1932

Abstract

Brown adipose tissue (BAT) was previously regarded as a special type of fat relevant only for defending hibernating animals and newborns against a cold environment. Recently, BAT has received considerable attention following its (re)discovery in humans. Using glucose tracers, multiple laboratories independently found metabolically active BAT in adults. The enormous metabolic powers of BAT in animal models could make it an attractive target for antiobesity therapies in humans. Here, we review the present knowledge on the role of BAT in energy homeostasis and metabolism, focusing on signaling pathways and potential targets for novel therapeutics. We also shine light on ongoing debates, including those about the true color of brown fat in adults, as well as on the requirements for translation of basic research on BAT into clinical medicine.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010814-124346
2015-01-06
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/55/1/annurev-pharmtox-010814-124346.html?itemId=/content/journals/10.1146/annurev-pharmtox-010814-124346&mimeType=html&fmt=ahah

Literature Cited

  1. Haidar YM, Cosman BC. 1.  2011. Obesity epidemiology. Clin. Colon Rectal Surg. 24:205–10 [Google Scholar]
  2. Ng M, Fleming T, Robinson M, Thomson B, Graetz N. 2.  et al. 2014. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 6736:60460–68 [Google Scholar]
  3. Flegal KM, Kit BK, Orpana H, Graubard BI. 3.  2013. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA 309:71–82 [Google Scholar]
  4. 4. World Health Organization 2014. Obesity and overweight Fact sheet N°311, World Health Organ. http://www.who.int/mediacentre/factsheets/fs311/en/
  5. Gesta S, Tseng YH, Kahn CR. 5.  2007. Developmental origin of fat: tracking obesity to its source. Cell 131:242–56 [Google Scholar]
  6. Cypess AM, Lehman S, Williams G, Tal I, Rodman D. 6.  et al. 2009. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360:1509–17 [Google Scholar]
  7. Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T. 7.  et al. 2009. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58:1526–31 [Google Scholar]
  8. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ. 8.  et al. 2009. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360:1500–8 [Google Scholar]
  9. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R. 9.  et al. 2009. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360:1518–25 [Google Scholar]
  10. Rothwell NJ, Stock MJ. 10.  1979. A role for brown adipose tissue in diet-induced thermogenesis. Nature 281:31–35 [Google Scholar]
  11. Robidoux J, Martin TL, Collins S. 11.  2004. β-adrenergic receptors and regulation of energy expenditure: a family affair. Annu. Rev. Pharmacol. Toxicol. 44:297–323 [Google Scholar]
  12. Kajimura S, Saito M. 12.  2013. A new era in brown adipose tissue biology: molecular control of brown fat development and energy homeostasis. Annu. Rev. Physiol. 76:225–49 [Google Scholar]
  13. Nedergaard J, Cannon B. 13.  2010. The changed metabolic world with human brown adipose tissue: therapeutic visions. Cell Metab. 11:268–72 [Google Scholar]
  14. Wu J, Cohen P, Spiegelman BM. 14.  2013. Adaptive thermogenesis in adipocytes: Is beige the new brown?. Genes Dev. 27:234–50 [Google Scholar]
  15. Klingenspor M, Fromme T, Hughes DA Jr, Manzke L, Polymeropoulos E. 15.  et al. 2008. An ancient look at UCP1. Biochim. Biophys. Acta 1777:637–41 [Google Scholar]
  16. Nikonova L, Koza RA, Mendoza T, Chao PM, Curley JP, Kozak LP. 16.  2008. Mesoderm-specific transcript is associated with fat mass expansion in response to a positive energy balance. FASEB J. 22:3925–37 [Google Scholar]
  17. Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H. 17.  et al. 2011. Brown adipose tissue activity controls triglyceride clearance. Nat. Med. 17:200–5 [Google Scholar]
  18. Enerback S. 18.  2010. Human brown adipose tissue. Cell Metab. 11:248–52 [Google Scholar]
  19. Kozak LP. 19.  2010. Brown fat and the myth of diet-induced thermogenesis. Cell Metab. 11:263–67 [Google Scholar]
  20. Leibel RL, Rosenbaum M, Hirsch J. 20.  1995. Changes in energy expenditure resulting from altered body weight. N. Engl. J. Med. 332:621–28 [Google Scholar]
  21. Vosselman MJ, Brans B, van der Lans AAJJ, Wierts R, van Baak MA. 21.  et al. 2013. Brown adipose tissue activity after a high-calorie meal in humans. Am. J. Clin. Nutr. 98:57–64 [Google Scholar]
  22. Heaton JM. 22.  1972. The distribution of brown adipose tissue in the human. J. Anat. 112:35–39 [Google Scholar]
  23. Lidell ME, Betz MJ, Dahlqvist Leinhard O, Heglind M, Elander L. 23.  et al. 2013. Evidence for two types of brown adipose tissue in humans. Nat. Med. 19:631–34 [Google Scholar]
  24. Cannon B, Nedergaard J. 24.  2004. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84:277–359 [Google Scholar]
  25. Klingenspor M, Herzig S, Pfeifer A. 25.  2013. Brown fat develops a brite future. Obes. Facts 5:890–96 [Google Scholar]
  26. Rosen ED, Spiegelman BM. 26.  2014. What we talk about when we talk about fat. Cell 156:20–44 [Google Scholar]
  27. Yoneshiro T, Aita S, Matsushita M, Kayahara T, Kameya T. 27.  et al. 2013. Recruited brown adipose tissue as an antiobesity agent in humans. J. Clin. Investig. 123:3404–8 [Google Scholar]
  28. Atit R, Sgaier SK, Mohamed OA, Taketo MM, Dufort D. 28.  et al. 2006. β-catenin activation is necessary and sufficient to specify the dorsal dermal fate in the mouse. Dev. Biol. 296:164–76 [Google Scholar]
  29. Timmons JA, Wennmalm K, Larsson O, Walden TB, Lassmann T. 29.  et al. 2007. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc. Natl. Acad. Sci. USA 104:4401–6 [Google Scholar]
  30. Seale P, Bjork B, Yang W, Kajimura S, Chin S. 30.  et al. 2008. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454:961–67 [Google Scholar]
  31. Sanchez-Gurmaches J, Hung CM, Sparks CA, Tang Y, Li H, Guertin DA. 31.  2012. PTEN loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors. Cell Metab. 16:348–62 [Google Scholar]
  32. Frontini A, Cinti S. 32.  2010. Distribution and development of brown adipocytes in the murine and human adipose organ. Cell Metab. 11:253–56 [Google Scholar]
  33. Lo KA, Sun L. 33.  2013. Turning WAT into BAT: a review on regulators controlling the browning of white adipocytes. Biosci. Rep. 33:art:e00065 [Google Scholar]
  34. Bordicchia M, Liu D, Amri EZ, Ailhaud G, Dessi-Fulgheri P. 34.  et al. 2012. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J. Clin. Investig. 122:1022–36 [Google Scholar]
  35. Mitschke MM, Hoffmann LS, Gnad T, Scholz D, Kruithoff K. 35.  et al. 2013. Increased cGMP promotes healthy expansion and browning of white adipose tissue. FASEB J. 27:1621–30 [Google Scholar]
  36. Seale P, Conroe HM, Estall J, Kajimura S, Frontini A. 36.  et al. 2011. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J. Clin. Investig. 121:96–105 [Google Scholar]
  37. Schulz TJ, Huang TL, Tran TT, Zhang H, Townsend KL. 37.  et al. 2012. Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. Proc. Natl. Acad. Sci. USA 108:143–48 [Google Scholar]
  38. Lee YH, Petkova AP, Mottillo EP, Granneman JG. 38.  2012. In vivo identification of bipotential adipocyte progenitors recruited by β3-adrenoceptor activation and high-fat feeding. Cell Metab. 15:480–91 [Google Scholar]
  39. Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M. 39.  et al. 2010. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am. J. Physiol. Endocrinol. Metab. 298:E1244–53 [Google Scholar]
  40. Rosenwald M, Perdikari A, Rulicke T, Wolfrum C. 40.  2013. Bi-directional interconversion of brite and white adipocytes. Nat. Cell Biol. 15:659–67 [Google Scholar]
  41. Cederberg A, Gronning LM, Ahren B, Tasken K, Carlsson P, Enerback S. 41.  2001. FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell 106:563–73 [Google Scholar]
  42. Leonardsson G, Steel JH, Christian M, Pocock V, Milligan S. 42.  et al. 2004. Nuclear receptor corepressor RIP140 regulates fat accumulation. Proc. Natl. Acad. Sci. USA 101:8437–42 [Google Scholar]
  43. Vegiopoulos A, Muller-Decker K, Strzoda D, Schmitt I, Chichelnitskiy E. 43.  et al. 2010. Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes. Science 328:1158–61 [Google Scholar]
  44. Cohen P, Levy JD, Zhang Y, Frontini A, Kolodin DP. 44.  et al. 2014. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 156:304–16 [Google Scholar]
  45. Walden TB, Hansen IR, Timmons JA, Cannon B, Nedergaard J. 45.  2012. Recruited vs. nonrecruited molecular signatures of brown, “brite,” and white adipose tissues. Am. J. Physiol. Endocrinol. Metab. 302:E19–31 [Google Scholar]
  46. Sharp LZ, Shinoda K, Ohno H, Scheel DW, Tomoda E. 46.  et al. 2012. Human BAT possesses molecular signatures that resemble beige/brite cells. PLOS ONE 7:e49452 [Google Scholar]
  47. Wu J, Boström P, Sparks LM, Ye L, Choi JH. 47.  et al. 2012. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150:366–76 [Google Scholar]
  48. Jespersen NZ, Larsen TJ, Peijs L, Daugaard S, Homoe P. 48.  et al. 2013. A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans. Cell Metab. 17:798–805 [Google Scholar]
  49. Cypess AM, White AP, Vernochet C, Schulz TJ, Xue R. 49.  et al. 2013. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat. Med. 19:635–39 [Google Scholar]
  50. Seale P, Kajimura S, Spiegelman BM. 50.  2009. Transcriptional control of brown adipocyte development and physiological function—of mice and men. Genes Dev. 23:788–97 [Google Scholar]
  51. Villarroya F, Vidal-Puig A. 51.  2013. Beyond the sympathetic tone: the new brown fat activators. Cell Metab. 17:638–43 [Google Scholar]
  52. Bartelt A, Heeren J. 52.  2014. Adipose tissue browning and metabolic health. Nat. Rev. Endocrinol. 10:24–36 [Google Scholar]
  53. Nguyen KD, Qiu Y, Cui X, Goh YP, Mwangi J. 53.  et al. 2011. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480:104–8 [Google Scholar]
  54. Susulic VS, Frederich RC, Lawitts J, Tozzo E, Kahn BB. 54.  et al. 1995. Targeted disruption of the β3-adrenergic receptor gene. J. Biol. Chem. 270:29483–92 [Google Scholar]
  55. Bachman ES, Dhillon H, Zhang CY, Cinti S, Bianco AC. 55.  et al. 2002. βAR signaling required for diet-induced thermogenesis and obesity resistance. Science 297:843–45 [Google Scholar]
  56. Vaughan CH, Shrestha YB, Bartness TJ. 56.  2011. Characterization of a novel melanocortin receptor-containing node in the SNS outflow circuitry to brown adipose tissue involved in thermogenesis. Brain Res. 2011:17–27 [Google Scholar]
  57. Voss-Andreae A, Murphy JG, Ellacott KLJ, Stuart RC, Nillni EA. 57.  et al. 2007. Role of the central melanocortin circuitry in adaptive thermogenesis of brown adipose tissue. Endocrinology 148:1550–60 [Google Scholar]
  58. Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q. 58.  et al. 1997. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88:131–41 [Google Scholar]
  59. Farooqi IS, Keogh JM, Yeo GS, Lank EJ, Cheetham T, O'Rahilly S. 59.  2003. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N. Engl. J. Med. 348:1085–95 [Google Scholar]
  60. Klingenspor M, Ivemeyer M, Wiesinger H, Haas K, Heldmaier G, Wiesner RJ. 60.  1996. Biogenesis of thermogenic mitochondria in brown adipose tissue of Djungarian hamsters during cold adaptation. Biochem. J. 316:607–13 [Google Scholar]
  61. Bianco AC, Sheng XY, Silva JE. 61.  1988. Triiodothyronine amplifies norepinephrine stimulation of uncoupling protein gene transcription by a mechanism not requiring protein synthesis. J. Biol. Chem. 263:18168–75 [Google Scholar]
  62. Jennissen K, Haas B, Mitschke MM, Siegel F, Pfeifer A. 62.  2013. Analysis of cGMP signaling in adipocytes. Methods Mol. Biol. 1020:175–92 [Google Scholar]
  63. de Jesus LA, Carvalho SD, Ribeiro MO, Schneider M, Kim SW. 63.  et al. 2001. The type 2 iodothyronine deiodinase is essential for adaptive thermogenesis in brown adipose tissue. J. Clin. Investig. 108:1379–85 [Google Scholar]
  64. Lahesmaa M, Orava J, Schalin-Jantti C, Soinio M, Hannukainen JC. 64.  et al. 2014. Hyperthyroidism increases brown fat metabolism in humans. J. Clin. Endocrinol. Metab. 99:E28–35 [Google Scholar]
  65. Marsili A, Aguayo-Mazzucato C, Chen T, Kumar A, Chung M. 65.  et al. 2011. Mice with a targeted deletion of the type 2 deiodinase are insulin resistant and susceptible to diet induced obesity. PLOS ONE 6:e20832 [Google Scholar]
  66. Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW. 66.  et al. 2006. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439:484–89 [Google Scholar]
  67. Margoni A, Fotis L, Papavassiliou AG. 67.  2012. The transforming growth factor-beta/bone morphogenetic protein signalling pathway in adipogenesis. Int. J. Biochem. Cell Biol. 44:475–79 [Google Scholar]
  68. Qian SW, Tang Y, Li X, Liu Y, Zhang YY. 68.  et al. 2013. BMP4-mediated brown fat-like changes in white adipose tissue alter glucose and energy homeostasis. Proc. Natl. Acad. Sci. USA 110:E798–807 [Google Scholar]
  69. Tseng YH, Kokkotou E, Schulz TJ, Huang TL, Winnay JN. 69.  et al. 2008. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454:1000–4 [Google Scholar]
  70. Townsend KL, Suzuki R, Huang TL, Jing E, Schulz TJ. 70.  et al. 2012. Bone morphogenetic protein 7 (BMP7) reverses obesity and regulates appetite through a central mTOR pathway. FASEB J. 26:2187–96 [Google Scholar]
  71. Whittle AJ, Carobbio S, Martins L, Slawik M, Hondares E. 71.  et al. 2012. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 149:871–85 [Google Scholar]
  72. Boström P, Wu J, Jedrychowski MP, Korde A, Ye L. 72.  et al. 2012. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–68 [Google Scholar]
  73. Hofmann T, Elbelt U, Stengel A. 73.  2014. Irisin as a muscle-derived hormone stimulating thermogenesis – a critical update. Peptides 54:89–100 [Google Scholar]
  74. Hecksteden A, Wegmann M, Steffen A, Kraushaar J, Morsch A. 74.  et al. 2013. Irisin and exercise training in humans – results from a randomized controlled training trial. BMC Med. 11:235 [Google Scholar]
  75. Timmons JA, Baar K, Davidsen PK, Atherton PJ. 75.  2012. Is irisin a human exercise gene?. Nature 488:E9–10 [Google Scholar]
  76. Lee P, Linderman JD, Smith S, Brychta RJ, Wang J. 76.  et al. 2014. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab. 19:302–9 [Google Scholar]
  77. Hondares E, Gallego-Escuredo JM, Flachs P, Frontini A, Cereijo R. 77.  et al. 2013. Fibroblast growth factor-21 is expressed in neonatal and pheochromocytoma-induced adult human brown adipose tissue. Metabolism 63:312–17 [Google Scholar]
  78. Hondares E, Iglesias R, Giralt A, Gonzalez FJ, Giralt M. 78.  et al. 2011. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J. Biol. Chem. 286:12983–90 [Google Scholar]
  79. Tomlinson E, Fu L, John L, Hultgren B, Huang X. 79.  et al. 2002. Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology 143:1741–47 [Google Scholar]
  80. Fu L, John LM, Adams SH, Yu XX, Tomlinson E. 80.  et al. 2004. Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology 145:2594–603 [Google Scholar]
  81. Madsen L, Pedersen LM, Lillefosse HH, Fjaere E, Bronstad I. 81.  et al. 2010. UCP1 induction during recruitment of brown adipocytes in white adipose tissue is dependent on cyclooxygenase activity. PLOS ONE 5:e11391 [Google Scholar]
  82. Djouder N, Tuerk RD, Suter M, Salvioni P, Thali RF. 82.  et al. 2009. PKA phosphorylates and inactivates AMPKα to promote efficient lipolysis. EMBO J. 29:469–81 [Google Scholar]
  83. Robidoux J, Kumar N, Daniel KW, Moukdar F, Cyr M. 83.  et al. 2006. Maximal β3-adrenergic regulation of lipolysis involves Src and epidermal growth factor receptor-dependent ERK1/2 activation. J. Biol. Chem. 281:37794–802 [Google Scholar]
  84. Cao W, Daniel KW, Robidoux J, Puigserver P, Medvedev AV. 84.  et al. 2004. p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Mol. Cell. Biol. 24:3057–67 [Google Scholar]
  85. Lindquist JM, Rehnmark S. 85.  1998. Ambient temperature regulation of apoptosis in brown adipose tissue: Erk1/2 promotes norepinephrine-dependent cell survival. J. Biol. Chem. 273:30147–56 [Google Scholar]
  86. Moro C, Lafontan M. 86.  2013. Natriuretic peptides and cGMP signaling control of energy homeostasis. Am. J. Physiol. Heart Circ. Physiol. 304:H358–68 [Google Scholar]
  87. Nisoli E, Clementi E, Moncada S, Carruba MO. 87.  2004. Mitochondrial biogenesis as a cellular signaling framework. Biochem. Pharmacol. 67:1–15 [Google Scholar]
  88. Pfeifer A, Kilic A, Hoffmann LS. 88.  2013. Regulation of metabolism by cGMP. Pharmacol. Ther. 140:81–91 [Google Scholar]
  89. Lucas KA, Pitari GM, Kazerounian S, Ruiz-Stewart I, Park J. 89.  et al. 2000. Guanylyl cyclases and signaling by cyclic GMP. Pharmacol. Rev. 52:375–414 [Google Scholar]
  90. Giordano A, Tonello C, Bulbarelli A, Cozzi V, Cinti S. 90.  et al. 2002. Evidence for a functional nitric oxide synthase system in brown adipocyte nucleus. FEBS Lett. 514:135–40 [Google Scholar]
  91. Haas B, Mayer P, Jennissen K, Scholz D, Diaz MB. 91.  et al. 2009. Protein kinase G controls brown fat cell differentiation and mitochondrial biogenesis. Sci. Signal. 2:ra78 [Google Scholar]
  92. Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C. 92.  et al. 2003. Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299:896–99 [Google Scholar]
  93. Maack T. 93.  1992. Receptors of atrial natriuretic factor. Annu. Rev. Physiol. 54:11–27 [Google Scholar]
  94. Hofmann F. 94.  2005. The biology of cyclic GMP-dependent protein kinases. J. Biol. Chem. 280:1–4 [Google Scholar]
  95. Pfeifer A, Ruth P, Dostmann W, Sausbier M, Klatt P, Hofmann F. 95.  1999. Structure and function of cGMP-dependent protein kinases. Rev. Physiol. Biochem. Pharmacol. 135:105–49 [Google Scholar]
  96. Francis SH, Busch JL, Corbin JD. 96.  2010. cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol. Rev. 62:525–63 [Google Scholar]
  97. Bender AT, Beavo JA. 97.  2006. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol. Rev. 58:488–520 [Google Scholar]
  98. Miyashita K, Itoh H, Tsujimoto H, Tamura N, Fukunaga Y. 98.  et al. 2009. Natriuretic peptides/cGMP/cGMP-dependent protein kinase cascades promote muscle mitochondrial biogenesis and prevent obesity. Diabetes 58:2880–92 [Google Scholar]
  99. Jennissen K, Siegel F, Liebig-Gonglach M, Hermann MR, Kipschull S. 99.  et al. 2012. A VASP-Rac–soluble guanylyl cyclase pathway controls cGMP production in adipocytes. Sci. Signal. 5:ra62 [Google Scholar]
  100. Kajimura S, Seale P, Spiegelman BM. 100.  2010. Transcriptional control of brown fat development. Cell Metab. 11:257–62 [Google Scholar]
  101. Shao D, Lazar MA. 101.  1997. Peroxisome proliferator activated receptor γ, CCAAT/enhancer-binding protein α, and cell cycle status regulate the commitment to adipocyte differentiation. J. Biol. Chem. 272:21473–78 [Google Scholar]
  102. Linhart HG, Ishimura-Oka K, DeMayo F, Kibe T, Repka D. 102.  et al. 2001. C/EBPα is required for differentiation of white, but not brown, adipose tissue. Proc. Natl. Acad. Sci. USA 98:12532–37 [Google Scholar]
  103. Darlington GJ, Ross SE, MacDougald OA. 103.  1998. The role of C/EBP genes in adipocyte differentiation. J. Biol. Chem. 273:30057–60 [Google Scholar]
  104. Karamanlidis G, Karamitri A, Docherty K, Hazlerigg DG, Lomax MA. 104.  2007. C/EBPβ reprograms white 3T3-L1 preadipocytes to a brown adipocyte pattern of gene expression. J. Biol. Chem. 282:24660–69 [Google Scholar]
  105. Kajimura S, Seale P, Kubota K, Lunsford E, Frangioni JV. 105.  et al. 2009. Initiation of myoblast to brown fat switch by a PRDM16–C/EBP-β transcriptional complex. Nature 460:1154–58 [Google Scholar]
  106. Uldry M, Yang W, St-Pierre J, Lin J, Seale P, Spiegelman BM. 106.  2006. Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metab. 3:333–41 [Google Scholar]
  107. Pfeifer A, Lehmann H. 107.  2010. Pharmacological potential of RNAi—focus on miRNA. Pharmacol. Ther. 126:217–27 [Google Scholar]
  108. Trajkovski M, Lodish H. 108.  2013. MicroRNA networks regulate development of brown adipocytes. Trends Endocrinol. Metab. 24:442–50 [Google Scholar]
  109. Walden TB, Timmons JA, Keller P, Nedergaard J, Cannon B. 109.  2009. Distinct expression of muscle-specific microRNAs (myomirs) in brown adipocytes. J. Cell Physiol. 218:444–49 [Google Scholar]
  110. Chen Y, Siegel F, Kipschull S, Haas B, Frohlich H. 110.  et al. 2013. miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit. Nat. Commun. 4:1769 [Google Scholar]
  111. Sun L, Xie H, Mori MA, Alexander R, Yuan B. 111.  et al. 2011. Mir193b–365 is essential for brown fat differentiation. Nat. Cell Biol. 13:958–65 [Google Scholar]
  112. Trajkovski M, Ahmed K, Esau CC, Stoffel M. 112.  2012. MyomiR-133 regulates brown fat differentiation through Prdm16. Nat. Cell Biol. 14:1330–35 [Google Scholar]
  113. Mori M, Nakagami H, Rodriguez-Araujo G, Nimura K, Kaneda Y. 113.  2012. Essential role for miR-196a in brown adipogenesis of white fat progenitor cells. PLOS Biol. 10:e1001314 [Google Scholar]
  114. Feuermann Y, Kang K, Gavrilova O, Haetscher N, Jin Jang S. 114.  et al. 2013. MiR-193b and miR-365-1 are not required for the development and function of brown fat in the mouse. RNA Biol. 10:1807–14 [Google Scholar]
  115. Hu HH, Kan HE. 115.  2013. Quantitative proton MR techniques for measuring fat. NMR Biomed. 26:1609–29 [Google Scholar]
  116. Azhdarinia A, Daquinag AC, Tseng C, Ghosh SC, Ghosh P. 116.  et al. 2013. A peptide probe for targeted brown adipose tissue imaging. Nat. Commun. 4:2472 [Google Scholar]
  117. Brase JC, Wuttig D, Kuner R, Sultmann H. 117.  2010. Serum microRNAs as non-invasive biomarkers for cancer. Mol. Cancer 9:306 [Google Scholar]
  118. Nawrocki AR, Scherer PE. 118.  2005. Keynote review: the adipocyte as a drug discovery target. Drug Discov. Today 10:1219–30 [Google Scholar]
  119. Dong M, Yang X, Lim S, Cao Z, Honek J. 119.  et al. 2013. Cold exposure promotes atherosclerotic plaque growth and instability via UCP1-dependent lipolysis. Cell Metab. 18:118–29 [Google Scholar]
  120. Bhaskaran K, Hajat S, Haines A, Herrett E, Wilkinson P, Smeeth L. 120.  2009. Effects of ambient temperature on the incidence of myocardial infarction. Heart 95:1760–69 [Google Scholar]
  121. Analitis A, Katsouyanni K, Biggeri A, Baccini M, Forsberg B. 121.  et al. 2008. Effects of cold weather on mortality: results from 15 European cities within the PHEWE project. Am. J. Epidemiol. 168:1397–408 [Google Scholar]
  122. Bordicchia M, Pocognoli A, D'Anzeo M, Siquini W, Minardi D. 122.  et al. 2014. Nebivolol induces, via β3 adrenergic receptor, lipolysis, uncoupling protein 1, and reduction of lipid droplet size in human adipocytes. J. Hypertens. 32:389–96 [Google Scholar]
  123. Vosselman MJ, van der Lans AAJJ, Brans B, Wierts R, van Baak MA. 123.  et al. 2012. Systemic β-adrenergic stimulation of thermogenesis is not accompanied by brown adipose tissue activity in humans. Diabetes 61:3106–13 [Google Scholar]
  124. Sengenès C, Zakaroff-Girard A, Moulin A, Berlan M, Bouloumié A. 124.  et al. 2002. Natriuretic peptide-dependent lipolysis in fat cells is a primate specificity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283:R257–65 [Google Scholar]
  125. Birkenfeld AL, Budziarek P, Boschmann M, Moro C, Adams F. 125.  et al. 2008. Atrial natriuretic peptide induces postprandial lipid oxidation in humans. Diabetes 57:3199–204 [Google Scholar]
  126. Elabd C, Chiellini C, Carmona M, Galitzky J, Cochet O. 126.  et al. 2009. Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes. Stem Cells 27:2753–60 [Google Scholar]
  127. Greenfield JR, Miller JW, Keogh JM, Henning E, Satterwhite JH. 127.  et al. 2009. Modulation of blood pressure by central melanocortinergic pathways. N. Engl. J. Med. 360:44–52 [Google Scholar]
  128. Kievit P, Halem H, Marks DL, Dong JZ, Glavas MM. 128.  et al. 2012. Chronic treatment with a melanocortin-4 receptor agonist causes weight loss, reduces insulin resistance, and improves cardiovascular function in diet-induced obese rhesus macaques. Diabetes 62:490–97 [Google Scholar]
  129. Snitker S, Fujishima Y, Shen H, Ott S, Pi-Sunyer X. 129.  et al. 2009. Effects of novel capsinoid treatment on fatness and energy metabolism in humans: possible pharmacogenetic implications. Am. J. Clin. Nutr. 89:45–50 [Google Scholar]
  130. Aversa A, Caprio M, Antelmi A, Armani A, Brama M. 130.  et al. 2011. Exposure to phosphodiesterase type 5 inhibitors stimulates aromatase expression in human adipocytes in vitro. J. Sex. Med. 8:696–704 [Google Scholar]
  131. Ayala JE, Bracy DP, Julien BM, Rottman JN, Fueger PT, Wasserman DH. 131.  2007. Chronic treatment with sildenafil improves energy balance and insulin action in high fat-fed conscious mice. Diabetes 56:1025–33 [Google Scholar]
  132. Sackner-Bernstein JD, Kowalski M, Fox M, Aaronson K. 132.  2005. Short-term risk of death after treatment with nesiritide for decompensated heart failure: a pooled analysis of randomized controlled trials. JAMA 293:1900–5 [Google Scholar]
  133. Witteles RM, Kao D, Christopherson D, Matsuda K, Vagelos RH. 133.  et al. 2007. Impact of nesiritide on renal function in patients with acute decompensated heart failure and pre-existing renal dysfunction a randomized, double-blind, placebo-controlled clinical trial. J. Am. Coll. Cardiol. 50:1835–40 [Google Scholar]
  134. Jobgen W, Meininger CJ, Jobgen SC, Li P, Lee MJ. 134.  et al. 2009. Dietary l-arginine supplementation reduces white fat gain and enhances skeletal muscle and brown fat masses in diet-induced obese rats. J. Nutr. 139:230–37 [Google Scholar]
  135. Lucotti P, Setola E, Monti LD, Galluccio E, Costa S. 135.  et al. 2006. Beneficial effects of a long-term oral l-arginine treatment added to a hypocaloric diet and exercise training program in obese, insulin-resistant type 2 diabetic patients. Am. J. Physiol. Endocrinol. Metab. 291:E906–12 [Google Scholar]
  136. Elsen M, Raschke S, Tennagels N, Schwahn U, Jelenik T. 136.  et al. 2013. BMP4 and BMP7 induce the white-to-brown transition of primary human adipose stem cells. Am. J. Physiol. Cell Physiol. 306:C431–40 [Google Scholar]
  137. Gaich G, Chien JY, Fu H, Glass LC, Deeg MA. 137.  et al. 2013. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab. 18:333–40 [Google Scholar]
  138. Coskun T, Bina HA, Schneider MA, Dunbar JD, Hu CC. 138.  et al. 2008. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149:6018–27 [Google Scholar]
  139. Adams AC, Halstead CA, Hansen BC, Irizarry AR, Martin JA. 139.  et al. 2013. LY2405319, an engineered FGF21 variant, improves the metabolic status of diabetic monkeys. PLOS ONE 8:e65763 [Google Scholar]
  140. Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ. 140.  et al. 2012. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 26:271–81 [Google Scholar]
  141. Gerhard GS, Styer AM, Wood GC, Roesch SL, Petrick AT. 141.  et al. 2013. A role for fibroblast growth factor 19 and bile acids in diabetes remission after Roux-en-Y gastric bypass. Diabetes Care 36:1859–64 [Google Scholar]
  142. Hyeon J, Ahn S, Lee JJ, Song DH, Park CK. 142.  2013. Expression of fibroblast growth factor 19 is associated with recurrence and poor prognosis of hepatocellular carcinoma. Dig. Dis. Sci. 58:1916–22 [Google Scholar]
  143. Feng S, Dakhova O, Creighton CJ, Ittmann M. 143.  2013. Endocrine fibroblast growth factor FGF19 promotes prostate cancer progression. Cancer Res. 73:2551–62 [Google Scholar]
  144. Nishio M, Yoneshiro T, Nakahara M, Suzuki S, Saeki K. 144.  et al. 2012. Production of functional classical brown adipocytes from human pluripotent stem cells using specific hemopoietin cocktail without gene transfer. Cell Metab. 16:394–406 [Google Scholar]
  145. Zhu Z, Spicer EG, Gavini CK, Goudjo-Ako AJ, Novak CM, Shi H. 145.  2013. Enhanced sympathetic activity in mice with brown adipose tissue transplantation (transBATation). Physiol. Behav. 125C:21–29 [Google Scholar]
  146. Stanford KI, Middelbeek RJ, Townsend KL, An D, Nygaard EB. 146.  et al. 2013. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J. Clin. Investig. 123:215–23 [Google Scholar]
  147. Liu X, Zheng Z, Zhu X, Meng M, Li L. 147.  et al. 2013. Brown adipose tissue transplantation improves whole-body energy metabolism. Cell Res. 23:851–54 [Google Scholar]
  148. Gunawardana SC, Piston DW. 148.  2012. Reversal of type 1 diabetes in mice by brown adipose tissue transplant. Diabetes 61:674–82 [Google Scholar]
  149. Kopecky J, Clarke G, Enerback S, Spiegelman B, Kozak LP. 149.  1995. Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. J. Clin. Investig. 96:2914–23 [Google Scholar]
  150. Yamada T, Katagiri H, Ishigaki Y, Ogihara T, Imai J. 150.  et al. 2006. Signals from intra-abdominal fat modulate insulin and leptin sensitivity through different mechanisms: neuronal involvement in food-intake regulation. Cell Metab. 3:223–29 [Google Scholar]
  151. Pfeifer A, Verma IM. 151.  2001. Gene therapy: promises and problems. Annu. Rev. Genomics Hum. Genet. 2:177–211 [Google Scholar]
  152. Fujiwara K, Hasegawa K, Ohkumo T, Miyoshi H, Tseng YH, Yoshikawa K. 152.  2012. Necdin controls proliferation of white adipocyte progenitor cells. PLOS ONE 7:e30948 [Google Scholar]
  153. Vijgen GH, Bouvy ND, Leenen L, Rijkers K, Cornips E. 153.  et al. 2013. Vagus nerve stimulation increases energy expenditure: relation to brown adipose tissue activity. PLOS ONE 8:e77221 [Google Scholar]
  154. Cypess AM, Chen YC, Sze C, Wang K, English J. 154.  et al. 2012. Cold but not sympathomimetics activates human brown adipose tissue in vivo. Proc. Natl. Acad. Sci. USA 109:10001–5 [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010814-124346
Loading
/content/journals/10.1146/annurev-pharmtox-010814-124346
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error