergy Clin. Immunol. 129:1429–35 [Google Scholar]
  134. Hendry L, John S. 134.  2004. Regulation of STAT signalling by proteolytic processing. Eur. J. Biochem. 271:4613–20 [Google Scholar]
  135. Heim MH, Thimme R. 135.  2014. Innate and adaptive immune responses in HCV infections. J. Hepatol. 61:S14–25 [Google Scholar]
  136. Chan LC, Chaili S, Filler SG, Barr K, Wang H. 136.  et al. 2015. Nonredundant roles of interleukin-17A (IL-17A) and IL-22 in murine host defense against cutaneous and hematogenous infection due to methicillin-resistant Staphylococcus aureus. Infect. Immun. 83:4427–37 [Google Scholar]
  137. Campbell DJ. 137.  2015. Control of regulatory T cell migration, function, and homeostasis. J. Immunol. 195:2507–13 [Google Scholar]
  138. Ciccarese C, Alfieri S, Santoni M, Santini D, Brunelli M. 138.  et al. 2016. New toxicity profile for novel immunotherapy agents: focus on immune-checkpoint inhibitors. Expert Opin. Drug Metab. Toxicol. 12:57–75 [Google Scholar]
  139. Larsson M, Shankar EM, Che KF, Saeidi A, Ellegard R. 139.  et al. 2013. Molecular signatures of T-cell inhibition in HIV-1 infection. Retrovirology 10:31 [Google Scholar]
  140. Seddiki N, Brezar V, Draenert R. 140.  2014. Cell exhaustion in HIV-1 infection: role of suppressor cells. Curr. Opin. HIV AIDS 9:452–58 [Google Scholar]
  141. Chikuma S. 141.  2016. Basics of PD-1 in self-tolerance, infection, and cancer immunity. Int. J. Clin. Oncol. 21:448–55 [Google Scholar]
  142. Kaufman GN, Massoud AH, Dembele M, Yona M, Piccirillo CA, Mazer BD. 142.  2015. Induction of regulatory T cells by intravenous immunoglobulin: a bridge between adaptive and innate immunity. Front. Immunol. 6:469 [Google Scholar]
  143. Björkander S, Hell L, Johansson MA, Forsberg MM, Lasaviciute G. 143.  et al. 2016. Staphylococcus aureus-derived factors induce IL-10, IFN-γ and IL-17A-expressing FOXP3+CD161+ T-helper cells in a partly monocyte-dependent manner. Sci. Rep. 6:22083 [Google Scholar]
  144. Scholzen A, Mittag D, Rogerson SJ, Cooke BM, Plebanski M. 144.  2009. Plasmodium falciparum–mediated induction of human CD25hiFoxp3hi CD4 T cells is independent of direct TCR stimulation and requires IL-2, IL-10 and TGFβ. PLOS Pathogens 5:e1000543 [Google Scholar]
  145. Baumann C, Bonilla WV, Fröhlich A, Helmstetter C, Peine M. 145.  et al. 2015. T-bet– and STAT4–dependent IL-33 receptor expression directly promotes antiviral Th1 cell responses. PNAS 112:4056–61 [Google Scholar]
  146. Miller LS, Cho JS. 146.  2011. Immunity against Staphylococcus aureus cutaneous infections. Nat. Rev. Immunol. 11:505–18 [Google Scholar]
  147. Krishna S, Miller LS. 147.  2012. Host-pathogen interactions between the skin and Staphylococcus aureus. Curr. Opin. Microbiol. 15:28–35 [Google Scholar]
  148. Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV. 148.  et al. 2013. Genomic responses in mouse models poorly mimic human inflammatory diseases. PNAS 110:3507–12 [Google Scholar]
  149. Takao K, Miyakawa T. 149.  2015. Genomic responses in mouse models greatly mimic human inflammatory diseases. PNAS 112:1167–72 [Google Scholar]
  150. Beverley P. 150.  2013. TB vaccine failure was predictable. Nature 503:469 [Google Scholar]
  151. Lakshmikanth CL, Jacob SP, Chaithra VH, de Castro-Faria-Neto HC, Marathe GK. 151.  2016. Sepsis: in search of cure. Inflammation Research 65:587–602 [Google Scholar]
  152. Steer AC, Carapetis JR, Dale JB, Fraser JD, Good MF. 152.  et al. 2016. Status of vaccine research and development of vaccines for Streptococcus pyogenes. Vaccine 34:2953–58 [Google Scholar]
  153. Birkett AJ, Moorthy VS, Loucq C, Chitnis CE, Kaslow DC. 153.  2013. Malaria vaccine R&D in the Decade of Vaccines: breakthroughs, challenges and opportunities. Vaccine 31:Suppl. 2B233–43 [Google Scholar]
  154. Garcia-Sastre A. 154.  2016. Systems vaccinology informs influenza vaccine immunogenicity. PNAS 113:1689–91 [Google Scholar]
  155. Medaglini D, Harandi AM, Ottenhoff TH, Siegrist CA. 155.  2015. Ebola vaccine R&D: filling the knowledge gaps. Sci. Transl. Med. 7:317ps24 [Google Scholar]
  156. Blohmke CJ, O'Connor D, Pollard AJ. 156.  2015. The use of systems biology and immunological big data to guide vaccine development. Genome Med 7:114 [Google Scholar]
  157. Flanagan KL, Wilson KL, Plebanski M. 157.  2016. Polymorphism in liver-stage malaria vaccine candidate proteins: immune evasion and implications for vaccine design. Expert Rev. Vaccines 15:389–99 [Google Scholar]
  158. Heppner DG. 158.  2013. The malaria vaccine – status quo 2013. Travel Med. Infect. Dis 11:2–7 [Google Scholar]
  159. Vasilevsky S, Stojanov M, Greub G, Baud D. 159.  2016. Chlamydial polymorphic membrane proteins: regulation, function and potential vaccine candidates. Virulence 7:11–22 [Google Scholar]
  160. Wang B, Muir TW. 160.  2016. Regulation of virulence in Staphylococcus aureus: molecular mechanisms and remaining puzzles. Cell Chem. Biol. 23:214–24 [Google Scholar]
  161. Le KY, Otto M. 161.  2015. Quorum-sensing regulation in staphylococci—an overview. Front. Microbiol. 6:1174 [Google Scholar]
  162. Sheppard DC, Filler SG. 162.  2015. Host cell invasion by medically important fungi. Cold Spring Harb. Perspect. Med. 5:a019687 [Google Scholar]
  163. Gebremariam T, Liu M, Luo G, Bruno V, Phan QT. 163.  et al. 2014. CotH3 mediates fungal invasion of host cells during mucormycosis. J. Clin. Investig. 124:237–50 [Google Scholar]
  164. DeDiego ML, Anderson CS, Yang H, Holden-Wiltse J, Fitzgerald T. 164.  et al. 2016. Directed selection of influenza virus produces antigenic variants that match circulating human virus isolates and escape from vaccine mediated immune protection. Immunology 148:160–73 [Google Scholar]
  165. Preston A. 165.  2016. The role of B. pertussis vaccine antigen gene variants in pertussis resurgence and possible consequences for vaccine development. Hum. Vaccines Immunother. 12:1274–76 [Google Scholar]
  166. Haynes BF, Shaw GM, Korber B, Kelsoe G, Sodroski J. 166.  et al. 2016. HIV-host interactions: implications for vaccine design. Cell Host Microbe 19:292–303 [Google Scholar]
  167. Coleman JL, Shukla D. 167.  2013. Recent advances in vaccine development for herpes simplex virus types I and II. Hum. Vaccines Immunother. 9:729–35 [Google Scholar]
  168. Sayiner AA, Agca H, Sengonul A, Celik A, Akarsu M. 168.  2007. A new hepatitis B virus vaccine escape mutation in a renal transplant recipient. J. Clin. Virol. 38:157–60 [Google Scholar]
  169. Gilliland SM, Jenkins A, Parker L, Somdach N, Pattamadilok S. 169.  et al. 2013. Vaccine-related mumps infections in Thailand and the identification of a novel mutation in the mumps fusion protein. Biologicals 41:84–87 [Google Scholar]
  170. Chem YK, Chua KB, Malik Y, Voon K. 170.  2015. Monoclonal antibody-escape variant of dengue virus serotype 1: genetic composition and envelope protein expression. Trop. Biomed. 32:344–51 [Google Scholar]
  171. Mahalingam S, Herring BL, Halstead SB. 171.  2013. Call to action for dengue vaccine failure. Emerg. Infect. Dis. 19:1335–37 [Google Scholar]
  172. Zak DE, Aderem A. 172.  2015. Systems integration of innate and adaptive immunity. Vaccine 33:5241–48 [Google Scholar]
  173. Pulendran B. 173.  2014. Systems vaccinology: probing humanity's diverse immune systems with vaccines. PNAS 111:12300–6 [Google Scholar]
  174. Mooney M, McWeeney S, Canderan G, Sekaly RP. 174.  2013. A systems framework for vaccine design. Curr. Opin. Immunol. 25:551–55 [Google Scholar]
  175. Schmidt CS, White CJ, Ibrahim AS, Filler SG, Fu Y. 175.  et al. 2012. NDV-3, a recombinant alum-adjuvanted vaccine for Candida and Staphylococcus aureus, is safe and immunogenic in healthy adults. Vaccine 30:7594–600 [Google Scholar]
  176. Sheppard DC, Yeaman MR, Welch WH, Phan QT, Fu Y. 176.  et al. 2004. Functional and structural diversity in the Als protein family of Candida albicans. J. Biol. Chem. 279:30480–89 [Google Scholar]
  177. Spellberg BJ, Ibrahim AS, Avanesian V, Fu Y, Myers C. 177.  et al. 2006. Efficacy of the anti-Candida rAls3p-N or rAls1p-N vaccines against disseminated and mucosal candidiasis. J. Infect. Dis. 194:256–60 [Google Scholar]
  178. Spellberg B, Ibrahim AS, Lin L, Avanesian V, Fu Y. 178.  et al. 2008. Antibody titer threshold predicts anti-candidal vaccine efficacy even though the mechanism of protection is induction of cell-mediated immunity. J. Infect. Dis. 197:967–71 [Google Scholar]
  179. Ibrahim AS, Luo G, Gebremariam T, Lee H, Schmidt CS. 179.  et al. 2013. NDV-3 protects mice from vulvovaginal candidiasis through T- and B-cell immune response. Vaccine 31:5549–56 [Google Scholar]
  180. Spellberg B, Ibrahim AS, Yeaman MR, Lin L, Fu Y. 180.  et al. 2008. The antifungal vaccine derived from the recombinant N terminus of Als3p protects mice against the bacterium Staphylococcus aureus. Infect. Immun. 76:4574–80 [Google Scholar]
  181. Greene CJ, Marks LR, Hu JC, Reddinger R, Mandell L. 181.  et al. 2016. Novel strategy to protect against influenza-induced pneumococcal disease without interfering with commensal colonization. Infect. Immun. 84:1693–703 [Google Scholar]
  182. Rappuoli R. 182.  2001. Reverse vaccinology, a genome-based approach to vaccine development. Vaccine 19:2688–91 [Google Scholar]
  183. Xia J, Winkelmann ER, Gorder SR, Mason PW, Milligan GN. 183.  2013. TLR3- and MyD88-dependent signaling differentially influences the development of West Nile virus-specific B cell responses in mice following immunization with RepliVAX WN, a single-cycle flavivirus vaccine candidate. J. Virol. 87:12090–101 [Google Scholar]
  184. Chen A, Mann B, Gao G, Heath R, King J. 184.  et al. 2015. Multivalent pneumococcal protein vaccines comprising pneumolysoid with epitopes/fragments of CbpA and/or PspA elicit strong and broad protection. Clin. Vaccine Immunol. 22:1079–89 [Google Scholar]
  185. Mortaz E, Adcock IM, Tabarsi P, Masjedi MR, Mansouri D. 185.  et al. 2015. Interaction of pattern recognition receptors with Mycobacterium tuberculosis. J. Clin. Immunol. 35:1–10 [Google Scholar]
  186. Baldwin CL, Telfer JC. 186.  2015. The bovine model for elucidating the role of γδ T cells in controlling infectious diseases of importance to cattle and humans. Mol. Immunol. 66:35–47 [Google Scholar]
  187. Martins KA, Steffens JT, van Tongeren SA, Wells JB, Bergeron AA. 187.  et al. 2014. Toll-like receptor agonist augments virus-like particle-mediated protection from Ebola virus with transient immune activation. PLOS ONE 9:e89735 [Google Scholar]
  188. Kovjazin R, Carmon L. 188.  2014. The use of signal peptide domains as vaccine candidates. Hum. Vaccines Immunother. 10:2733–40 [Google Scholar]
  189. Healer J, Triglia T, Hodder AN, Gemmill AW, Cowman AF. 189.  2005. Functional analysis of Plasmodium falciparum apical membrane antigen 1 utilizing interspecies domains. Infect. Immun. 73:2444–51 [Google Scholar]
  190. Mital J, Meissner M, Soldati D, Ward GE. 190.  2005. Conditional expression of Toxoplasma gondii apical membrane antigen-1 (TgAMA1) demonstrates that TgAMA1 plays a critical role in host cell invasion. Mol. Biol. Cell 16:4341–49 [Google Scholar]
  191. Li Z, Zhao X, Higgins DE, Frankel FR. 191.  2005. Conditional lethality yields a new vaccine strain of Listeria monocytogenes for the induction of cell-mediated immunity. Infect. Immun. 73:5065–73 [Google Scholar]
  192. Carvalho TG, Thiberge S, Sakamoto H, Menard R. 192.  2004. Conditional mutagenesis using site-specific recombination in Plasmodium berghei. PNAS 101:14931–36 [Google Scholar]
  193. McNeil SA, Halperin SA, Langley JM, Smith B, Warren A. 193.  et al. 2005. Safety and immunogenicity of 26-valent group A streptococcus vaccine in healthy adult volunteers. Clin. Infect. Dis. 41:1114–22 [Google Scholar]
  194. Langermans JA, Doherty TM, Vervenne RA, van der Laan T, Lyashchenko K. 194.  et al. 2005. Protection of macaques against Mycobacterium tuberculosis infection by a subunit vaccine based on a fusion protein of antigen 85B and ESAT-6. Vaccine 23:2740–50 [Google Scholar]
  195. Hsu FJ, Benike C, Fagnoni F, Liles TM, Czerwinski D. 195.  et al. 1996. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat. Med. 2:52–58 [Google Scholar]
  196. Avery OT, Goebel WF. 196.  1929. Chemo-immunological studies on conjugated carbohydrate-proteins: II. Immunological specificity of synthetic sugar-protein antigens. J. Exp. Med. 50:533–50 [Google Scholar]
  197. Dagan R, Poolman J, Siegrist CA. 197.  2010. Glycoconjugate vaccines and immune interference: a review. Vaccine 28:5513–23 [Google Scholar]
  198. Levitz SM, Huang H, Ostroff GR, Specht CA. 198.  2015. Exploiting fungal cell wall components in vaccines. Semin. Immunopathol. 37:199–207 [Google Scholar]
  199. Hu QY, Berti F, Adamo R. 199.  2016. Towards the next generation of biomedicines by site-selective conjugation. Chem. Soc. Rev. 45:1691–719 [Google Scholar]
  200. Rana R, Dalal J, Singh D, Kumar N, Hanif S. 200.  et al. 2015. Development and characterization of Haemophilus influenzae type b conjugate vaccine prepared using different polysaccharide chain lengths. Vaccine 33:2646–54 [Google Scholar]
  201. Möginger U, Resemann A, Martin CE, Parameswarappa S, Govindan S. 201.  et al. 2016. Cross Reactive Material 197 glycoconjugate vaccines contain privileged conjugation sites. Sci. Rep. 6:20488 [Google Scholar]
  202. Nilo A, Passalacqua I, Fabbrini M, Allan M, Usera A. 202.  et al. 2015. Exploring the effect of conjugation site and chemistry on the immunogenicity of an anti-group B streptococcus glycoconjugate vaccine based on GBS67 pilus protein and type V polysaccharide. Bioconjug. Chem. 26:1839–49 [Google Scholar]
  203. Wetter M, Kowarik M, Steffen M, Carranza P, Corradin G, Wacker M. 203.  2013. Engineering, conjugation, and immunogenicity assessment of Escherichia coli O121 O antigen for its potential use as a typhoid vaccine component. Glycoconj. J. 30:511–22 [Google Scholar]
  204. Zeltins A. 204.  2013. Construction and characterization of virus-like particles: a review. Mol. Biotechnol. 53:92–107 [Google Scholar]
  205. Frietze KM, Peabody DS, Chackerian B. 205.  2016. Engineering virus-like particles as vaccine platforms. Curr. Opin. Virol. 18:44–49 [Google Scholar]
  206. Schwameis M, Buchtele N, Wadowski PP, Schoergenhofer C, Jilma B. 206.  2015. Chikungunya vaccines in development. Hum. Vaccines Immunother. 12:716–31 [Google Scholar]
  207. Yan D, Wei Y-Q, Guo H-C, Sun S-Q. 207.  2015. The application of virus-like particles as vaccines and biological vehicles. Appl. Microbiol. Biotechnol. 99:10415–32 [Google Scholar]
  208. Rodriguez-Limas WA, Sekar K, Tyo KE. 208.  2013. Virus-like particles: the future of microbial factories and cell-free systems as platforms for vaccine development. Curr. Opin. Biotechnol. 24:1089–93 [Google Scholar]
  209. Huai Y, Dong S, Zhu Y, Li X, Cao B. 209.  et al. 2016. Genetically engineered virus nanofibers as an efficient vaccine for preventing fungal infection. Adv. Healthc. Mater. 5:786–94 [Google Scholar]
  210. Wang Y, Su Q, Dong S, Shi H, Gao X, Wang L. 2010.  2014. Hybrid phage displaying SLAQVKYTSASSI induces protection against Candida albicans challenge in BALB/c mice. Hum. Vaccines Immunother. 10:1057–63 [Google Scholar]
  211. Zhao C, Ao Z, Yao X. 211.  2016. Current advances in virus-like particles as a vaccination approach against HIV infection. Vaccines 4:2 [Google Scholar]
  212. Donnelly JJ, Friedman A, Martinez D, Montgomery DL, Shiver JW. 212.  et al. 1995. Preclinical efficacy of a prototype DNA vaccine: enhanced protection against antigenic drift in influenza virus. Nat. Med. 1:583–87 [Google Scholar]
  213. Sutter G, Wyatt LS, Foley PL, Bennink JR, Moss B. 213.  1994. A recombinant vector derived from the host range-restricted and highly attenuated MVA strain of vaccinia virus stimulates protective immunity in mice to influenza virus. Vaccine 12:1032–40 [Google Scholar]
  214. Jenkinson D. 214.  1988. Duration of effectiveness of pertussis vaccine: evidence from a 10 year community study. Br. Med. J 296:612–14 [Google Scholar]
  215. Witt MA, Arias L, Katz PH, Truong ET, Witt DJ. 215.  2013. Reduced risk of pertussis among persons ever vaccinated with whole cell pertussis vaccine compared to recipients of acellular pertussis vaccines in a large US cohort. Clin. Infect. Dis. 56:1248–54 [Google Scholar]
  216. Andersen P, Doherty TM. 216.  2005. The success and failure of BCG—implications for a novel tuberculosis vaccine. Nat. Rev. Microbiol. 3:656–62 [Google Scholar]
  217. Evans TG, Schrager L, Thole J. 217.  2016. Status of vaccine research and development of vaccines for tuberculosis. Vaccine 34:2911–14 [Google Scholar]
  218. Babb R, Chen A, Hirst TR, Kara EE, McColl SR. 218.  et al. 2016. Intranasal vaccination with γ-irradiated Streptococcus pneumoniae whole-cell vaccine provides serotype-independent protection mediated by B-cells and innate IL-17 responses. Clin. Sci. 130:697–710 [Google Scholar]
  219. Shu MH, MatRahim N, NorAmdan N, Pang SP, Hashim SH. 219.  et al. 2016. An inactivated antibiotic-exposed whole-cell vaccine enhances bactericidal activities against multidrug-resistant Acinetobacter baumannii. Sci. Rep. 6:22332 [Google Scholar]
  220. Chakraborty S, Harro C, DeNearing B, Bream J, Bauers N. 220.  et al. 2016. Evaluation of the safety, tolerability, and immunogenicity of an oral, inactivated whole-cell Shigella flexneri 2a vaccine in healthy adult subjects. Clin. Vaccine Immunol. 23:315–25 [Google Scholar]
  221. Gholami E, Zahedifard F, Rafati S. 221.  2016. Delivery systems for Leishmania vaccine development. Expert Rev. Vaccines 15:879–95 [Google Scholar]
  222. Molehin AJ, Rojo JU, Siddiqui SZ, Gray SA, Carter D, Siddiqui AA. 222.  2016. Development of a schistosomiasis vaccine. Expert Rev. Vaccines 15:619–27 [Google Scholar]
  223. Rodríguez-Morales O, Monteón-Padilla V, Carrillo-Sánchez SC, Rios-Castro M, Martínez-Cruz M. 223.  et al. 2015. Experimental vaccines against Chagas disease: a journey through history. J. Immunol. Res. 2015:489758 [Google Scholar]
  224. Epstein JE, Tewari K, Lyke KE, Sim BKL, Billingsley PF. 224.  et al. 2011. Live attenuated malaria vaccine designed to protect through hepatic CD8+ T cell immunity. Science 334:475–80 [Google Scholar]
  225. Seder RA, Chang LJ, Enama ME, Zephir KL, Sarwar UN. 225.  et al. 2013. Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine. Science 341:1359–65 [Google Scholar]
  226. Arama C, Troye-Blomberg M. 226.  2014. The path of malaria vaccine development: challenges and perspectives. J. Intern. Med. 275:456–66 [Google Scholar]
  227. Hennessey JP Jr., Sardesai NY. 227.  2015. Vaccines in research and development: new production platforms and new biomolecular entities for new needs. Vaccine Analysis: Strategies, Principles, and Control BK Nunnally, VE Turula, RD Sitrin 383–96 Heidelberg, Ger.: Springer [Google Scholar]
  228. Bhaumik S, Karimkhani C, Czaja CA, Williams HC, Rani M. 228.  et al. 2015. Identifying gaps in research prioritization: the global burden of neglected tropical diseases as reflected in the Cochrane database of systematic reviews. J. Fam. Med. Primary Care 4:507–13 [Google Scholar]
  229. Noazin S, Khamesipour A, Moulton LH, Tanner M, Nasseri K. 229.  et al. 2009. Efficacy of killed whole-parasite vaccines in the prevention of leishmaniasis: a meta-analysis. Vaccine 27:4747–53 [Google Scholar]
  230. Apostolopoulos V. 230.  2016. Vaccine delivery methods into the future. Vaccines 4:9 [Google Scholar]
  231. Gaggar A, Coeshott C, Apelian D, Rodell T, Armstrong BR. 231.  et al. 2014. Safety, tolerability and immunogenicity of GS-4774, a hepatitis B virus-specific therapeutic vaccine, in healthy subjects: a randomized study. Vaccine 32:4925–31 [Google Scholar]
  232. Jarosławski S, Toumi M. 232.  2015. Sipuleucel-T (Provenge®)—Autopsy of an innovative paradigm change in cancer treatment: why a single-product biotech company failed to capitalize on its breakthrough invention. BioDrugs 29:301–7 [Google Scholar]
  233. Lu W, Arraes LC, Ferreira WT, Andrieu JM. 233.  2004. Therapeutic dendritic-cell vaccine for chronic HIV-1 infection. Nat. Med. 10:1359–65 [Google Scholar]
  234. Lipowska-Bhalla G, Gilham DE, Hawkins RE, Rothwell DG. 234.  2012. Targeted immunotherapy of cancer with CAR T cells: achievements and challenges. Cancer Immunol. Immunother. 61:953–62 [Google Scholar]
  235. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM. 235.  et al. 2014. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371:1507–17 [Google Scholar]
  236. Scholler J, Brady TL, Binder-Scholl G, Hwang WT, Plesa G. 236.  et al. 2012. Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Sci. Transl. Med. 4:132ra53 [Google Scholar]
  237. Lobaina Y, Hardtke S, Wedemeyer H, Aguilar JC, Schlaphoff V. 237.  2015. In vitro stimulation with HBV therapeutic vaccine candidate Nasvac activates B and T cells from chronic hepatitis B patients and healthy donors. Mol. Immunol. 63:320–27 [Google Scholar]
  238. Edwards JE Jr., Schwartz M, Schmidt CS, Ibrahim AS, Filler S. 238.  et al. 2016. NDV-3A vaccine reduces the frequency of vaginitis in patients with recurrent vulvovaginal candidiasis Presented at 13th ASM Conf. Candida Candidiasis, Apr. 13–17, Seattle, WA
  239. Griffin DE. 239.  2014. Current progress in pulmonary delivery of measles vaccine. Expert Rev. Vaccines 13:751–59 [Google Scholar]
  240. Caucheteux SM, Mitchell JP, Ivory MO, Hirosue S, Hakobyan S. 240.  et al. 2016. Polypropylene sulfide nanoparticle p24 vaccine promotes dendritic cell-mediated specific immune responses against HIV-1. J. Investig. Dermatol. 136:1172–81 [Google Scholar]
  241. Klippstein R, Pozo D. 241.  2010. Nanotechnology-based manipulation of dendritic cells for enhanced immunotherapy strategies. Nanomed.: Nanotechnol. Biol. Med 6:523–29 [Google Scholar]
  242. Glass JJ, Kent SJ, De Rose R. 242.  2016. Enhancing dendritic cell activation and HIV vaccine effectiveness through nanoparticle vaccination. Expert Rev. Vaccines 15:719–29 [Google Scholar]
  243. Hassan HA, Smyth L, Rubio N, Ratnasothy K, Wang JT. 243.  et al. 2016. Carbon nanotubes' surface chemistry determines their potency as vaccine nanocarriers in vitro and in vivo. J. Control. Release 225:205–16 [Google Scholar]
  244. Huntington RW, Thompson WR, Gordon HH. 244.  1937. The treatment of tetanus with antitoxin: an analysis of the outcome in six-hundred forty-two cases. Ann. Surg. 105:93–96 [Google Scholar]
  245. Lanari M, Vandini S, Arcuri S, Galletti S, Faldella G. 245.  2013. The use of humanized monoclonal antibodies for the prevention of respiratory syncytial virus infection. Clin. Dev. Immunol. 2013:359683 [Google Scholar]
  246. Wilcox M, Gerding D, Poxton I, Kelly C, Nathan R. 246.  et al. 2015. Bezlotoxumab alone and with actoxumab for prevention of recurrent Clostridium difficile infection in patients on standard of care antibiotics: integrated results of 2 Phase 3 studies (MODIFY I and MODIFY II). Open Forum Infect. Dis. 2:S1 [Google Scholar]
  247. Corti D, Misasi J, Mulangu S, Stanley DA, Kanekiyo M. 247.  et al. 2016. Protective monotherapy against lethal Ebola virus infection by a potently neutralizing antibody. Science 351:1339–42 [Google Scholar]
  248. Lindblad EB. 248.  1995. Aluminum adjuvants. The Theory and Practical Application of Adjuvants DES Stewart-Tull 21–35 New York: John Wiley & Sons, Ltd. [Google Scholar]
  249. Ulanova M, Tarkowski A, Hahn-Zoric M, Hanson LA. 249.  2001. The common vaccine adjuvant aluminum hydroxide up-regulates accessory properties of human monocytes via an interleukin-4-dependent mechanism. Infect. Immun. 69:1151–59 [Google Scholar]
  250. Stassijns J, Bollaerts K, Baay M, Verstraeten T. 250.  2016. A systematic review and meta-analysis on the safety of newly adjuvanted vaccines among children. Vaccine 34:714–22 [Google Scholar]
  251. Pasquale AD, Preiss S, Silva FT, Garcon N. 251.  2015. Vaccine adjuvants: from 1920 to 2015 and beyond. Vaccines 3:320–43 [Google Scholar]
  252. O'Hagan DT, Fox CB. 252.  2015. New generation adjuvants – from empiricism to rational design. Vaccine 33:Suppl. 2B14–20 [Google Scholar]
  253. Lee S, Nguyen MT. 253.  2015. Recent advances of vaccine adjuvants for infectious diseases. Immune Netw 15:51–57 [Google Scholar]
  254. Moyer TJ, Zmolek AC, Irvine DJ. 254.  2016. Beyond antigens and adjuvants: formulating future vaccines. J. Clin. Investig. 126:799–808 [Google Scholar]
  255. Middaugh CR, Volkin DB, Sangeeta BJ. 255.  2012. High throughput screening for stabilizers of vaccine antigens. Novel Immune Potentiators and Delivery Technologies for Next Generation Vaccines M Singh 119–43 New York: Springer [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error