Originally, organophosphorus (OP) toxicology consisted of acetylcholinesterase inhibition by insecticides and chemical threat agents acting as phosphorylating agents for serine in the catalytic triad, but this is no longer the case. Other serine hydrolases can be secondary OP targets, depending on the OP structure, and include neuropathy target esterase, lipases, and endocannabinoid hydrolases. The major OP herbicides are glyphosate and glufosinate, which act in plants but not animals to block aromatic amino acid and glutamine biosynthesis, respectively, with safety for crops conferred by their expression of herbicide-tolerant targets and detoxifying enzymes from bacteria. OP fungicides, pharmaceuticals including calcium retention agents, industrial chemicals, and cytochrome P450 inhibitors act by multiple noncholinergic mechanisms, often with high potency and specificity. One type of OP-containing fire retardant forms a highly toxic bicyclophosphate γ-aminobutyric acid receptor antagonist upon combustion. Some OPs are teratogenic, mutagenic, or carcinogenic by known mechanisms that can be avoided as researchers expand knowledge of OP chemistry and toxicology for future developments in bioregulation.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. O'Brien RD. 1.  1960. Toxic Phosphorus Esters: Chemistry, Metabolism, and Biological Effects New York: Academic [Google Scholar]
  2. Koelle GB. 2.  1963. Cholinesterases and Anticholinesterase Agents Berlin: Springer [Google Scholar]
  3. Holmstedt B. 3.  1963. Structure-activity relationships of the organophosphorus anticholinesterase agents. Cholinesterases and Anticholinesterase Agents GB Koelle 428–85 Berlin: Springer [Google Scholar]
  4. Eto M. 4.  1974. Organophosphorus Pesticides: Organic and Biological Chemistry Cleveland, OH: CRC Press [Google Scholar]
  5. Thompson CM, Richardson RJ. 5.  2004. Anticholinesterase insecticides. Pesticide Toxicology and International Regulation TC Marrs, B Ballantyne 89–127 London: John Wiley & Sons, Ltd. [Google Scholar]
  6. Turner JA. 6.  2015. The Pesticide Manual Hampshire, UK: BCPC Press, 17th ed.. [Google Scholar]
  7. Casida JE. 7.  2009. Pest toxicology: the primary mechanisms of pesticide action. Chem. Res. Toxicol. 22:609–19 [Google Scholar]
  8. de Clermont P. 8.  1855. Mémoire sur les éthers phosphoriques. Ann. Chim. Phys. 44:330–36 [Google Scholar]
  9. Lange W, Krueger B. 9.  1932. Über Ester der Monofluorphosphorsäure. Ber. Dtsch. Chem. Ges. 65:1598–601 [Google Scholar]
  10. Schrader G. 10.  1952. Die Entwicklung neuer Insektizide auf Grundlage von organischer Fluor- und Phosphor-Verbindungen. Angewandte Chemie und Chemie-Ingenieur-Technik1–31 Monogr. No. 62. Weinheim, Ger.: Verlag Chemie [Google Scholar]
  11. 11. Cropnosis. 2012. Agrochemical Products Database Edinburgh, UK: Cropnosis http://cropnosis.com/marketing/products/databases [Google Scholar]
  12. Pope CN. 12.  1999. Organophosphorus pesticides: Do they all have the same mechanism of toxicity?. J. Toxicol. Environ. Health Part B: Crit. Rev. 2:161–81 [Google Scholar]
  13. Casida JE, Quistad GB. 13.  2004. Organophosphate toxicology: safety aspects of nonacetylcholinesterase secondary targets. Chem. Res. Toxicol. 17:983–98 [Google Scholar]
  14. Casida JE, Nomura DK, Vose SC, Fujioka K. 14.  2008. Organophosphate-sensitive lipases modulate brain lysophospholipids, ether lipids and endocannabinoids. Chem.-Biol. Interact. 175:355–64 [Google Scholar]
  15. Nomura DK, Casida JE. 15.  2016. Lipases and their inhibitors in health and disease. Chem.-Biol. Interact. In press. doi: 10.1016/j.cbi.2016.04.004 [Google Scholar]
  16. Liu Y, Patricelli MP, Cravatt BF. 16.  1999. Activity-based protein profiling: the serine hydrolases. PNAS 96:14694–99 [Google Scholar]
  17. Nomura DK, Casida JE. 17.  2011. Activity-based protein profiling of organophosphorus and thiocarbamate pesticides reveals multiple serine hydrolase targets in mouse brain. J. Agric. Food Chem. 59:2808–15 [Google Scholar]
  18. Bachovchin DA, Cravatt BF. 18.  2012. The pharmacological landscape and therapeutic potential of serine hydrolases. Nat. Rev. Drug Discov. 11:52–68 [Google Scholar]
  19. Casida JE, Durkin KA. 19.  2013. Anticholinesterase insecticide retrospective. Chem.-Biol. Interact. 203:221–25 [Google Scholar]
  20. Rosenberry TL. 20.  1975. Acetylcholinesterase. Adv. Enzymol. Relat. Areas Mol. Biol. 43:103–218 [Google Scholar]
  21. Chatonnet A, Lockridge O. 21.  1989. Comparison of butyrylcholinesterase and acetylcholinesterase. Biochem. J. 260:625–34 [Google Scholar]
  22. Taylor P. 22.  2011. Anticholinesterase agents. Goodman & Gilman's The Pharmacological Basis of Therapeutics LL Brunton, BA Chabner, BC Knollman 239–54 New York: McGraw-Hill Companies, Inc. [Google Scholar]
  23. Petroianu G. 23.  2012. Natural phosphor ester cholinesterase inhibitors. Milit. Med. Sci. Lett. (Voj. Zdrav. Listy) 81:82–3 [Google Scholar]
  24. Patočka J, Gupta RC, Kuca K. 24.  2011. Anatoxin-a(s): natural organophosphorus anticholinesterase agent. Milit. Med. Sci. Lett. (Voj. Zdrav. Listy) 80:129–39 [Google Scholar]
  25. Shao X, Xia S, Durkin KA, Casida JE. 25.  2013. Insect nicotinic receptor interactions in vivo with neonicotinoid, organophosphorus, and methylcarbamate insecticides and a synergist. PNAS 110:17273–77 [Google Scholar]
  26. Long JZ, Cravatt BF. 26.  2011. The metabolic serine hydrolases and their functions in mammalian physiology and disease. Chem. Rev. 111:6022–63 [Google Scholar]
  27. Chang JW, Cognetta AB III, Niphakis MJ, Cravatt BF. 27.  2013. Proteome-wide reactivity profiling identifies diverse carbamate chemotypes tuned for serine hydrolase inhibition. ACS Chem. Biol. 8:1590–99 [Google Scholar]
  28. Smith MI, Lillie RD. 28.  1931. The histopathology of triorthocresyl phosphate poisoning: the etiology of so-called ginger paralysis (Third Report). Arch. Neurol. Psychiatry 26:976–92 [Google Scholar]
  29. Davies DR. 29.  1963. Neurotoxicity of organophosphorus compounds. Cholinesterases and Anticholinesterase Agents GB Koelle 860–82 Berlin: Springer [Google Scholar]
  30. Smith HV, Spalding JM. 30.  1959. Outbreak of paralysis in Morocco due to ortho-cresyl phosphate poisoning. Lancet 274:1019–21 [Google Scholar]
  31. Johnson MK, Glynn P. 31.  2001. Neuropathy target esterase. Handbook of Pesticide Toxicology R Kreiger 953–65 San Diego: Academic, 2nd ed.. [Google Scholar]
  32. Quistad GB, Barlow C, Winrow CJ, Sparks SE, Casida JE. 32.  2003. Evidence that mouse brain neuropathy target esterase is a lysophospholipase. PNAS 100:7983–87 [Google Scholar]
  33. Lotti M, Moretto A. 33.  2005. Organophosphate-induced delayed polyneuropathy. Toxicol. Rev. 24:37–49 [Google Scholar]
  34. Richardson RJ, Hein ND, Wijeyesakere SJ, Fink JK, Makhaeva GF. 34.  2013. Neuropathy target esterase (NTE): overview and future. Chem.-Biol. Interact. 203:238–44 [Google Scholar]
  35. Casida JE, Eto M, Baron RL. 35.  1961. Biological activity of a tri-o-cresyl phosphate metabolite. Nature 191:1396–97 [Google Scholar]
  36. Bidstrup PL, Bonnel JA, Beckett AG. 36.  1953. Paralysis following poisoning by a new organic phosphorus insecticide (mipafox): report on two cases. Brit. Med. J. 1:1068–72 [Google Scholar]
  37. Winrow CJ, Hemming ML, Allen DM, Quistad GB, Casida JE, Barlow C. 37.  2003. Loss of neuropathy target esterase in mice links organophosphate exposure to hyperactivity. Nat. Genet. 33:477–85 [Google Scholar]
  38. Vose SC, Holland NT, Eskenazi B, Casida JE. 38.  2007. Lysophosphatidylcholine hydrolases of human erythrocytes, lymphocytes and brain: sensitive targets of conserved specificity for organophosphorus delayed neurotoxicants. Toxicol. Appl. Pharmacol. 224:98–104 [Google Scholar]
  39. Vose SC, Fujioka K, Gulevich AG, Lin AY, Holland NT, Casida JE. 39.  2008. Cellular function of neuropathy target esterase in lysophosphatidylcholine action. Toxicol. Appl. Pharmacol. 232:376–83 [Google Scholar]
  40. Pamies D, Bal-Price A, Fabbri M, Gribaldo L, Scelfo B. 40.  et al. 2014. Silencing of PNPLA6, the neuropathy target esterase (NTE) codifying gene, alters neurodifferentiation of human embryonal carcinoma stem cells (NT2). Neuroscience 281:54–67 [Google Scholar]
  41. Hou WY, Long DX, Wu YJ. 41.  2009. The homeostasis of phosphatidylcholine and lysophosphatidylcholine in nervous tissues of mice was not disrupted after administration of tri-o-cresyl phosphate. Toxicol. Sci. 109:276–85 [Google Scholar]
  42. Quistad GB, Sparks SE, Casida JE. 42.  2001. Fatty acid amide hydrolase inhibition by neurotoxic organophosphorus pesticides. Toxicol. Appl. Pharmacol. 173:48–55 [Google Scholar]
  43. Quistad GB, Sparks SE, Segall Y, Nomura DK, Casida JE. 43.  2002. Selective inhibitors of fatty acid amide hydrolase relative to neuropathy target esterase and acetylcholinesterase: toxicological implications. Toxicol. Appl. Pharmacol. 179:57–63 [Google Scholar]
  44. Nomura DK, Hudak CS, Ward AM, Burston JJ, Issa RS. 44.  et al. 2008. Monoacylglycerol lipase regulates 2-arachidonoylglycerol action and arachidonic acid levels. Bioorg. Med. Chem. Lett. 18:5875–78 [Google Scholar]
  45. Hoover HS, Blankman JL, Niessen S, Cravatt BF. 45.  2008. Selectivity of inhibitors of endocannabinoid biosynthesis evaluated by activity-based protein profiling. Bioorg. Med. Chem. Lett. 18:5838–41 [Google Scholar]
  46. Bisogno T, Mahadevan A, Coccurello R, Chang JW, Allarà M. 46.  et al. 2013. A novel fluorophosphonate inhibitor of the biosynthesis of the endocannabinoid 2-arachidonoylglycerol with potential anti-obesity effects. Br. J. Pharmacol. 169:784–93 [Google Scholar]
  47. Venable ME, Zimmerman GA, McIntyre TM, Prescott SM. 47.  1993. Platelet-activating factor: a phospholipid autacoid with diverse actions. J. Lipid Res. 34:691–702 [Google Scholar]
  48. Christie WW. 48.  2014. Ether lipids: structure composition, biochemistry and analysis. AOCS Lipid Library Urbana, IL: Am. Oil Chem. Soc http://lipidlibrary.aocs.org/Primer/content.cfm?ItemNumber=39320 [Google Scholar]
  49. Quistad GB, Fisher KJ, Owen SC, Klintenberg R, Casida JE. 49.  2005. Platelet-activating factor acetylhydrolase: selective inhibition by potent n-alkyl methylphosphonofluoridates. Toxicol. Appl. Pharmacol. 205:149–56 [Google Scholar]
  50. Nomura DK, Fujioka K, Issa RS, Ward AM, Cravatt BF, Casida JE. 50.  2008. Dual roles of brain serine hydrolase KIAA1363 in ether lipid metabolism and organophosphate detoxification. Toxicol. Appl. Pharmacol. 228:42–48 [Google Scholar]
  51. Nomura DK, Durkin KA, Chiang KP, Quistad GB, Cravatt BF, Casida JE. 51.  2006. Serine hydrolase KIAA1363: Toxicological and structural features with emphasis on organophosphate interactions. Chem. Res. Toxicol. 19:1142–50 [Google Scholar]
  52. Hunerdosse DM, Morris PJ, Miyamoto DK, Fisher KJ, Bateman LA. 52.  et al. 2014. Chemical genetics screening reveals KIAA1363 as a cytokine-lowering target. ACS Chem. Biol. 19:2905–13 [Google Scholar]
  53. Suzuki H, Ito Y, Noro Y, Koketsu M, Kamijima M, Tomizawa M. 53.  2014. Organophosphate agents induce plasma hypertriglyceridemia in mouse via single or dual inhibition of the endocannabinoid hydrolyzing enzyme(s). Toxicol. Lett. 225:153–57 [Google Scholar]
  54. Crow JA, Middleton BL, Borazjani A, Hatfield MJ, Potter PM, Ross MK. 54.  2008. Inhibition of carboxylesterase 1 is associated with cholesteryl ester retention in human THP-1 monocyte/macrophages. Biochim. Biophys. Acta - Mol. Cell Biol. Lipids 1781:643–54 [Google Scholar]
  55. Casida JE, Baron RL, Eto M, Engel JL. 55.  1963. Potentiation and neurotoxicity induced by certain organophosphates. Biochem. Pharmacol. 12:73–83 [Google Scholar]
  56. Jao LT, Casida JE. 56.  1974. Esterase inhibitors as synergists for (+)-trans-chrysanthemate insecticide chemicals. Pestic. Biochem. Physiol. 4:456–64 [Google Scholar]
  57. Ross MK, Borazjani A, Edwards CC, Potter PM. 57.  2006. Hydrolytic metabolism of pyrethroids by human and other mammalian carboxylesterases. Biochem. Pharmacol. 71:657–69 [Google Scholar]
  58. Ross MK, Streit TM, Herring KL. 58.  2010. Carboxylesterases: dual roles in lipid and pesticide metabolism. J. Pestic. Sci. 35:257–64 [Google Scholar]
  59. Arnold LL, Christenson WR, Cano M, St. John MK, Wahle BS, Cohen SM. 59.  1997. Tributyl phosphate effects on urine and bladder epithelium in male Sprague-Dawley rats. Fundam. Appl. Toxicol. 40:247–55 [Google Scholar]
  60. Bass C, Puinean AM, Zimmer CT, Denholm I, Field LM. 60.  et al. 2014. The evolution of insecticide resistance in the peach potato aphid. Myzus persicae. Insect Biochem. Mol. Biol. 51:41–51 [Google Scholar]
  61. Yan S, Cui F, Qiao C. 61.  2009. Structure, function and applications of carboxylesterases from insects for insecticide resistance. Protein Pept. Lett. 16:1181–88 [Google Scholar]
  62. Casida JE, Durkin KA. 62.  2013. Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. Annu. Rev. Entomol. 58:99–117 [Google Scholar]
  63. Richards PG, Johnson MK, Ray DE. 63.  2000. Identification of acylpeptide hydrolase as a sensitive site for reaction with organophosphorus compounds and a potential target for cognitive enhancing drugs. Mol. Pharmacol. 58:577–83 [Google Scholar]
  64. Quistad GB, Klintenberg R, Casida JE. 64.  2005. Blood acylpeptide hydrolase activity is a sensitive marker for exposure to some organophosphate toxicants. Toxicol. Sci. 86:291–99 [Google Scholar]
  65. Seifert J, Casida JE. 65.  1978. Relation of yolk sac membrane kynurenine formamidase inhibition to certain teratogenic effects of organophosphorus insecticides and of carbaryl and eserine in chicken embryos. Biochem. Pharmacol. 27:2611–15 [Google Scholar]
  66. Seifert J, Casida JE. 66.  1981. Mechanisms of teratogenesis induced by organophosphorus and methylcarbamate insecticides. Progress in Pesticide Biochemistry DH Hutson, TR Roberts 219–46 New York: John Wiley & Sons, Ltd. [Google Scholar]
  67. Pabarcus MK, Casida JE. 67.  2005. Kynurenine formamidase: determination of primary structure and modeling-based prediction of tertiary structure and catalytic triad. Biochim. Biophys. Acta 1596:201–11 [Google Scholar]
  68. Dobrovolsky VN, Bowyer JF, Pabarcus MK, Heflich RH, Williams LD. 68.  et al. 2005. Effect of arylformamidase (kynurenine formamidase) gene inactivation in mice on enzymatic activity, kynurenine pathway metabolites and phenotype. Biochim. Biophys. Acta 1724:163–72 [Google Scholar]
  69. Durrington PN, Mackness B, Mackness MI. 69.  2001. Paraoxonase and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 21:473–80 [Google Scholar]
  70. Costa LG, Furlong CE. 70. , eds. 2002. Paraoxonase (PON1) in Health and Disease: Basic and Clinical Aspects Norwell, MA: Kluwer Acad. Publ. [Google Scholar]
  71. Costa LG, Cole TB, Jarvik GP, Furlong CE. 71.  2003. Functional genomic of the paraoxonase (PON1) polymorphisms: effects on pesticide sensitivity, cardiovascular disease, and drug metabolism. Annu. Rev. Med. 54:371–92 [Google Scholar]
  72. Mackness MI, Durrington PN, Mackness B. 72.  2004. The role of paraoxonase 1 activity in cardiovascular disease: potential for therapeutic intervention. Am. J. Cardiovasc. Drugs 4:211–17 [Google Scholar]
  73. Harel M, Aharoni A, Gaidukov L, Brumshtein B, Khersonsky O. 73.  et al. 2004. Structure and evolution of the serum paraoxonase family of detoxifying and anti-atherosclerotic enzymes. Nat. Struct. Mol. Biol. 11:412–19 [Google Scholar]
  74. Costa LG, Vitalone A, Cole TB, Furlong CE. 74.  2005. Modulation of paraoxonase (PON1) activity. Biochem. Pharmacol. 69:541–50 [Google Scholar]
  75. Furlong CE, Cole TB, Jarvik GP, Pettan-Brewer C, Geiss GK. 75.  et al. 2005. Role of paraoxonase (PON1) status in pesticide sensitivity: genetic and temporal determinants. Neurotoxicology 26:651–59 [Google Scholar]
  76. Aviram M, Rosenblat M. 76.  2005. Paraoxonases and cardiovascular diseases: pharmacological and nutritional influences. Curr. Opin. Lipidol. 16:393–99 [Google Scholar]
  77. Costa LG, Giordano G, Furlong CE. 77.  2011. Pharmacological and dietary modulators of paraoxonase 1 (PON1) activity and expression: the hunt goes on. Biochem. Pharmacol. 81:337–44 [Google Scholar]
  78. Costa LG, Giordano G, Cole TB, Marsillach J, Furlong CE. 78.  2013. Paraoxonase 1 (PON1) as a genetic determinant of susceptibility to organophosphate toxicity. Toxicology 307:115–22 [Google Scholar]
  79. Franz JE, Mao MK, Sikorski JA. 79.  1997. Glyphosate: A Unique and Global Herbicide ACS Monograph No. 189 Washington, DC: Am. Chem. Soc. [Google Scholar]
  80. Duke SO, Powles SB. 80.  2008. Glyphosate: a once-in-a-century herbicide. Pest Manag. Sci. 64:319–25 [Google Scholar]
  81. Duke SO, Lydon J, Koskinen WC, Moorman TB, Chaney RL, Hammerschmidt R. 81.  2012. Glyphosate effects on plant mineral nutrition, crop rhizosphere microbiota, and plant disease in glyphosate-resistant crops. J. Agric. Food Chem. 60:10375–97 [Google Scholar]
  82. Hoagland RE. 82.  1999. Biochemical interactions of the microbial phytotoxin phosphinothricin and analogs with plants and microbes. Biologically Active Natural Products. Agrochemicals, ed. HG Cutler, SJ Cutler. 107–26 Boca Raton, FL: CRC Press [Google Scholar]
  83. Hérouet C, Esdaile DJ, Mallyon BA, Debruyne E, Schulz A. 83.  et al. 2005. Safety evaluation of the phosphinothricin acetyltransferase proteins encoded by the pat and bar sequences that confer tolerance to glufosinate-ammonium herbicide in transgenic plants. Regul. Toxicol. Pharmacol 41:134–49 [Google Scholar]
  84. Matsumura N, Takeuchi C, Hishikawa K, Fujii T, Nakaki T. 84.  2001. Glufosinate ammonium induces convulsion through N-methyl-d-aspartate receptors in mice. Neurosci. Lett. 304:123–25 [Google Scholar]
  85. Lantz SR, Mack CM, Wallace K, Key EF, Shafer TJ, Casida JE. 85.  2014. Glufosinate binds N-methyl-d-aspartate receptors and increases neuronal network activity in vitro. Neurotoxicology 45:38–47 [Google Scholar]
  86. Liyasova MS, Schopfer LM, Kodani S, Lantz SR, Casida JE, Lockridge O. 86.  2013. Newly observed spontaneous activation of ethephon as a butyrylcholinesterase inhibitor. Chem. Res. Toxicol. 26:422–31 [Google Scholar]
  87. Lantz SR, Casida JE. 87.  2013. Characterization of the transient oxaphosphetane BChE inhibitor formed from spontaneously activated ethephon. Chem. Res. Toxicol. 26:1320–22 [Google Scholar]
  88. 88. Fungic. Resist. Action Comm. 2016. FRAC Code List 2016: Fungicides sorted by mode of action (including FRAC Code numbering) Newark, DE: FRAC http://www.frac.info/docs/default-source/publications/frac-code-list/frac-code-list-2016.pdf?sfvrsn=2 [Google Scholar]
  89. Roberts TR, Hutson DH. 89. , eds. 1999. Tolclofos-methyl. Metabolic Pathways of Agrochemicals. Part Two: Insecticides and Fungicides.1259–62 Cambridge, UK: R. Soc. Chem. [Google Scholar]
  90. Roberts TR, Hutson DH. 90.  1999. Iprobenfos. Metabolic Pathways of Agrochemicals. Part Two: Insecticides and Fungicides.1249–52 Cambridge, UK: R. Soc. Chem. [Google Scholar]
  91. Kodama O, Akatsuka T. 91.  2013. Kitazin P and edifenphos, possible inhibitors of phosphatidylcholine biosynthesis. Pesticide Chemistry: Human Welfare and the Environment Vol. 3 Mode of Action, Metabolism and Toxicology S Matsunaka, DH Hutson, SD Murphy 135–40 New York: Pergamon Press Inc. [Google Scholar]
  92. Roberts TR, Hutson DH. 92.  1999. Pyrazophos. Metabolic Pathways of Agrochemicals. Part Two: Insecticides and Fungicides.1256–68 Cambridge, UK: R. Soc. Chem. [Google Scholar]
  93. Michalopoulos AS, Livaditis IG, Gougoutas V. 93.  2011. The revival of fosfomycin. Int. J. Infect. Dis. 15:e732–39 [Google Scholar]
  94. Meyer PR, Rutvisuttinunt W, Matsuura SE, So AG, Scott WA. 94.  2007. Stable complexes formed by HIV-1 reverse transcriptase at distinct positions on the primer-template controlled by binding deoxynucleoside triphosphates or foscarnet. J. Mol. Biol. 369:41–54 [Google Scholar]
  95. Shinkai I, Ohta Y. 95.  1996. New drugs—reports of new drugs recently approved by the FDA: Alendronate. Bioorg. Med. Chem 43–4 [Google Scholar]
  96. Correa CM. 96.  2001. Alendronate. Trends in Drug Patenting: Case Studies Buenos Aires, Argent: Ediciones Corregidor http://apps.who.int/medicinedocs/en/d/Js4915e/2.3.html [Google Scholar]
  97. Greenbaum R, Zucchelli P, Caspi A, Nouriel H, Paz R. 97.  et al. 2000. Comparison of the pharmacokinetics of fosinoprilat with enalaprilat and lisinopril in patients with congestive heart failure and chronic renal insufficiency. Br. J. Clin. Pharmacol. 49:23–31 [Google Scholar]
  98. Rautio J, Kumpulainen H, Heimbach T, Oliyai R, Oh D. 98.  et al. 2008. Prodrugs: design and clinical applications. Nat. Rev. Drug Discov. 7:255–70 [Google Scholar]
  99. Duchin KL, Waclawski AP, Tu JI, Manning J, Frantz M, Willard DA. 99.  1991. Pharmacokinetics, safety, and pharmacologic effects of fosinopril sodium, an angiotensin-converting enzyme inhibitor in healthy subjects. J. Clin. Pharmacol. 31:58–64 [Google Scholar]
  100. Shionoiri H, Naruse M, Minamisawa K, Ueda S, Himeno H. 100.  et al. 1997. Foxinopril: clinical pharmacokinetic and clinical potential. Clin. Pharmacokinet. 32:460–80 [Google Scholar]
  101. Lombardi G, Farina P, Della Puppa A, Cecchin D, Pambuku A. 101.  et al. 2014. An overview of fotemustine in high-grade gliomas: from single agent to association with bevacizumab. Biomed. Res. Int 2014:698542 [Google Scholar]
  102. Reichardt P, Pink D, Tilgner J, Kretzschmar A, Thuss-Patience PC, Dörken B. 102.  2002. Oral trofosfamide: an active and well-tolerated maintenance therapy for adult patients with advanced bone and soft tissue sarcomas. Results of a retrospective analysis. Onkologie 25:541–46 [Google Scholar]
  103. Watson HR, Hems R, Rowsell DG, Spring DJ. 103.  1978. New compounds with the menthol cooling effect. J. Soc. Cosmet. Chem. 29:185–200 [Google Scholar]
  104. Bödding M, Wissenbach U, Flockerzi V. 104.  2007. Characterisation of TRPM8 as a pharmacophore receptor. Cell Calcium 42:618–28 [Google Scholar]
  105. van der Veen I, de Boer J. 105.  2012. Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis. Chemosphere 88:1119–53 [Google Scholar]
  106. Casida JE. 106.  1970. Mixed-function oxidase involvement in the biochemistry of insecticide synergists. J. Agric. Food Chem. 18:753–72 [Google Scholar]
  107. Rosen JD, Segall Y, Casida JE. 107.  1980. Mutagenic potency of haloacroleins and related compounds. Mutat. Res. 78:113–19 [Google Scholar]
  108. 108. Int. Agency Res. Cancer. 1987. 1,2-Dibromo-3-chloropropane. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Suppl. 7191–92 Lyon, France: World Health Organ. [Google Scholar]
  109. Blum A, Gold MD, Ames BN, Jones FR, Hett EA. 109.  et al. 1978. Children absorb tris-BP flame retardant from sleepwear: Urine contains the mutagenic metabolite, 2,3-dibromopropanol. Science 201:1020–23 [Google Scholar]
  110. Schultz C. 110.  2003. Prodrugs of biologically active phosphate esters. Bioorg. Med. Chem. 11:885–98 [Google Scholar]
  111. Ortiz de Montellano PR, Corriea MA. 111.  1995. Inhibition of cytochrome P450 enzymes. Cytochrome P450. Structure. Mechanism, and Biochemistry PR Ortiz de Montellano 305–64 New York: Kluwer Acad./Plenum Publ. [Google Scholar]
  112. McBain JB, Yamamoto I, Casida JE. 112.  1971. Mechanism of activation and deactivation of dyfonate® (O-ethyl S-phenyl ethylphosphonodithioate) by rat liver microsomes. Life Sci 10:947–54 [Google Scholar]
  113. Bielawski J, Casida JE. 113.  1988. Phosphorylating intermediates in the peracid oxidation of phosphorothionates, phosphorothiolates, and phosphorodithioates. J. Agric. Food Chem. 36:610–15 [Google Scholar]
  114. Oppenoorth FJ, Voerman S, Welling W, Houx NWH, van den Oudenweyer JW. 114.  1971. Synergism of insecticidal action by inhibition of microsomal oxidation with phosphorothionates. Nat. New Biol. 233:187–88 [Google Scholar]
  115. Tam AC, Behki RM, Khan SU. 115.  1988. Effect of dietholate (R-33865) on the degradation of thiocarbamate herbicides by an EPTC-degrading bacterium. J. Agric. Food Chem. 36:654–57 [Google Scholar]
  116. Fujioka K, Casida JE. 116.  2007. Glutathione S-transferase conjugation of organophosphorus pesticides yields S-phospho-, S-aryl-, and S-alkylglutathione derivatives. Chem. Res. Toxicol. 20:211–17 [Google Scholar]
  117. Bellet EM, Casida JE. 117.  1973. Bicyclic phosphorus esters: high toxicity without cholinesterase inhibition. Science 182:1135–36 [Google Scholar]
  118. Petajan JH, Voorhees KJ, Packham SC, Baldwin RC, Einhorn IN. 118.  et al. 1975. Extreme toxicity from combustion products of fire retarded polyurethane foam. Science 187:742–44 [Google Scholar]
  119. Gage JC. 119.  1970. The subacute inhalation toxicity of 109 industrial chemicals. Br. J. Ind. Med. 27:1–18 [Google Scholar]
  120. Casida JE, Eto M, Moscioni AD, Engel JL, Milbrath DS, Verkade JG. 120.  1976. Structure-toxicity relationships of 2,6,7-trioxabicyclo[2.2.2]octanes and related compounds. Toxicol. Appl. Pharmacol. 36:261–79 [Google Scholar]
  121. Milbrath DS, Engel JL, Verkade JG, Casida JE. 121.  1979. Structure-toxicity relationships of 1-substituted-4-alkyl-2,6,7-trioxabicyclo[2.2.2]octanes. Toxicol. Appl. Pharmacol. 47:287–93 [Google Scholar]
  122. Squires RF, Casida JE, Richardson M, Saederup E. 122.  1983. [35S]t-Butylbicyclophosphorothionate binds with high affinity to brain specific sites coupled to γ-aminobutyric acid-A and ion recognition sites. Mol. Pharmacol. 23:326–36 [Google Scholar]
  123. Li QX, Casida JE. 123.  1993. 1,3-Dithianes with acid functionalities: potent inhibitors and candidate affinity probes for the GABA-gated chloride channel. Bioorg. Med. Chem. Lett. 3:2671–74 [Google Scholar]
  124. Fenn ME, Coffey MD. 124.  1984. Studies on the in vitro and in vivo antifungal activity of fosetyl-Al and phosphorous acid. Phythopathology 74:606–11 [Google Scholar]
  125. Smillie R, Grant BR, Guest D. 125.  1989. The mode of action of phosphite: evidence for both direct and indirect modes of action on three Phytophthora spp. in plants. Phytopathology 79:921–26 [Google Scholar]
  126. Segall Y, Quistad GB, Sparks SE, Casida JE. 126.  2003. Major intermediates in organophosphate synthesis (PCl3, POCl3, PSCl3, and their diethyl esters) are anticholinesterase agents directly or on activation. Chem. Res. Toxicol. 16:350–56 [Google Scholar]
  127. Hsu CH, Chi BC, Casida JE. 127.  2002. Melatonin reduces phosphine-induced lipid and DNA oxidation in vitro and in vivo in rat brain. J. Pineal Res. 32:53–58 [Google Scholar]
  128. Proudfoot AT. 128.  2009. Aluminium and zinc phosphide poisoning. Clin. Toxicol. 47:89–100 [Google Scholar]
  129. Bumbrah GS, Krishan K, Kanchan T, Sharma M, Sodhi GS. 129.  2012. Phosphide poisoning: a review of literature. Forensic Sci. Int. 214:1–6 [Google Scholar]
  130. Millard CB, Lockridge O, Broomfield CA. 130.  1998. Organophosphorus acid anhydride hydrolase activity in human butyrylcholinesterase: Synergy results in a somanase. Biochemistry 37:237–47 [Google Scholar]
  131. Nachon F, Nicolet Y, Viguié N, Masson P, Fontecilla-Camps JC, Lockridge O. 131.  2002. Engineering of a monomeric and low-glycosylated form of human butyrylcholinesterase: expression, purification, characterization and crystallization. Eur. J. Biochem. 269:630–37 [Google Scholar]
  132. Saxena A, Sun W, Dabisch PA, Hulet SW, Hastings NB. 132.  et al. 2008. Efficacy of human serum butyrylcholinesterase against sarin vapor. Chem. Biol. Interact. 175:267–72 [Google Scholar]
  133. Masson P, Lockridge O. 133.  2010. Butyrylcholinesterase for protection from organophosphorus poisons: catalytic complexities and hysteretic behavior. Arch. Biochem. Biophys. 494:107–20 [Google Scholar]
  134. Rosenberg YJ, Laube B, Mao L, Jiang X, Hernandez-Abanto S. 134.  et al. 2013. Pulmonary delivery of an aerosolized recombinant human butyrylcholinesterase pretreatment protects against aerosolized paraoxon in macaques. Chem. Biol. Interact. 203:167–71 [Google Scholar]
  135. Saxena A, Hastings NB, Sun W, Dabisch PA, Hulet SW. 135.  et al. 2015. Prophylaxis with human serum butyrylcholinesterase protects Göttingen minipigs exposed to a lethal high-dose of sarin vapor. Chem. Biol. Interact. 238:161–69 [Google Scholar]
  136. Kovarik Z, Maček Hrvat N, Katalinić M, Sit RK, Paradyse A. 136.  et al. 2015. Catalytic soman scavenging by the Y337A/F338A acetylcholinesterase mutant assisted with novel site-directed aldoximes. Chem. Res. Toxicol. 28:1036–44 [Google Scholar]
  137. Alavanja MCR, Hoppin JA, Kamel F. 137.  2004. Health effects of chronic pesticide exposure: cancer and neurotoxicity. Annu. Rev. Public Health 25:155–97 [Google Scholar]
  138. Peiris-John RJ, Wickremasinghe R. 138.  2008. Impact of low-level exposure to organophosphates on human reproduction and survival. Trans. R. Soc. Trop. Med. Hyg. 102:239–45 [Google Scholar]
  139. Slotkin TA. 139.  2011. Does early-life exposure to organophosphate insecticides lead to prediabetes and obesity?. Reprod. Toxicol. 31:297–301 [Google Scholar]
  140. Hayden KM, Norton MC, Darcey D, Østbye T, Zandi PP. 140.  et al. 2010. Occupational exposure to pesticides increases the risk of incident AD: the Cache County Study. Neurology 74:1524–30 [Google Scholar]
  141. Wang A, Cockburn M, Ly TT, Bronstein JM, Ritz B. 141.  2014. The association between ambient exposure to organophosphates and Parkinson's disease risk. Occup. Environ. Med. 71:275–81 [Google Scholar]
  142. Auman JT, Seidler FJ, Slotkin TA. 142.  2000. Neonatal chlorpyrifos exposure targets multiple proteins governing the hepatic adenylyl cyclase signaling cascade: implications for neurotoxicity. Dev. Brain Res. 121:19–27 [Google Scholar]
  143. Aldridge JE, Seidler FJ, Meyer A, Thillai I, Slotkin TA. 143.  2003. Serotonergic systems targeted by developmental exposure to chlorpyrifos: effects during different critical periods. Environ. Health Perspect. 111:1736–43 [Google Scholar]
  144. Meyer A, Seidler FJ, Slotkin TA. 144.  2004. Developmental effects of chlorpyrifos extend beyond neurotoxicity: critical periods for immediate and delayed-onset effects on cardiac and hepatic cell signaling. Environ. Health Perspect. 112:170–78 [Google Scholar]
  145. Guyton KZ, Loomis D, Grosse Y, El Ghissassi F, Benbrahim-Tallaa L. 145.  et al. 2015. Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. Lancet Oncol 16:490–91 [Google Scholar]
  146. Gollapudi BB, Mendrala AL, Linscombe VA. 146.  1995. Evaluation of the genetic toxicity of the organophosphate insecticide chlorpyrifos. Mutat. Res. 342:25–36 [Google Scholar]
  147. Benigni R, Bossa C. 147.  2011. Mechanisms of chemical carcinogenicity and mutagenicity: a review with implications for predictive toxicology. Chem. Rev. 111:2507–36 [Google Scholar]
  148. Woo Y, Lai DY, Arcos JC, Argus MF. 148.  2013. Metabolism and mechanism of action. Aliphatic and Polyhalogenated Carcinogens. Structural Bases and Biological Mechanisms65–91 Orlando, FL: Academic [Google Scholar]
  149. Bořkovec AB. 149.  1974. New aspects of organophosphorus pesticides. VI. Organophosphorus insect chemosterilants. Residue Reviews, Vol. 5367–77 New York: Springer [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error