A key issue in drug discovery is how to reduce drug dosage and increase specificity while retaining or increasing efficacy, as high dosage is often linked to toxicity. There are two types of drugs on the market: orthosteric and allosteric. Orthosteric drugs can be noncovalent or covalent. The latter are advantageous because they may be prescribed in lower doses, but their potential off-target toxicity is a primary concern. The chief advantages of allosteric drugs are their higher specificity and their consequently lower chance of toxic side effects. Covalent allosteric drugs combine the pharmacological merits of covalent drugs with the additional benefit of the higher specificity of allosteric drugs. In a recent promising step in therapeutic drug development, allosteric, disulfide-tethered fragments successfully modulated the activity of a protein kinase and K-Ras.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Nussinov R, Tsai C-J. 1.  2012. The different ways through which specificity works in orthosteric and allosteric drugs. Curr. Pharm. Des. 18:1311–16 [Google Scholar]
  2. Nussinov R, Tsai C-J. 2.  2013. Allostery in disease and in drug discovery. Cell 153:293–305 [Google Scholar]
  3. Conn PJ, Christopoulos A, Lindsley CW. 3.  2009. Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat. Rev. Drug Discov. 8:41–54 [Google Scholar]
  4. Digby GJ, Conn PJ, Lindsley CW. 4.  2010. Orthosteric- and allosteric-induced ligand-directed trafficking at GPCRs. Curr. Opin. Drug Discov. Dev. 13:587–94 [Google Scholar]
  5. Hammond AS, Rodriguez AL, Townsend SD, Niswender CM, Gregory KJ. 5.  et al. 2010. Discovery of a novel chemical class of mGlu5 allosteric ligands with distinct modes of pharmacology. ACS Chem. Neurosci. 1:702–16 [Google Scholar]
  6. Kenakin T, Christopoulos A. 6.  2011. Analytical pharmacology: the impact of numbers on pharmacology. Trends Pharmacol. Sci. 32:189–96 [Google Scholar]
  7. Kenakin T, Miller LJ. 7.  2010. Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol. Rev. 62:265–304 [Google Scholar]
  8. Kenakin TP. 8.  2009. ‘7TM receptor allostery: putting numbers to shapeshifting proteins. Trends Pharmacol. Sci. 30:460–69 [Google Scholar]
  9. Nussinov R, Tsai C-J, Csermely P. 9.  2011. Allo-network drugs: harnessing allostery in cellular networks. Trends Pharmacol. Sci. 32:686–93 [Google Scholar]
  10. Kettle JG, Brown S, Crafter C, Davies BR, Dudley P. 10.  et al. 2012. Diverse heterocyclic scaffolds as allosteric inhibitors of AKT. J. Med. Chem. 55:1261–73 [Google Scholar]
  11. Wenthur CJ, Gentry PR, Mathews TP, Lindsley CW. 11.  2014. Drugs for allosteric sites on receptors. Annu. Rev. Pharmacol. Toxicol. 54:165–84 [Google Scholar]
  12. Fang ZZ, Grutter C, Rauh D. 12.  2013. Strategies for the selective regulation of kinases with allosteric modulators: exploiting exclusive structural features. ACS Chem. Biol. 8:58–70 [Google Scholar]
  13. Ma BY, Elkayam T, Wolfson H, Nussinov R. 13.  2003. Protein-protein interactions: Structurally conserved residues distinguish between binding sites and exposed protein surfaces. Proc. Natl. Acad. Sci. USA 100:5772–77 [Google Scholar]
  14. Capra JA, Laskowski RA, Thornton JM, Singh M, Funkhouser TA. 14.  2009. Predicting protein ligand binding sites by combining evolutionary sequence conservation and 3D structure. PLOS Comp. Biol. 5:e1000585 [Google Scholar]
  15. Kar G, Keskin O, Gursoy A, Nussinov R. 15.  2010. Allostery and population shift in drug discovery. Curr. Opin. Pharmacol. 10:715–22 [Google Scholar]
  16. Chiariello M, Marinissen MJ, Gutkind JS. 16.  2000. Multiple mitogen-activated protein kinase signaling pathways connect the Cot oncoprotein to the c-jun promoter and to cellular transformation. Mol. Cell. Biol. 20:1747–58 [Google Scholar]
  17. Corcoran RB, Dias-Santagata D, Bergethon K, Iafrate AJ, Settleman J, Engelman JA. 17.  2010. BRAF gene amplification can promote acquired resistance to MEK inhibitors in cancer cells harboring the BRAF V600E mutation. Sci. Signal. 3:ra84 [Google Scholar]
  18. Johannessen CM, Boehm JS, Kim SY, Thomas SR, Wardwell L. 18.  et al. 2010. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468:968–72 [Google Scholar]
  19. Pao W, Miller VA, Politi KA, Riely GJ, Somwar R. 19.  et al. 2005. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLOS Med. 2:3e73 [Google Scholar]
  20. Anderson AC. 20.  2011. Winning the arms race by improving drug discovery against mutating targets. ACS Chem. Biol. 7:278–88 [Google Scholar]
  21. Taniguchi K, Uchida J, Nishino K, Kumagai T, Okuyama T. 21.  et al. 2011. Quantitative detection of EGFR mutations in circulating tumor DNA derived from lung adenocarcinomas. Clin. Cancer Res. 17:7808–15 [Google Scholar]
  22. Copeland RA. 22.  2010. The dynamics of drug-target interactions: drug-target residence time and its impact on efficacy and safety. Expert Opin. Drug Discov. 5:305–10 [Google Scholar]
  23. Schwartz PA, Kuzmic P, Solowiej J, Bergqvist S, Bolanos B. 23.  et al. 2013. Covalent EGFR inhibitor analysis reveals importance of reversible interactions to potency and mechanisms of drug resistance. Proc. Natl. Acad. Sci. USA. 111173–78
  24. Nacht M, Qiao LX, Sheets MP, St. Martin T, Labenski M. 24.  et al. 2013. Discovery of a potent and isoform-selective targeted covalent inhibitor of the lipid kinase PI3Kα. J. Med. Chem. 56:712–21 [Google Scholar]
  25. Liu Q, Sabnis Y, Zhao Z, Zhang T, Buhrlage SJ. 25.  et al. 2013. Developing irreversible inhibitors of the protein kinase cysteinome. Chem. Biol. 20:146–59 [Google Scholar]
  26. Zhang T, Inesta-Vaquera F, Niepel M, Zhang JM, Ficarro SB. 26.  et al. 2012. Discovery of potent and selective covalent inhibitors of JNK. Chem. Biol. 19:140–54 [Google Scholar]
  27. Kwarcinski FE, Fox CC, Steffey ME, Soellner MB. 27.  2012. Irreversible inhibitors of c-Src kinase that target a nonconserved cysteine. ACS Chem. Biol. 7:1910–17 [Google Scholar]
  28. Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM. 28.  2013. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503:548–51 [Google Scholar]
  29. Nussinov R, Tsai C-J. 29.  2014. Unraveling structural mechanisms of allosteric drug action. Trends Pharmacol. Sci. 35:256–64 [Google Scholar]
  30. Tsai C-J, Nussinov R. 30.  2014. A unified view of “how allostery works.”. PLOS Comput. Biol. 10:e1003394 [Google Scholar]
  31. Gunasekaran K, Ma BY, Nussinov R. 31.  2004. Is allostery an intrinsic property of all dynamic proteins?. Proteins Struct. Funct. Genet. 57:433–43 [Google Scholar]
  32. Tsai C-J, del Sol A, Nussinov R. 32.  2009. Protein allostery, signal transmission and dynamics: a classification scheme of allosteric mechanisms. Mol. Biosyst. 5:207–16 [Google Scholar]
  33. Csermely P, Palotai R, Nussinov R. 33.  2010. Induced fit, conformational selection and independent dynamic segments: an extended view of binding events. Trends Biochem. Sci. 35:539–46 [Google Scholar]
  34. del Sol A, Tsai C-J, Ma BY, Nussinov R. 34.  2009. The origin of allosteric functional modulation: multiple pre-existing pathways. Structure 17:1042–50 [Google Scholar]
  35. Brueschweiler S, Schanda P, Kloiber K, Brutscher B, Kontaxis G. 35.  et al. 2009. Direct observation of the dynamic process underlying allosteric signal transmission. J. Am. Chem. Soc. 131:3063–68 [Google Scholar]
  36. Cui Q, Karplus M. 36.  2008. Allostery and cooperativity revisited. Protein Sci. 17:1295–307 [Google Scholar]
  37. Kalodimos CG. 37.  2011. NMR reveals novel mechanisms of protein activity regulation. Protein Sci. 20:773–82 [Google Scholar]
  38. Leff P. 38.  1995. The two-state model of receptor activation. Trends Pharmacol. Sci. 16:89–97 [Google Scholar]
  39. Volkman BF, Lipson D, Wemmer DE, Kern D. 39.  2001. Two-state allosteric behavior in a single-domain signaling protein. Science 291:2429–33 [Google Scholar]
  40. Yu EW, Koshland DE. 40.  2001. Propagating conformational changes over long (and short) distances in proteins. Proc. Natl. Acad. Sci. USA 98:9517–20 [Google Scholar]
  41. Suel GM, Lockless SW, Wall MA, Ranganathan R. 41.  2003. Evolutionarily conserved networks of residues mediate allosteric communication in proteins. Nat. Struct. Biol. 10:59–69 [Google Scholar]
  42. Ma BY, Kumar S, Tsai C-J, Nussinov R. 42.  1999. Folding funnels and binding mechanisms. Protein Eng. 12:713–20 [Google Scholar]
  43. Tsai C-J, Kumar S, Ma BY, Nussinov R. 43.  1999. Folding funnels, binding funnels, and protein function. Protein Sci. 8:1181–90 [Google Scholar]
  44. Ma BY, Shatsky M, Wolfson HJ, Nussinov R. 44.  2002. Multiple diverse ligands binding at a single protein site: a matter of pre-existing populations. Protein Sci. 11:184–97 [Google Scholar]
  45. Boehr DD, Nussinov R, Wright PE. 45.  2009. The role of dynamic conformational ensembles in biomolecular recognition. Nat. Chem. Biol. 5:789–96 [Google Scholar]
  46. Sadowsky JD, Burlingame MA, Wolan DW, McClendon CL, Jacobson MP, Wells JA. 46.  2011. Turning a protein kinase on or off from a single allosteric site via disulfide trapping. Proc. Natl. Acad. Sci. USA 108:6056–61 [Google Scholar]
  47. Esnouf R, Ren J, Ross C, Jones Y, Stammers D, Stuart D. 47.  1995. Mechanism of inhibition of HIV-1 reverse transcriptase by non-nucleoside inhibitors. Nat. Struct. Biol. 2:303–8 [Google Scholar]
  48. Hardy JA, Wells JA. 48.  2004. Searching for new allosteric sites in enzymes. Curr. Opin. Struct. Biol. 14:706–15 [Google Scholar]
  49. Rodgers DW, Gamblin SJ, Harris BA, Ray S, Culp JS. 49.  et al. 1995. The structure of unliganded reverse transcriptase from the human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA 92:1222–26 [Google Scholar]
  50. Das K, Martinez SE, Bauman JD, Arnold E. 50.  2012. HIV-1 reverse transcriptase complex with DNA and nevirapine reveals non-nucleoside inhibition mechanism. Nat. Struct. Mol. Biol. 19:253–59 [Google Scholar]
  51. Komander D. 51.  2009. The emerging complexity of protein ubiquitination. Biochem. Soc. Trans. 37:937–53 [Google Scholar]
  52. Grabbe C, Husnjak K, Dikic I. 52.  2011. The spatial and temporal organization of ubiquitin networks. Nat. Rev. Mol. Cell. Biol. 12:295–307 [Google Scholar]
  53. Krueger KE, Srivastava S. 53.  2006. Posttranslational protein modifications: current implications for cancer detection, prevention, and therapeutics. Mol. Cell. Prot. 5:1799–810 [Google Scholar]
  54. Walter AO, Sjin RTT, Haringsma HJ, Ohashi K, Sun J. 54.  et al. 2013. Discovery of a mutant-selective covalent inhibitor of EGFR that overcomes T790M-mediated resistance in NSCLC. Cancer Discov. 3:1404–15 [Google Scholar]
  55. Singh J, Evans E, Hagel M, Labinski M, Dubrovskiy A. 55.  et al. 2012. Superiority of a novel EGFR targeted covalent inhibitor over its reversible counterpart in overcoming drug resistance. MedChemComm 3:780–83 [Google Scholar]
  56. Gushwa NN, Kang SM, Chen J, Taunton J. 56.  2012. Selective targeting of distinct active site nucleophiles by irreversible Src-family kinase inhibitors. J. Am. Chem. Soc. 134:20214–17 [Google Scholar]
  57. Domínguez JM, Fuertes A, Orozco L, del Monte-Millán M, Delgado E, Medina M. 57.  2012. Evidence for irreversible inhibition of glycogen synthase kinase-3β by tideglusib. J. Biol. Chem. 287:893–904 [Google Scholar]
  58. Singh J, Petter RC, Baillie TA, Whitty A. 58.  2011. The resurgence of covalent drugs. Nat. Rev. Drug Discov. 10:307–17 [Google Scholar]
  59. Kwak EL, Sordella R, Bell DW, Godin-Heymann N, Okimoto RA. 59.  et al. 2005. Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib. Proc. Natl. Acad. Sci. USA 102:7665–70 [Google Scholar]
  60. Carter TA, Wodicka LM, Shah NP, Velasco AM, Fabian MA. 60.  et al. 2005. Inhibition of drug-resistant mutants of ABL, KIT, and EGF receptor kinases. Proc. Natl. Acad. Sci. USA 102:11011–16 [Google Scholar]
  61. Hagel M, Niu D, St Martin T, Sheets MP, Qiao L. 61.  et al. 2011. Selective irreversible inhibition of a protease by targeting a noncatalytic cysteine. Nat. Chem. Biol. 7:22–24 [Google Scholar]
  62. Tian G, Paschetto KA, Gharandaghi F, Gordon E, Wilkins DE. 62.  et al. 2011. Mechanism of inhibition of fatty acid amide hydrolase by sulfonamide-containing benzothiazoles: long residence time derived from increased kinetic barrier and not exclusively from thermodynamic potency. Biochemistry 50:6867–78 [Google Scholar]
  63. Di Marco S, Rizzi M, Volpari C, Walsh MA, Narjes F. 63.  et al. 2000. Inhibition of the hepatitis C virus NS3/4A protease: the crystal structures of two protease-inhibitor complexes. J. Biol. Chem. 275:7152–57 [Google Scholar]
  64. Copeland RA, Williams JM, Giannaras J, Nurnberg S, Covington M. 64.  et al. 1994. Mechanism of selective inhibition of the inducible isoform of prostaglandin G/H synthase. Proc. Natl. Acad. Sci. USA 91:11202–6 [Google Scholar]
  65. Robertson JG. 65.  2005. Mechanistic basis of enzyme-targeted drugs. Biochemistry 44:5561–71 [Google Scholar]
  66. Miller RM, Paavilainen VO, Krishnan S, Serafimova IM, Taunton J. 66.  2013. Electrophilic fragment-based design of reversible covalent kinase inhibitors. J. Am. Chem. Soc. 135:5298–301 [Google Scholar]
  67. Serafimova IM, Pufall MA, Krishnan S, Duda K, Cohen MS. 67.  et al. 2012. Reversible targeting of noncatalytic cysteines with chemically tuned electrophiles. Nat. Chem. Biol. 8:471–76 [Google Scholar]
  68. Zhang JM, Yang PL, Gray NS. 68.  2009. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer 9:28–39 [Google Scholar]
  69. Belani CP. 69.  2010. The role of irreversible EGFR inhibitors in the treatment of non-small cell lung cancer: overcoming resistance to reversible EGFR inhibitors. Cancer Investig. 28:413–23 [Google Scholar]
  70. Yun CH, Mengwasser KE, Toms AV, Woo MS, Greulich H. 70.  et al. 2008. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl. Acad. Sci. USA 105:2070–75 [Google Scholar]
  71. Saldanha SA, Kaler G, Cottam HB, Abagyan R, Taylor SS. 71.  2006. Assay principle for modulators of protein–protein interactions and its application to non-ATP-competitive ligands targeting protein kinase A. Anal. Chem. 78:8265–72 [Google Scholar]
  72. Liu J, Nussinov R. 72.  2008. Allosteric effects in the marginally stable von Hippel–Lindau tumor suppressor protein and allostery-based rescue mutant design. Proc. Natl. Acad. Sci. USA 105:901–6 [Google Scholar]
  73. Liu J, Nussinov R. 73.  2009. The mechanism of ubiquitination in the cullin-RING E3 ligase machinery: conformational control of substrate orientation. PLOS Comp. Biol. 5:e1000527 [Google Scholar]
  74. Orlicky S, Tang XJ, Neduva V, Elowe N, Brown ED. 74.  et al. 2010. An allosteric inhibitor of substrate recognition by the SCFCdc4 ubiquitin ligase. Nat. Biotechnol. 28:733–37 [Google Scholar]
  75. Gold MG, Barford D, Komander D. 75.  2006. Lining the pockets of kinases and phosphatases. Curr. Opin. Struct. Biol. 16:693–701 [Google Scholar]
  76. Boggon TJ, Eck MJ. 76.  2004. Structure and regulation of Src family kinases. Oncogene 23:7918–27 [Google Scholar]
  77. Bayliss R, Sardon T, Vernos I, Conti E. 77.  2003. Structural basis of Aurora-A activation by TPX2 at the mitotic spindle. Mol. Cell 12:851–62 [Google Scholar]
  78. Jeffrey PD, Ruso AA, Polyak K, Gibbs E, Hurwitz J. 78.  et al. 1995. Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 376:313–20 [Google Scholar]
  79. Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J. 79.  2006. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125:1137–49 [Google Scholar]
  80. Buck E, Wells JA. 80.  2005. Disulfide trapping to localize small-molecule agonists and antagonists for a G protein-coupled receptor. Proc. Natl. Acad. Sci. USA 102:2719–24 [Google Scholar]
  81. Erlanson DA, Wells JA, Braisted AC. 81.  2004. Tethering: fragment-based drug discovery. Annu. Rev. Biophys. Biomol. Struct. 33:199–223 [Google Scholar]
  82. Nussinov R, Tsai C-J, Xin F, Radivojac P. 82.  2012. Allosteric post-translational modification codes. Trends Biochem. Sci. 37:447–55 [Google Scholar]
  83. Jahnke W, Rondeau J-M, Cotesta S, Marzinzik A, Pellé X. 83.  et al. 2010. Allosteric non-bisphosphonate FPPS inhibitors identified by fragment-based discovery. Nat. Chem. Biol. 6:660–66 [Google Scholar]
  84. Kramer JA, Sagartz JE, Morris DL. 84.  2007. The application of discovery toxicology and pathology towards the design of safer pharmaceutical lead candidates. Nat. Rev. Drug Discov. 6:636–49 [Google Scholar]
  85. Lasser KE, Allen PD, Woolhandler SJ, Himmelstein DU, Wolfe SN, Bor DH. 85.  2002. Timing of new black box warnings and withdrawals for prescription medications. JAMA 287:2215–20 [Google Scholar]
  86. Hanzlik RR, Fang JW, Koen YM. 86.  2009. Filling and mining the reactive metabolite target protein database. Chem. Biol. Interact. 179:38–44 [Google Scholar]
  87. Park BK, Boobis A, Clarke S, Goldring CEP, Jones D. 87.  et al. 2011. Managing the challenge of chemically reactive metabolites in drug development. Nat. Rev. Drug Discov. 10:292–306 [Google Scholar]
  88. Jaeschke H, McGill MR, Ramachandran A. 88.  2012. Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Drug Metab. Rev. 44:88–106 [Google Scholar]
  89. Stepan AF, Walker DP, Bauman J, Price DA, Baillie TA. 89.  et al. 2011. Structural alert/reactive metabolite concept as applied in medicinal chemistry to mitigate the risk of idiosyncratic drug toxicity: a perspective based on the critical examination of trends in the top 200 drugs marketed in the United States. Chem. Res. Toxicol. 24:1345–410 [Google Scholar]
  90. Wolfe S, Jin HL, Yang KY, Kim CK, McEachern E. 90.  1994. Interactive design and synthesis of a novel antibacterial agent. Can. J. Chem. 72:1051–65 [Google Scholar]
  91. Kluge AF, Petter RC. 91.  2010. Acylating drugs: redesigning natural covalent inhibitors. Curr. Opin. Chem. Biol. 14:421–27 [Google Scholar]
  92. Obach RS, Kalomtkar AS, Soglia JR, Zhao SX. 92.  2008. Can in vitro metabolism-dependent covalent binding data in liver microsomes distinguish hepatotoxic from nonhepatotoxic drugs? An analysis of 18 drugs with consideration of intrinsic clearance and daily dose. Chem. Res. Toxicol. 21:1814–22 [Google Scholar]
  93. Lammert C, Einarsson S, Saha C, Niklasson A, Bjornsson E, Chalasani N. 93.  2008. Relationship between daily dose of oral medications and idiosyncratic drug-induced liver injury: search for signals. Hepatology 47:2003–9 [Google Scholar]
  94. Solca F, Dahl G, Zoephel A, Bader G, Sanderson M. 94.  et al. 2012. Target binding properties and cellular activity of afatinib (BIBW 2992), an irreversible ErbB family blocker. J. Pharmacol. Exp. Ther. 343:342–50 [Google Scholar]
  95. Li D, Ambrogio L, Shimamura T, Kubo S, Takahashi M. 95.  et al. 2008. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 27:4702–11 [Google Scholar]
  96. Naven RT, Kantesaria S, Nadanaciva S, Schroeter T, Leach KL. 96.  2013. High throughput glutathione and Nrf2 assays to assess chemical and biological reactivity of cysteine-reactive compounds. Toxicol. Res. 2:235–44 [Google Scholar]
  97. Wu WI, Voegtli WC, Sturgis HL, Dizon FP, Vigers GPA, Brandhuber BJ. 97.  2010. Crystal structure of human AKT1 with an allosteric inhibitor reveals a new mode of kinase inhibition. PLOS ONE 5:e12913 [Google Scholar]
  98. Pargellis C, Tong L, Churchill L, Cirillo PF, Gilmore T. 98.  et al. 2002. Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site. Nat. Struct. Biol. 9:268–72 [Google Scholar]
  99. Morrison JF, Walsh CT. 99.  1988. The behavior and significance of slow-binding enzyme inhibitors. Adv. Enzymol. Relat. Areas Mol. Biol. 61:201–301 [Google Scholar]
  100. Krippendorff B-F, Neuhaus R, Lienau P, Reichel A, Huisinga W. 100.  2009. Mechanism-based inhibition: deriving KI and kinact directly from time-dependent IC50 values. J. Biomol. Screen. 14:913–23 [Google Scholar]
  101. Grant BJ, Lukman S, Hocker HJ, Sayyah J, Brown JH. 101.  et al. 2011. Novel allosteric sites on Ras for lead generation. PLOS ONE 6:e25711 [Google Scholar]
  102. Gribbon P, Sewing A. 102.  2005. High-throughput drug discovery: what can we expect from HTS?. Drug Discov. Today 10:17–22 [Google Scholar]
  103. Erlanson DA, McDowell RS, O'Brien T. 103.  2004. Fragment-based drug discovery. J. Med. Chem. 47:3463–82 [Google Scholar]
  104. Leproult E, Barluenga S, Moras D, Wurtz JM, Winssinger N. 104.  2011. Cysteine mapping in conformationally distinct kinase nucleotide binding sites: application to the design of selective covalent inhibitors. J. Med. Chem. 54:1347–55 [Google Scholar]
  105. Potashman MH, Duggan ME. 105.  2009. Covalent modifiers: an orthogonal approach to drug design. J. Med. Chem. 52:1231–46 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error