Constellation pharmacology is a cell-based high-content phenotypic-screening platform that utilizes subtype-selective pharmacological agents to elucidate the cell-specific combinations (constellations) of key signaling proteins that define specific cell types. Heterogeneous populations of native cells, in which the different individual cell types have been identified and characterized, are the foundation for this screening platform. Constellation pharmacology is useful for screening small molecules or for deconvoluting complex mixtures of biologically active natural products. This platform has been used to purify natural products and discover their molecular mechanisms. In the ongoing development of constellation pharmacology, there is a positive feedback loop between the pharmacological characterization of cell types and screening for new drug candidates. As constellation pharmacology is used to discover compounds with novel targeting-selectivity profiles, those new compounds then further help to elucidate the constellations of specific cell types, thereby increasing the content of this high-content platform.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Kell DB. 1.  2013. Finding novel pharmaceuticals in the systems biology era using multiple effective drug targets, phenotypic screening and knowledge of transporters: where drug discovery went wrong and how to fix it. FEBS J. 280:5957–80 [Google Scholar]
  2. Lee J, Bogyo M. 2.  2013. Target deconvolution techniques in modern phenotypic profiling. Curr. Opin. Chem. Biol. 17:118–26 [Google Scholar]
  3. Swinney DC, Anthony J. 3.  2011. How were new medicines discovered?. Nat. Rev. Drug Discov. 10:507–19 [Google Scholar]
  4. Teichert RW, Olivera BM. 4.  2010. Natural products and ion channel pharmacology. Future Med. Chem. 2:731–44 [Google Scholar]
  5. Paterson I, Anderson EA. 5.  2005. The renaissance of natural products as drug candidates. Science 310:451–53 [Google Scholar]
  6. Olivera BM. 6.  1997. E.E. Just Lecture, 1996: Conus venom peptides, receptor and ion channel targets, and drug design: 50 million years of neuropharmacology. Mol. Biol. Cell 8:2101–9 [Google Scholar]
  7. Terlau H, Shon K, Grilley M, Stocker M, Stühmer W, Olivera BM. 7.  1996. Strategy for rapid immobilization of prey by a fish-hunting cone snail. Nature 381:148–51 [Google Scholar]
  8. Smith NJ, Hone AJ, Memon T, Bossi S, Smith TE. 8.  et al. 2013. Comparative functional expression of nAChR subtypes in rodent DRG neurons. Front. Cell. Neurosci. 7:225 [Google Scholar]
  9. Teichert RW, Memon T, Aman JW, Olivera BM. 9.  2014. Using constellation pharmacology to define comprehensively a somatosensory neuronal subclass. Proc. Natl. Acad. Sci. USA 111:2319–24 [Google Scholar]
  10. Teichert RW, Raghuraman S, Memon T, Cox JL, Foulkes T. 10.  et al. 2012. Characterization of two neuronal subclasses through constellation pharmacology. Proc. Natl. Acad. Sci. USA 109:12758–63 [Google Scholar]
  11. Teichert RW, Smith NJ, Raghuraman S, Yoshikami D, Light AR, Olivera BM. 11.  2012. Functional profiling of neurons through cellular neuropharmacology. Proc. Natl. Acad. Sci. USA 109:1388–95 [Google Scholar]
  12. Arts EJ, Hazuda DJ. 12.  2012. HIV-1 antiretroviral drug therapy. Cold Spring Harb. Perspect. Med. 2:a007161 [Google Scholar]
  13. Margolis DM, Hazuda DJ. 13.  2013. Combined approaches for HIV cure. Curr. Opin. HIV AIDS 8:230–5 [Google Scholar]
  14. Rush AM, Dib-Hajj SD, Liu S, Cummins TR, Black JA, Waxman SG. 14.  2006. A single sodium channel mutation produces hyper- or hypoexcitability in different types of neurons. Proc. Natl. Acad. Sci. USA 103:8245–50 [Google Scholar]
  15. Waxman SG. 15.  2012. Sodium channels, the electrogenisome and the electrogenistat: lessons and questions from the clinic. J. Physiol. 590:2601–12 [Google Scholar]
  16. Harrold JM, Ramanathan M, Mager DE. 16.  2013. Network-based approaches in drug discovery and early development. Clin. Pharmacol. Ther. 94:651–58 [Google Scholar]
  17. Hopkins AL. 17.  2008. Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol. 4:682–90 [Google Scholar]
  18. Ooi SL, Pan X, Peyser BD, Ye P, Meluh PB. 18.  et al. 2006. Global synthetic-lethality analysis and yeast functional profiling. Trends Genet. 22:56–63 [Google Scholar]
  19. Besnard J, Ruda GF, Setola V, Abecassis K, Rodriguiz RM. 19.  et al. 2012. Automated design of ligands to polypharmacological profiles. Nature 492:215–20 [Google Scholar]
  20. Medina-Franco JL, Giulianotti MA, Welmaker GS, Houghten RA. 20.  2013. Shifting from the single to the multitarget paradigm in drug discovery. Drug Discov. Today 18:495–501 [Google Scholar]
  21. Hjerling-Leffler J, AlQatari M, Ernfors P, Koltzenburg M. 21.  2007. Emergence of functional sensory subtypes as defined by transient receptor potential channel expression. J. Neurosci. 27:2435–43 [Google Scholar]
  22. Marmigère F, Ernfors P. 22.  2007. Specification and connectivity of neuronal subtypes in the sensory lineage. Nat. Rev. Neurosci. 8:114–27 [Google Scholar]
  23. Basbaum AI, Bautista DM, Scherrer G, Julius D. 23.  2009. Cellular and molecular mechanisms of pain. Cell 139:267–84 [Google Scholar]
  24. Belmonte C, Viana F. 24.  2008. Molecular and cellular limits to somatosensory specificity. Mol. Pain 4:14 [Google Scholar]
  25. Schepers RJ, Ringkamp M. 25.  2010. Thermoreceptors and thermosensitive afferents. Neurosci. Biobehav. Rev. 34:177–84 [Google Scholar]
  26. Madrid R, de la Peña E, Donovan-Rodriguez T, Belmonte C, Viana F. 26.  2009. Variable threshold of trigeminal cold-thermosensitive neurons is determined by a balance between TRPM8 and Kv1 potassium channels. J. Neurosci. 29:3120–31 [Google Scholar]
  27. Zimmermann K, Hein A, Hager U, Kaczmarek JS, Turnquist BP. 27.  et al. 2009. Phenotyping sensory nerve endings in vitro in the mouse. Nat. Protoc. 4:174–96 [Google Scholar]
  28. Bernard A, Sorensen SA, Lein ES. 28.  2009. Shifting the paradigm: new approaches for characterizing and classifying neurons. Curr. Opin. Neurobiol. 19:530–36 [Google Scholar]
  29. Wichterle H, Gifford D, Mazzoni E. 29.  2013. Mapping neuronal diversity one cell at a time. Science 341:726–27 [Google Scholar]
  30. Ruscheweyh R, Forsthuber L, Schoffnegger D, Sandkuhler J. 30.  2007. Modification of classical neurochemical markers in identified primary afferent neurons with Aβ-, Aδ-, and C-fibers after chronic constriction injury in mice. J. Comp. Neurol. 502:325–36 [Google Scholar]
  31. Fishell G, Heintz N. 31.  2013. The neuron identity problem: form meets function. Neuron 80:602–12 [Google Scholar]
  32. Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI. 32.  et al. 2007. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448:204–8 [Google Scholar]
  33. Liu Q, Tang Z, Surdenikova L, Kim S, Patel KN. 33.  et al. 2009. Sensory neuron-specific GPCR Mrgprs are itch receptors mediating chloroquine-induced pruritus. Cell 139:1353–65 [Google Scholar]
  34. Roberson DP, Gudes S, Sprague JM, Patoski HA, Robson VK. 34.  et al. 2013. Activity-dependent silencing reveals functionally distinct itch-generating sensory neurons. Nat. Neurosci. 16:910–18 [Google Scholar]
  35. Caterina MJ, Julius D. 35.  2001. The vanilloid receptor: a molecular gateway to the pain pathway. Annu. Rev. Neurosci. 24:487–517 [Google Scholar]
  36. Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J. 36.  et al. 2000. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288:306–13 [Google Scholar]
  37. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. 37.  1997. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–24 [Google Scholar]
  38. Kang K, Pulver SR, Panzano VC, Chang EC, Griffith LC. 38.  et al. 2010. Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception. Nature 464:597–600 [Google Scholar]
  39. Giniatullin R, Nistri A. 39.  2013. Desensitization properties of P2X3 receptors shaping pain signaling. Front. Cell. Neurosci. 7:245 [Google Scholar]
  40. Fabbretti E. 40.  2013. ATP P2X3 receptors and neuronal sensitization. Front. Cell. Neurosci. 7:236 [Google Scholar]
  41. Hensel H, Zotterman Y. 41.  1951. The effect of menthol on the thermoreceptors. Acta Physiol. Scand. 24:27–34 [Google Scholar]
  42. Rainville P, Chen CC, Bushnell MC. 42.  1999. Psychophysical study of noxious and innocuous cold discrimination in monkey. Exp. Brain Res. 125:28–34 [Google Scholar]
  43. Raghuraman S, Garcia AJ, Anderson TM, Twede VD, Curtice KJ. 43.  et al. 2014. Defining modulatory inputs into CNS neuronal subclasses through functional pharmacological profiling. Proc. Natl. Acad. Sci. USA 11:6449–54 [Google Scholar]
  44. Imperial J, Cabang A, Song J, Raghuraman S, Gajewiak J. 44.  et al. 2014. A family of excitatory peptide toxins from venomous crassispirine snails: using Constellation Pharmacology to assess bioactivity. Toxicon 89:45–54 [Google Scholar]
  45. Newman DJ, Cragg GM. 45.  2012. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 75:311–35 [Google Scholar]
  46. Peraud O, Biggs JS, Hughen RW, Light AR, Concepcion GP. 46.  et al. 2009. Microhabitats within venomous cone snails contain diverse actinobacteria. Appl. Environ. Microbiol. 75:6820–26 [Google Scholar]
  47. Lin Z, Antemano RR, Hughen RW, Tianero MD, Peraud O. 47.  et al. 2010. Pulicatins A–E, neuroactive thiazoline metabolites from cone snail-associated bacteria. J. Nat. Prod. 73:1922–26 [Google Scholar]
  48. Lin Z, Reilly CA, Antemano R, Hughen RW, Marett L. 48.  et al. 2011. Nobilamides A-H, long-acting transient receptor potential vanilloid-1 (TRPV1) antagonists from mollusk-associated bacteria. J. Med. Chem. 54:3746–55 [Google Scholar]
  49. Lin Z, Marett L, Hughen RW, Flores M, Forteza I. 49.  et al. 2013. Neuroactive diol and acyloin metabolites from cone snail-associated bacteria. Bioorg. Med. Chem. Lett. 23:4867–69 [Google Scholar]
  50. Lin Z, Torres JP, Ammon MA, Marett L, Teichert RW. 50.  et al. 2013. A bacterial source for mollusk pyrone polyketides. Chem. Biol. 20:73–81 [Google Scholar]
  51. Tashiro E, Imoto M. 51.  2012. Target identification of bioactive compounds. Bioorg. Med. Chem. 20:1910–21 [Google Scholar]
  52. Li L, Rutlin M, Abraira VE, Cassidy C, Kus L. 52.  et al. 2011. The functional organization of cutaneous low-threshold mechanosensory neurons. Cell 147:1615–27 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error