Macroautophagy (hereafter called autophagy) is a vacuolar, lysosomal pathway for catabolism of intracellular material that is conserved among eukaryotic cells. Autophagy plays a crucial role in tissue homeostasis, adaptation to stress situations, immune responses, and the regulation of the inflammatory response. Blockade or uncontrolled activation of autophagy is associated with cancer, diabetes, obesity, cardiovascular disease, neurodegenerative disease, autoimmune disease, infection, and chronic inflammatory disease. During the past decade, researchers have made major progress in understanding the three levels of regulation of autophagy in mammalian cells: signaling, autophagosome formation, and autophagosome maturation and lysosomal degradation. As we discuss in this review, each of these levels is potentially druggable, and, depending on the indication, may be able to stimulate or inhibit autophagy. We also summarize the different modulators of autophagy and their potential and limitations in the treatment of life-threatening diseases.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Boya P, Reggiori F, Codogno P. 1.  2013. Emerging regulation and functions of autophagy. Nat. Cell Biol. 15:713–20 [Google Scholar]
  2. Mizushima N, Komatsu M. 2.  2011. Autophagy: renovation of cells and tissues. Cell 147:728–41 [Google Scholar]
  3. Singh R, Cuervo AM. 3.  2011. Autophagy in the cellular energetic balance. Cell Metab 13:495–504 [Google Scholar]
  4. Rubinsztein DC, Marino G, Kroemer G. 4.  2011. Autophagy and aging. Cell 146:682–95 [Google Scholar]
  5. Mizushima N, Yoshimori T, Ohsumi Y. 5.  2011. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27:107–32 [Google Scholar]
  6. Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR. 6.  et al. 2002. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163–75 [Google Scholar]
  7. Alers S, Loffler AS, Wesselborg S, Stork B. 7.  2012. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol. Cell. Biol. 32:2–11 [Google Scholar]
  8. Lamb CA, Yoshimori T, Tooze SA. 8.  2013. The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell. Biol. 14:759–74 [Google Scholar]
  9. Molejon MI, Ropolo A, Vaccaro MI. 9.  2013. VMP1 is a new player in the regulation of the autophagy-specific phosphatidylinositol 3-kinase complex activation. Autophagy 9:933–35 [Google Scholar]
  10. Müller AJ, Proikas-Cezanne T. 10.  2015. Function of human WIPI proteins in autophagosomal rejuvenation of endomembranes?. FEBS Lett 589:1546–51 [Google Scholar]
  11. Sanchez-Wandelmer J, Reggiori F. 11.  2013. Amphisomes: out of the autophagosome shadow?. EMBO J 32:3116–18 [Google Scholar]
  12. Shen HM, Mizushima N. 12.  2014. At the end of the autophagic road: an emerging understanding of lysosomal functions in autophagy. Trends Biochem. Sci. 39:61–71 [Google Scholar]
  13. McEwan DG, Popovic D, Gubas A, Terawaki S, Suzuki H. 13.  et al. 2015. PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol. Cell 57:39–54 [Google Scholar]
  14. Khaminets A, Behl C, Dikic I. 14.  2016. Ubiquitin-dependent and independent signals in selective autophagy. Trends Cell Biol 26:6–16 [Google Scholar]
  15. Rogov V, Dotsch V, Johansen T, Kirkin V. 15.  2014. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol. Cell 53:167–78 [Google Scholar]
  16. Choi AM, Ryter SW, Levine B. 16.  2013. Autophagy in human health and disease. N. Engl. J. Med. 368:651–62 [Google Scholar]
  17. Jiang P, Mizushima N. 17.  2014. Autophagy and human diseases. Cell Res 24:69–79 [Google Scholar]
  18. Liu Q, Thoreen C, Wang J, Sabatini D, Gray NS. 18.  2009. mTOR mediated anti-cancer drug discovery. Drug Discov. Today Ther. Strateg. 6:47–55 [Google Scholar]
  19. Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J. 19.  et al. 2009. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J. Biol. Chem. 284:8023–32 [Google Scholar]
  20. Rubinsztein DC, Codogno P, Levine B. 20.  2012. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat. Rev. Drug Discov. 11:709–30 [Google Scholar]
  21. Degtyarev M, De Mazière A, Orr C, Lin J, Lee BB. 21.  et al. 2008. Akt inhibition promotes autophagy and sensitizes PTEN-null tumors to lysosomotropic agents. J. Cell Biol. 183:101–16 [Google Scholar]
  22. Buzzai M, Jones RG, Amaravadi RK, Lum JJ, DeBerardinis RJ. 22.  et al. 2007. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res 67:6745–52 [Google Scholar]
  23. Lazarus MB, Novotny CJ, Shokat KM. 23.  2015. Structure of the human autophagy initiating kinase ULK1 in complex with potent inhibitors. ACS Chem. Biol. 10:257–61 [Google Scholar]
  24. Clark K, Peggie M, Plater L, Sorcek RJ, Young ER. 24.  et al. 2011. Novel cross-talk within the IKK family controls innate immunity. Biochem. J. 434:93–104 [Google Scholar]
  25. Petherick KJ, Conway OJ, Mpamhanga C, Osborne SA, Kamal A. 25.  et al. 2015. Pharmacological inhibition of ULK1 kinase blocks mammalian target of rapamycin (mTOR)-dependent autophagy. J. Biol. Chem. 290:11376–83 [Google Scholar]
  26. Wirth M, Joachim J, Tooze SA. 26.  2013. Autophagosome formation—the role of ULK1 and Beclin1–PI3KC3 complexes in setting the stage. Sem. Cancer Biol. 23:301–9 [Google Scholar]
  27. Pasquier B. 27.  2016. Autophagy inhibitors. Cell. Mol. Life Sci. 73:985–1001 [Google Scholar]
  28. Nicot AS, Laporte J. 28.  2008. Endosomal phosphoinositides and human diseases. Traffic 9:1240–49 [Google Scholar]
  29. Powis G, Bonjouklian R, Berggren MM, Gallegos A, Abraham R. 29.  et al. 1994. Wortmannin, a potent and selective inhibitor of phosphatidylinositol-3-kinase. Cancer Res 54:2419–23 [Google Scholar]
  30. Shoji-Kawata S, Sumpter R, Leveno M, Campbell GR, Zou Z. 30.  et al. 2013. Identification of a candidate therapeutic autophagy-inducing peptide. Nature 494:201–6 [Google Scholar]
  31. McEwan DG, Dikic I. 31.  2011. The Three Musketeers of Autophagy: phosphorylation, ubiquitylation and acetylation. Trends Cell Biol 21:195–201 [Google Scholar]
  32. Mizushima N. 32.  2014. Sugar modification inhibits autophagosome-lysosome fusion. Nat. Cell Biol. 16:1132–33 [Google Scholar]
  33. Lonskaya I, Hebron ML, Desforges NM, Franjie A, Moussa CEH. 33.  2013. Tyrosine kinase inhibition increases functional parkin-Beclin-1 interaction and enhances amyloid clearance and cognitive performance. EMBO Mol. Med. 5:1247–62 [Google Scholar]
  34. Levine B, Packer M, Codogno P. 34.  2015. Development of autophagy inducers in clinical medicine. J. Clin. Investig. 125:14–24 [Google Scholar]
  35. Vakifahmetoglu-Norberg H, Xia HG, Yuan J. 35.  2015. Pharmacologic agents targeting autophagy. J. Clin. Investig. 125:5–13 [Google Scholar]
  36. Füllgrabe J, Klionsky DJ, Joseph B. 36.  2014. The return of the nucleus: transcriptional and epigenetic control of autophagy. Nat. Rev. Mol. Cell. Biol. 15:65–74 [Google Scholar]
  37. Hamaï A, Codogno P. 37.  2012. New targets for acetylation in autophagy. Sci. Signaling 5:pe29 [Google Scholar]
  38. Morselli E, Mariño G, Bennetzen MV, Eisenberg T, Megalou E. 38.  et al. 2011. Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J. Cell Biol. 192:615–29 [Google Scholar]
  39. Pietrocola F, Lachkar S, Enot DP, Niso-Santano M, Bravo-San Pedro JM. 39.  et al. 2015. Spermidine induces autophagy by inhibiting the acetyltransferase EP300. Cell Death Differ 22:509–16 [Google Scholar]
  40. Lebovitz CB, DeVorkin L, Bosc D, Rothe K, Singh J. 40.  et al. 2015. Precision autophagy: Will the next wave of selective autophagy markers and specific autophagy inhibitors feed clinical pipelines?. Autophagy 11:1949–52 [Google Scholar]
  41. Pietrocola F, Izzo V, Niso-Santano M, Vacchelli E, Galluzzi L. 41.  et al. 2013. Regulation of autophagy by stress-responsive transcription factors. Sem. Cancer Biol. 23:310–22 [Google Scholar]
  42. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E. 42.  et al. 2004. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117:399–412 [Google Scholar]
  43. Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R. 43.  et al. 2007. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6:458–71 [Google Scholar]
  44. Zhao J, Brault JJ, Schild A, Cao P, Sandri M. 44.  et al. 2007. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 6:472–83 [Google Scholar]
  45. van der Vos KE, Coffer PJ. 45.  2011. The extending network of FOXO transcriptional target genes. Antioxid. Redox Signal. 14:579–92 [Google Scholar]
  46. Medema RH, Jaattela M. 46.  2010. Cytosolic FoxO1: alive and killing. Nat. Cell Biol. 12:642–43 [Google Scholar]
  47. Zhao Y, Yang J, Liao W, Liu X, Zhang H. 47.  et al. 2010. Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat. Cell Biol. 12:665–75 [Google Scholar]
  48. Maiese K, Chong ZZ, Shang YC. 48.  2008. OutFOXOing disease and disability: the therapeutic potential of targeting FoxO proteins. Trends Mol. Med. 14:219–27 [Google Scholar]
  49. Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M. 49.  et al. 2009. A gene network regulating lysosomal biogenesis and function. Science 325:473–77 [Google Scholar]
  50. Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F. 50.  et al. 2011. TFEB links autophagy to lysosomal biogenesis. Science 332:1429–33 [Google Scholar]
  51. Settembre C, De Cegli R, Mansueto G, Saha PK, Vetrini F. 51.  et al. 2013. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat. Cell Biol. 15:647–58 [Google Scholar]
  52. Ballabio A. 52.  2016. The awesome lysosome. EMBO Mol. Med. 8:73–76 [Google Scholar]
  53. Martina JA, Diab HI, Lishu L, Jeong AL, Patange S. 53.  et al. 2014. The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Sci. Signaling 7:ra9 [Google Scholar]
  54. Martina JA, Diab HI, Brady OA, Puertollano R. 54.  2016. TFEB and TFE3 are novel components of the integrated stress response. EMBO J 35:479–95 [Google Scholar]
  55. Chauhan S, Goodwin JG, Chauhan S, Manyam G, Wang J. 55.  et al. 2013. ZKSCAN3 is a master transcriptional repressor of autophagy. Mol. Cell 50:16–28 [Google Scholar]
  56. Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD. 56.  et al. 2003. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 11:619–33 [Google Scholar]
  57. Rzymski T, Milani M, Singleton DC, Harris AL. 57.  2009. Role of ATF4 in regulation of autophagy and resistance to drugs and hypoxia. Cell Cycle 8:3838–47 [Google Scholar]
  58. B'Chir W, Maurin AC, Carraro V, Averous J, Jousse C. 58.  et al. 2013. The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res 41:7683–99 [Google Scholar]
  59. Tabas I, Ron D. 59.  2011. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat. Cell Biol. 13:184–90 [Google Scholar]
  60. Mackeh R, Perdiz D, Lorin S, Codogno P, Pous C. 60.  2013. Autophagy and microtubules – new story, old players. J. Cell Sci. 126:1071–80 [Google Scholar]
  61. Aplin A, Jasionowski T, Tuttle DL, Lenk SE, Dunn WA Jr. 61.  1992. Cytoskeletal elements are required for the formation and maturation of autophagic vacuoles. J. Cell Physiol. 152:458–66 [Google Scholar]
  62. Kovacs AL, Reith A, Seglen PO. 62.  1982. Accumulation of autophagosomes after inhibition of hepatocytic protein degradation by vinblastine, leupeptin or a lysosomotropic amine. Exp. Cell Res. 137:191–201 [Google Scholar]
  63. Yu QC, Marzella L. 63.  1986. Modification of lysosomal proteolysis in mouse liver with taxol. Am. J. Pathol. 122:553–61 [Google Scholar]
  64. Iwata A, Riley BE, Johnston JA, Kopito RR. 64.  2005. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J. Biol. Chem. 280:40282–92 [Google Scholar]
  65. Lee JY, Koga H, Kawaguchi Y, Tang W, Wong E. 65.  et al. 2010. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J 29:969–80 [Google Scholar]
  66. Pascolo S. 66.  2016. Time to use a dose of chloroquine as an adjuvant to anti-cancer chemotherapies. Eur. J. Pharmacol. 771:139–44 [Google Scholar]
  67. Duffy A, Le J, Sausville E, Emadi A. 67.  2015. Autophagy modulation: a target for cancer treatment development. Cancer Chemother. Pharmacol. 75:439–47 [Google Scholar]
  68. Maes H, Kuchnio A, Peric A, Moens S, Nys K. 68.  et al. 2014. Tumor vessel normalization by chloroquine independent of autophagy. Cancer Cell 26:190–206 [Google Scholar]
  69. Balic A, Sorensen MD, Trabulo SM, Sainz B Jr, Cioffi M. 69.  et al. 2014. Chloroquine targets pancreatic cancer stem cells via inhibition of CXCR4 and hedgehog signaling. Mol. Cancer Ther. 13:1758–71 [Google Scholar]
  70. Pellegrini P, Strambi A, Zipoli C, Hagg-Olofsson M, Buoncervello M. 70.  et al. 2014. Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine: implications for cancer therapies. Autophagy 10:562–71 [Google Scholar]
  71. McAfee Q, Zhang Z, Samanta A, Levi SM, Ma XH. 71.  et al. 2012. Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency. PNAS 109:8253–58 [Google Scholar]
  72. Wang T, Goodall ML, Gonzales P, Sepulveda M, Martin KR. 72.  et al. 2015. Synthesis of improved lysomotropic autophagy inhibitors. J. Med. Chem 583025–35 [Google Scholar]
  73. Mohapatra P, Preet R, Das D, Satapathy SR, Choudhuri T. 73.  et al. 2012. Quinacrine-mediated autophagy and apoptosis in colon cancer cells is through a p53- and p21-dependent mechanism. Oncol. Res. 20:81–91 [Google Scholar]
  74. Shacka JJ, Klocke BJ, Roth KA. 74.  2006. Autophagy, bafilomycin and cell death: the “A-B-Cs” of plecomacrolide-induced neuroprotection. Autophagy 2:228–30 [Google Scholar]
  75. Yamamoto A, Tagawa Y, Yoshimori T, Moriyama Y, Masaki R, Tashiro Y. 75.  1998. Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct. Funct. 23:33–42 [Google Scholar]
  76. Mauvezin C, Nagy P, Juhasz G, Neufeld TP. 76.  2015. Autophagosome-lysosome fusion is independent of V-ATPase-mediated acidification. Nat. Commun. 6:7007 [Google Scholar]
  77. Brix K. 77.  2005. Lysosomal proteases: revival of the sleeping beauty. Lysosomes P Saftig 50–59 Georgetown, TX: Springer [Google Scholar]
  78. Butler D, Hwang J, Estick C, Nishiyama A, Kumar SS. 78.  et al. 2011. Protective effects of positive lysosomal modulation in Alzheimer's disease transgenic mouse models. PLOS ONE 6:e20501 [Google Scholar]
  79. Bahr BA, Wisniewski ML, Butler D. 79.  2012. Positive lysosomal modulation as a unique strategy to treat age-related protein accumulation diseases. Rejuvenation Res 15:189–97 [Google Scholar]
  80. Udelnow A, Kreyes A, Ellinger S, Landfester K, Walther P. 80.  et al. 2011. Omeprazole inhibits proliferation and modulates autophagy in pancreatic cancer cells. PLOS ONE 6:e20143 [Google Scholar]
  81. Ganley IG, Wong PM, Gammoh N, Jiang X. 81.  2011. Distinct autophagosomal-lysosomal fusion mechanism revealed by thapsigargin-induced autophagy arrest. Mol. Cell 42:731–43 [Google Scholar]
  82. Cheng Y, Ren X, Hait WN, Yang JM. 82.  2013. Therapeutic targeting of autophagy in disease: biology and pharmacology. Pharmacol. Rev. 65:1162–97 [Google Scholar]
  83. Frake RA, Ricketts T, Menzies FM, Rubinsztein DC. 83.  2015. Autophagy and neurodegeneration. J. Clin. Investig. 125:65–74 [Google Scholar]
  84. El-Mir MY, Nogueira V, Fontaine E, Avéret N, Rigoulet M, Leverve X. 84.  2000. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J. Biol. Chem. 275:223–28 [Google Scholar]
  85. Owen MR, Doran E, Halestrap AP. 85.  2000. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem. J. 348:607–14 [Google Scholar]
  86. Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B. 86.  2014. Metformin: from mechanisms of action to therapies. Cell Metab 20:953–66 [Google Scholar]
  87. Yu HC, Lin CS, Tai WT, Liu CY, Shiau CW, Chen KF. 87.  2013. Nilotinib induces autophagy in hepatocellular carcinoma through AMPK activation. J. Biol. Chem. 288:18249–59 [Google Scholar]
  88. Dando I, Donadelli M, Costanzo C, Dalla Pozza E, D'Alessandro A. 88.  et al. 2013. Cannabinoids inhibit energetic metabolism and induce AMPK-dependent autophagy in pancreatic cancer cells. Cell Death Dis 4:e664 [Google Scholar]
  89. Vara D, Salazar M, Olea-Herrero N, Guzmán M, Velasco G, Diaz-Laviada I. 89.  2011. Anti-tumoral action of cannabinoids on hepatocellular carcinoma: role of AMPK-dependent activation of autophagy. Cell Death Differ 18:1099–111 [Google Scholar]
  90. Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A. 90.  et al. 2005. Lithium induces autophagy by inhibiting inositol monophosphatase. J. Cell Biol. 170:1101–11 [Google Scholar]
  91. Vicencio JM, Ortiz C, Criollo A, Jones AWE, Kepp O. 91.  et al. 2009. The inositol 1,4,5-trisphosphate receptor regulates autophagy through its interaction with Beclin 1. Cell Death Differ 16:1006–17 [Google Scholar]
  92. Sarkar S, Perlstein EO, Imarisio S, Pineau S, Cordenier A. 92.  et al. 2007. Small molecules enhance autophagy and reduce toxicity in Huntington's disease models. Nat. Chem. Biol. 3:331–38 [Google Scholar]
  93. Xia HG, Zhang L, Chen G, Zhang T, Liu J. 93.  et al. 2010. Control of basal autophagy by calpain1 mediated cleavage of ATG5. Autophagy 6:61–66 [Google Scholar]
  94. Pardo R, A Lo Ré, Archange C, Ropolo A, Papademetrio DL. 94.  et al. 2010. Gemcitabine induces the VMP1-mediated autophagy pathway to promote apoptotic death in human pancreatic cancer cells. Pancreatology 10:19–26 [Google Scholar]
  95. Miller S, Tavshanjian B, Oleksy A, Perisic O, Houseman BT. 95.  et al. 2010. Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34. Science 327:1638–42 [Google Scholar]
  96. Dowdle WE, Nyfeler B, Nagel J, Elling RA, Liu S. 96.  et al. 2014. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat. Cell Biol. 16:1069–79 [Google Scholar]
  97. Ronan B, Flamand O, Vescovi L, Dureuil C, Durand L. 97.  et al. 2014. A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy. Nat. Chem. Biol. 10:1013–19 [Google Scholar]
  98. Renna M, Schaffner C, Brown K, Shang S, Tamayo MH. 98.  et al. 2011. Azithromycin blocks autophagy and may predispose cystic fibrosis patients to mycobacterial infection. J. Clin. Investig. 121:3554–63 [Google Scholar]
  99. Rossi M, Munarriz ER, Bartesaghi S, Milanese M, Dinsdale D. 99.  et al. 2009. Desmethylclomipramine induces the accumulation of autophagy markers by blocking autophagic flux. J. Cell Sci. 122:3330–39 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error