Epilepsy is a prevalent neurological disorder afflicting nearly 50 million people worldwide. The disorder is characterized clinically by recurrent spontaneous seizures attributed to abnormal synchrony of brain neurons. Despite advances in the treatment of epilepsy, nearly one-third of patients are resistant to current therapies, and the underlying mechanisms whereby a healthy brain becomes epileptic remain unresolved. Therefore, researchers have a major impetus to identify and exploit new drug targets. Here we distinguish between epileptic effectors, or proteins that set the seizure threshold, and epileptogenic mediators, which control the expression or functional state of the effector proteins. Under this framework, we then discuss attempts to regulate the mediators to control epilepsy. Further insights into the complex processes that render the brain susceptible to seizures and the identification of novel mediators of these processes will lead the way to the development of drugs to modify disease outcome and, potentially, to prevent epileptogenesis.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Wilson JV, Reynolds EH. 1.  1990. Texts and documents: translation and analysis of a cuneiform text forming part of a Babylonian treatise on epilepsy. Med. Hist. 34:185–98 [Google Scholar]
  2. Todman D. 2.  2008. Epilepsy in the Graeco-Roman world: Hippocratic medicine and Asklepian temple medicine compared. J. Hist. Neurosci. 17:435–41 [Google Scholar]
  3. Temkin NR. 3.  2001. Antiepileptogenesis and seizure prevention trials with antiepileptic drugs: meta-analysis of controlled trials. Epilepsia 42:515–24 [Google Scholar]
  4. Loscher W, Brandt C. 4.  2010. Prevention or modification of epileptogenesis after brain insults: experimental approaches and translational research. Pharmacol. Rev. 62:668–700 [Google Scholar]
  5. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y. 5.  et al. 2005. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8:752–58 [Google Scholar]
  6. Nimmerjahn A, Kirchhoff F, Helmchen F. 6.  2005. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–18 [Google Scholar]
  7. Ransohoff RM, Cardona AE. 7.  2010. The myeloid cells of the central nervous system parenchyma. Nature 468:253–62 [Google Scholar]
  8. Choi J, Nordli DR Jr, Alden TD, DiPatri A Jr, Laux L. 8.  et al. 2009. Cellular injury and neuroinflammation in children with chronic intractable epilepsy. J. Neuroinflamm. 6:38 [Google Scholar]
  9. Vezzani A, Granata T. 9.  2005. Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia 46:1724–43 [Google Scholar]
  10. Jorgensen MB, Finsen BR, Jensen MB, Castellano B, Diemer NH, Zimmer J. 10.  1993. Microglial and astroglial reactions to ischemic and kainic acid-induced lesions of the adult rat hippocampus. Exp. Neurol. 120:70–88 [Google Scholar]
  11. Serrano GE, Lelutiu N, Rojas A, Cochi S, Shaw R. 11.  et al. 2011. Ablation of cyclooxygenase-2 in forebrain neurons is neuroprotective and dampens brain inflammation after status epilepticus. J. Neurosci. 31:14850–60 [Google Scholar]
  12. Borges K, Gearing M, McDermott DL, Smith AB, Almonte AG. 12.  et al. 2003. Neuronal and glial pathological changes during epileptogenesis in the mouse pilocarpine model. Exp. Neurol. 182:21–34 [Google Scholar]
  13. Jankowsky JL, Patterson PH. 13.  2001. The role of cytokines and growth factors in seizures and their sequelae. Prog. Neurobiol. 63:125–49 [Google Scholar]
  14. Balosso S, Maroso M, Sanchez-Alavez M, Ravizza T, Frasca A. 14.  et al. 2008. A novel non-transcriptional pathway mediates the proconvulsive effects of interleukin-1β. Brain 131:3256–65 [Google Scholar]
  15. Vezzani A, Moneta D, Conti M, Richichi C, Ravizza T. 15.  et al. 2000. Powerful anticonvulsant action of IL-1 receptor antagonist on intracerebral injection and astrocytic overexpression in mice. Natl. Acad. Sci. USA 97:11534–39 [Google Scholar]
  16. Xiong ZQ, Qian W, Suzuki K, McNamara JO. 16.  2003. Formation of complement membrane attack complex in mammalian cerebral cortex evokes seizures and neurodegeneration. J. Neurosci. 23:955–60 [Google Scholar]
  17. Oliveira MS, Furian AF, Royes LF, Fighera MR, Fiorenza NG. 17.  et al. 2008. Cyclooxygenase-2/PGE2 pathway facilitates pentylenetetrazol-induced seizures. Epilepsy Res. 79:14–21 [Google Scholar]
  18. Galic MA, Riazi K, Pittman QJ. 18.  2012. Cytokines and brain excitability. Front. Neuroendocrinol. 33:116–25 [Google Scholar]
  19. Obermeier B, Daneman R, Ransohoff RM. 19.  2013. Development, maintenance and disruption of the blood-brain barrier. Nat. Med. 19:1584–96 [Google Scholar]
  20. Librizzi L, Noe F, Vezzani A, de Curtis M, Ravizza T. 20.  2012. Seizure-induced brain-borne inflammation sustains seizure recurrence and blood-brain barrier damage. Ann. Neurol. 72:82–90 [Google Scholar]
  21. Morin-Brureau M, Lebrun A, Rousset MC, Fagni L, Bockaert J. 21.  et al. 2011. Epileptiform activity induces vascular remodeling and zonula occludens 1 downregulation in organotypic hippocampal cultures: role of VEGF signaling pathways. J. Neurosci. 31:10677–88 [Google Scholar]
  22. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR. 22.  et al. 2012. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:691–705 [Google Scholar]
  23. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS. 23.  et al. 2007. The classical complement cascade mediates CNS synapse elimination. Cell 131:1164–78 [Google Scholar]
  24. Zhan Y, Paolicelli RC, Sforazzini F, Weinhard L, Bolasco G. 24.  et al. 2014. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat. Neurosci. 17:400–6 [Google Scholar]
  25. Trapp BD, Wujek JR, Criste GA, Jalabi W, Yin X. 25.  et al. 2007. Evidence for synaptic stripping by cortical microglia. Glia 55:360–68 [Google Scholar]
  26. Stephan AH, Barres BA, Stevens B. 26.  2012. The complement system: an unexpected role in synaptic pruning during development and disease. Annu. Rev. Neurosci. 35:369–89 [Google Scholar]
  27. Wetherington J, Serrano G, Dingledine R. 27.  2008. Astrocytes in the epileptic brain. Neuron 58:168–78 [Google Scholar]
  28. Amiry-Moghaddam M, Ottersen OP. 28.  2003. The molecular basis of water transport in the brain. Nat. Rev. Neurosci. 4:991–1001 [Google Scholar]
  29. Manley GT, Fujimura M, Ma T, Noshita N, Filiz F. 29.  et al. 2000. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat. Med. 6:159–63 [Google Scholar]
  30. Djukic B, Casper KB, Philpot BD, Chin LS, McCarthy KD. 30.  2007. Conditional knock-out of Kir4.1 leads to glial membrane depolarization, inhibition of potassium and glutamate uptake, and enhanced short-term synaptic potentiation. J. Neurosci. 27:11354–65 [Google Scholar]
  31. Kucheryavykh YV, Kucheryavykh LY, Nichols CG, Maldonado HM, Baksi K. 31.  et al. 2007. Downregulation of Kir4.1 inward rectifying potassium channel subunits by RNAi impairs potassium transfer and glutamate uptake by cultured cortical astrocytes. Glia 55:274–81 [Google Scholar]
  32. Lehre KP, Levy LM, Ottersen OP, Storm-Mathisen J, Danbolt NC. 32.  1995. Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J. Neurosci. 15:1835–53 [Google Scholar]
  33. Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L. 33.  et al. 1994. Localization of neuronal and glial glutamate transporters. Neuron 13:713–25 [Google Scholar]
  34. Danbolt NC. 34.  2001. Glutamate uptake. Prog. Neurobiol. 65:1–105 [Google Scholar]
  35. Proper EA, Hoogland G, Kappen SM, Jansen GH, Rensen MG. 35.  et al. 2002. Distribution of glutamate transporters in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy. Brain 125:32–43 [Google Scholar]
  36. Eid T, Thomas MJ, Spencer DD, Rundén-Pran E, Lai JC. 36.  et al. 2004. Loss of glutamine synthetase in the human epileptogenic hippocampus: possible mechanism for raised extracellular glutamate in mesial temporal lobe epilepsy. Lancet 363:28–37 [Google Scholar]
  37. Tessler S, Danbolt NC, Faull RL, Storm-Mathisen J, Emson PC. 37.  1999. Expression of the glutamate transporters in human temporal lobe epilepsy. Neuroscience 88:1083–91 [Google Scholar]
  38. Scharfman HE. 38.  2002. Epilepsy as an example of neural plasticity. Neuroscientist 8:154–73 [Google Scholar]
  39. Mathern GW, Babb TL, Micevych PE, Blanco CE, Pretorius JK. 39.  1997. Granule cell mRNA levels for BDNF, NGF, and NT-3 correlate with neuron losses or supragranular mossy fiber sprouting in the chronically damaged and epileptic human hippocampus. Mol. Chem. Neuropathol. 30:53–76 [Google Scholar]
  40. Boulle F, Kenis G, Cazorla M, Hamon M, Steinbusch HW. 40.  et al. 2012. TrkB inhibition as a therapeutic target for CNS-related disorders. Prog. Neurobiol. 98:197–206 [Google Scholar]
  41. Paradiso B, Marconi P, Zucchini S, Berto E, Binaschi A. 41.  et al. 2009. Localized delivery of fibroblast growth factor–2 and brain-derived neurotrophic factor reduces spontaneous seizures in an epilepsy model. Proc. Natl. Acad. Sci. USA 106:7191–96 [Google Scholar]
  42. Liu G, Gu B, He XP, Joshi RB, Wackerle HD. 42.  et al. 2013. Transient inhibition of TrkB kinase after status epilepticus prevents development of temporal lobe epilepsy. Neuron 79:31–38 [Google Scholar]
  43. Brooks-Kayal AR, Shumate MD, Jin H, Rikhter TY, Coulter DA. 43.  1998. Selective changes in single cell GABAA receptor subunit expression and function in temporal lobe epilepsy. Nat. Med. 4:1166–72 [Google Scholar]
  44. Peng Z, Huang CS, Stell BM, Mody I, Houser CR. 44.  2004. Altered expression of the δ subunit of the GABAA receptor in a mouse model of temporal lobe epilepsy. J. Neurosci. 24:8629–39 [Google Scholar]
  45. Zhang N, Wei W, Mody I, Houser CR. 45.  2007. Altered localization of GABAA receptor subunits on dentate granule cell dendrites influences tonic and phasic inhibition in a mouse model of epilepsy. J. Neurosci. 27:7520–31 [Google Scholar]
  46. Tauck DL, Nadler JV. 46.  1985. Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats. J. Neurosci. 5:1016–22 [Google Scholar]
  47. Cavazos JE, Golarai G, Sutula TP. 47.  1991. Mossy fiber synaptic reorganization induced by kindling: time course of development, progression, and permanence. J. Neurosci. 11:2795–803 [Google Scholar]
  48. Nadler JV, Perry BW, Cotman CW. 48.  1980. Selective reinnervation of hippocampal area CA1 and the fascia dentata after destruction of CA3-CA4 afferents with kainic acid. Brain Res. 182:1–9 [Google Scholar]
  49. Babb TL, Kupfer WR, Pretorius JK, Crandall PH, Levesque MF. 49.  1991. Synaptic reorganization by mossy fibers in human epileptic fascia dentata. Neuroscience 42:351–63 [Google Scholar]
  50. Houser CR, Miyashiro JE, Swartz BE, Walsh GO, Rich JR, Delgado-Escueta AV. 50.  1990. Altered patterns of dynorphin immunoreactivity suggest mossy fiber reorganization in human hippocampal epilepsy. J. Neurosci. 10:267–82 [Google Scholar]
  51. Sutula T, Cascino G, Cavazos J, Parada I, Ramirez L. 51.  1989. Mossy fiber synaptic reorganization in the epileptic human temporal lobe. Ann. Neurol. 26:321–30 [Google Scholar]
  52. Kotti T, Riekkinen PJ Sr, Miettinen R. 52.  1997. Characterization of target cells for aberrant mossy fiber collaterals in the dentate gyrus of epileptic rat. Exp. Neurol. 146:323–30 [Google Scholar]
  53. Okazaki MM, Evenson DA, Nadler JV. 53.  1995. Hippocampal mossy fiber sprouting and synapse formation after status epilepticus in rats: visualization after retrograde transport of biocytin. J. Comp. Neurol. 352:515–34 [Google Scholar]
  54. Wenzel HJ, Woolley CS, Robbins CA, Schwartzkroin PA. 54.  2000. Kainic acid-induced mossy fiber sprouting and synapse formation in the dentate gyrus of rats. Hippocampus 10:244–60 [Google Scholar]
  55. Zhang N, Houser CR. 55.  1999. Ultrastructural localization of dynorphin in the dentate gyrus in human temporal lobe epilepsy: a study of reorganized mossy fiber synapses. J. Comp. Neurol. 405:472–90 [Google Scholar]
  56. Okazaki MM, Molnar P, Nadler JV. 56.  1999. Recurrent mossy fiber pathway in rat dentate gyrus: synaptic currents evoked in presence and absence of seizure-induced growth. J. Neurophysiol. 81:1645–60 [Google Scholar]
  57. Wuarin JP, Dudek FE. 57.  1996. Electrographic seizures and new recurrent excitatory circuits in the dentate gyrus of hippocampal slices from kainate-treated epileptic rats. J. Neurosci. 16:4438–48 [Google Scholar]
  58. Sloviter RS. 58.  1992. Possible functional consequences of synaptic reorganization in the dentate gyrus of kainate-treated rats. Neurosci. Lett. 137:91–96 [Google Scholar]
  59. Mathern GW, Bertram EH III, Babb TL, Pretorius JK, Kuhlman PA. 59.  et al. 1997. In contrast to kindled seizures, the frequency of spontaneous epilepsy in the limbic status model correlates with greater aberrant fascia dentata excitatory and inhibitory axon sprouting, and increased staining for N-methyl-d-aspartate, AMPA and GABAA receptors. Neuroscience 77:1003–19 [Google Scholar]
  60. Mathern GW, Cifuentes F, Leite JP, Pretorius JK, Babb TL. 60.  1993. Hippocampal EEG excitability and chronic spontaneous seizures are associated with aberrant synaptic reorganization in the rat intrahippocampal kainate model. Electroencephalogr. Clin. Neurophysiol. 87:326–39 [Google Scholar]
  61. Lemos T, Cavalheiro EA. 61.  1995. Suppression of pilocarpine-induced status epilepticus and the late development of epilepsy in rats. Exp. Brain Res. 102:423–28 [Google Scholar]
  62. Masukawa LM, Uruno K, Sperling M, O'Connor MJ, Burdette LJ. 62.  1992. The functional relationship between antidromically evoked field responses of the dentate gyrus and mossy fiber reorganization in temporal lobe epileptic patients. Brain Res. 579:119–27 [Google Scholar]
  63. Heng K, Haney MM, Buckmaster PS. 63.  2013. High-dose rapamycin blocks mossy fiber sprouting but not seizures in a mouse model of temporal lobe epilepsy. Epilepsia 54:1535–41 [Google Scholar]
  64. Zlokovic BV. 64.  2008. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57:178–201 [Google Scholar]
  65. Fieschi C, Lenzi GL, Zanette E, Orzi F, Passero S. 65.  1980. Effects on EEG of the osmotic opening of the blood-brain barrier in rats. Life Sci. 27:239–43 [Google Scholar]
  66. Marchi N, Angelov L, Masaryk T, Fazio V, Granata T. 66.  et al. 2007. Seizure-promoting effect of blood-brain barrier disruption. Epilepsia 48:732–42 [Google Scholar]
  67. Ivens S, Kaufer D, Flores LP, Bechmann I, Zumsteg D. 67.  et al. 2007. TGF-β receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain 130:535–47 [Google Scholar]
  68. Cacheaux LP, Ivens S, David Y, Lakhter AJ, Bar-Klein G. 68.  et al. 2009. Transcriptome profiling reveals TGF-β signaling involvement in epileptogenesis. J. Neurosci. 29:8927–35 [Google Scholar]
  69. Fabene PF, Navarro Mora G, Martinello M, Rossi B, Merigo F. 69.  et al. 2008. A role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nat. Med. 14:1377–83 [Google Scholar]
  70. Agarwal S, Hartz AM, Elmquist WF, Bauer B. 70.  2011. Breast cancer resistance protein and P-glycoprotein in brain cancer: two gatekeepers team up. Curr. Pharm. Des. 17:2793–802 [Google Scholar]
  71. Loscher W, Potschka H. 71.  2005. Drug resistance in brain diseases and the role of drug efflux transporters. Nat. Rev. Neurosci. 6:591–602 [Google Scholar]
  72. Avemary J, Salvamoser JD, Peraud A, Rémi J, Noachtar S. 72.  et al. 2013. Dynamic regulation of P-glycoprotein in human brain capillaries. Mol. Pharm. 10:3333–41 [Google Scholar]
  73. van Vliet EA, Zibell G, Pekcec A, Schlichtiger J, Edelbroek PM. 73.  et al. 2010. COX-2 inhibition controls P-glycoprotein expression and promotes brain delivery of phenytoin in chronic epileptic rats. Neuropharmacology 58:404–12 [Google Scholar]
  74. Ravizza T, Gagliardi B, Noe F, Boer K, Aronica E, Vezzani A. 74.  2008. Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy. Neurobiol. Dis. 29:142–60 [Google Scholar]
  75. Jiang J, Quan Y, Ganesh T, Pouliot WA, Dudek FE, Dingledine R. 75.  2013. Inhibition of the prostaglandin receptor EP2 following status epilepticus reduces delayed mortality and brain inflammation. Proc. Natl. Acad. Sci. USA 110:3591–96 [Google Scholar]
  76. Sayyah M, Javad-Pour M, Ghazi-Khansari M. 76.  2003. The bacterial endotoxin lipopolysaccharide enhances seizure susceptibility in mice: involvement of proinflammatory factors: nitric oxide and prostaglandins. Neuroscience 122:1073–80 [Google Scholar]
  77. Dinarello CA. 77.  1998. Interleukin-1, interleukin-1 receptors and interleukin-1 receptor antagonist. Int. Rev. Immunol. 16:457–99 [Google Scholar]
  78. Ravizza T, Vezzani A. 78.  2006. Status epilepticus induces time-dependent neuronal and astrocytic expression of interleukin-1 receptor type I in the rat limbic system. Neuroscience 137:301–8 [Google Scholar]
  79. Vezzani A, French J, Bartfai T, Baram TZ. 79.  2011. The role of inflammation in epilepsy. Nat. Rev. Neurol. 7:31–40 [Google Scholar]
  80. Dubé C, Vezzani A, Behrens M, Bartfai T, Baram TZ. 80.  2005. Interleukin-1β contributes to the generation of experimental febrile seizures. Ann. Neurol. 57:152–55 [Google Scholar]
  81. Dubé CM, Ravizza T, Hamamura M, Zha Q, Keebaugh A. 81.  et al. 2010. Epileptogenesis provoked by prolonged experimental febrile seizures: mechanisms and biomarkers. J. Neurosci. 30:7484–94 [Google Scholar]
  82. De Simoni MG, Perego C, Ravizza T, Moneta D, Conti M. 82.  et al. 2000. Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus. Eur. J. Neurosci. 12:2623–33 [Google Scholar]
  83. Maroso M, Balosso S, Ravizza T, Iori V, Wright CI. 83.  et al. 2011. Interleukin-1β biosynthesis inhibition reduces acute seizures and drug resistant chronic epileptic activity in mice. Neurotherapeutics 8:304–15 [Google Scholar]
  84. Jung KH, Chu K, Lee ST, Kim J, Sinn DI. 84.  et al. 2006. Cyclooxygenase-2 inhibitor, celecoxib, inhibits the altered hippocampal neurogenesis with attenuation of spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Neurobiol. Dis. 23:237–46 [Google Scholar]
  85. Polascheck N, Bankstahl M, Loscher W. 85.  2010. The COX-2 inhibitor parecoxib is neuroprotective but not antiepileptogenic in the pilocarpine model of temporal lobe epilepsy. Exp. Neurol. 224:219–33 [Google Scholar]
  86. McCullough L, Wu L, Haughey N, Liang X, Hand T. 86.  et al. 2004. Neuroprotective function of the PGE2 EP2 receptor in cerebral ischemia. J. Neurosci. 24:257–68 [Google Scholar]
  87. Jiang J, Ganesh T, Du Y, Thepchatri P, Rojas A. 87.  et al. 2010. Neuroprotection by selective allosteric potentiators of the EP2 prostaglandin receptor. Proc. Natl. Acad. Sci. USA 107:2307–12 [Google Scholar]
  88. Savonenko A, Munoz P, Melnikova T, Wang Q, Liang X. 88.  et al. 2009. Impaired cognition, sensorimotor gating, and hippocampal long-term depression in mice lacking the prostaglandin E2 EP2 receptor. Exp. Neurol. 217:63–73 [Google Scholar]
  89. Yang H, Zhang J, Breyer RM, Chen C. 89.  2009. Altered hippocampal long-term synaptic plasticity in mice deficient in the PGE2 EP2 receptor. J. Neurochem. 108:295–304 [Google Scholar]
  90. Liang X, Wang Q, Hand T, Wu L, Breyer RM. 90.  et al. 2005. Deletion of the prostaglandin E2 EP2 receptor reduces oxidative damage and amyloid burden in a model of Alzheimer's disease. J. Neurosci. 25:10180–87 [Google Scholar]
  91. Liang X, Wang Q, Shi J, Lokteva L, Breyer RM. 91.  et al. 2008. The prostaglandin E2 EP2 receptor accelerates disease progression and inflammation in a model of amyotrophic lateral sclerosis. Ann. Neurol. 64:304–14 [Google Scholar]
  92. Quan Y, Jiang J, Dingledine R. 92.  2013. EP2 receptor signaling pathways regulate classical activation of microglia. J. Biol. Chem. 288:9293–302 [Google Scholar]
  93. Jin J, Shie FS, Liu J, Wang Y, Davis J. 93.  et al. 2007. Prostaglandin E2 receptor subtype 2 (EP2) regulates microglial activation and associated neurotoxicity induced by aggregated α-synuclein. J. Neuroinflamm. 4:2 [Google Scholar]
  94. Jiang J, Ganesh T, Du Y, Quan Y, Serrano G. 94.  et al. 2012. Small molecule antagonist reveals seizure-induced mediation of neuronal injury by prostaglandin E2 receptor subtype EP2. Proc. Natl. Acad. Sci. USA 109:3149–54 [Google Scholar]
  95. Boison D. 95.  2012. Adenosine dysfunction in epilepsy. Glia 60:1234–43 [Google Scholar]
  96. Lovatt D, Xu Q, Liu W, Takano T, Smith NA. 96.  et al. 2012. Neuronal adenosine release, and not astrocytic ATP release, mediates feedback inhibition of excitatory activity. Proc. Natl. Acad. Sci. USA 109:6265–70 [Google Scholar]
  97. Boison D, Chen JF, Fredholm BB. 97.  2010. Adenosine signaling and function in glial cells. Cell Death Differ. 17:1071–82 [Google Scholar]
  98. Szybala C, Pritchard EM, Lusardi TA, Li T, Wilz A. 98.  et al. 2009. Antiepileptic effects of silk-polymer based adenosine release in kindled rats. Exp. Neurol. 219:126–35 [Google Scholar]
  99. Li T, Ren G, Lusardi T, Wilz A, Lan JQ. 99.  et al. 2008. Adenosine kinase is a target for the prediction and prevention of epileptogenesis in mice. J. Clin. Invest. 118:571–82 [Google Scholar]
  100. Gouder N, Scheurer L, Fritschy JM, Boison D. 100.  2004. Overexpression of adenosine kinase in epileptic hippocampus contributes to epileptogenesis. J. Neurosci. 24:692–701 [Google Scholar]
  101. Williams-Karnesky RL, Sandau US, Lusardi TA, Lytle NK, Farrell JM. 101.  et al. 2013. Epigenetic changes induced by adenosine augmentation therapy prevent epileptogenesis. J. Clin. Invest. 123:3552–63 [Google Scholar]
  102. Boison D. 102.  2013. Adenosine kinase: exploitation for therapeutic gain. Pharmacol. Rev. 65:906–43 [Google Scholar]
  103. Krueger DA, Wilfong AA, Holland-Bouley K, Anderson AE, Agricola K. 103.  et al. 2013. Everolimus treatment of refractory epilepsy in tuberous sclerosis complex. Ann. Neurol. 74:679–87 [Google Scholar]
  104. Sunnen CN, Brewster AL, Lugo JN, Vanegas F, Turcios E. 104.  et al. 2011. Inhibition of the mammalian target of rapamycin blocks epilepsy progression in NS-Pten conditional knockout mice. Epilepsia 52:2065–75 [Google Scholar]
  105. Huang X, Zhang H, Yang J, Wu J, McMahon J. 105.  et al. 2010. Pharmacological inhibition of the mammalian target of rapamycin pathway suppresses acquired epilepsy. Neurobiol. Dis. 40:193–99 [Google Scholar]
  106. Zeng LH, Rensing NR, Wong M. 106.  2009. The mammalian target of rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy. J. Neurosci. 29:6964–72 [Google Scholar]
  107. Minichiello L. 107.  2009. TrkB signalling pathways in LTP and learning. Nat. Rev. Neurosci. 10:850–60 [Google Scholar]
  108. Wyneken U, Smalla KH, Marengo JJ, Soto D, de la Cerda A. 108.  et al. 2001. Kainate-induced seizures alter protein composition and N-methyl-d-aspartate receptor function of rat forebrain postsynaptic densities. Neuroscience 102:65–74 [Google Scholar]
  109. Takahashi M, Hayashi S, Kakita A, Wakabayashi K, Fukuda M. 109.  et al. 1999. Patients with temporal lobe epilepsy show an increase in brain-derived neurotrophic factor protein and its correlation with neuropeptide Y. Brain Res. 818:579–82 [Google Scholar]
  110. Xu B, Michalski B, Racine RJ, Fahnestock M. 110.  2004. The effects of brain-derived neurotrophic factor (BDNF) administration on kindling induction, Trk expression and seizure-related morphological changes. Neuroscience 126:521–31 [Google Scholar]
  111. He XP, Minichiello L, Klein R, McNamara JO. 111.  2002. Immunohistochemical evidence of seizure-induced activation of trkB receptors in the mossy fiber pathway of adult mouse hippocampus. J. Neurosci. 22:7502–8 [Google Scholar]
  112. Binder DK, Routbort MJ, Ryan TE, Yancopoulos GD, McNamara JO. 112.  1999. Selective inhibition of kindling development by intraventricular administration of TrkB receptor body. J. Neurosci. 19:1424–36 [Google Scholar]
  113. He XP, Kotloski R, Nef S, Luikart BW, Parada LF, McNamara JO. 113.  2004. Conditional deletion of TrkB but not BDNF prevents epileptogenesis in the kindling model. Neuron 43:31–42 [Google Scholar]
  114. He XP, Pan E, Sciarretta C, Minichiello L, McNamara JO. 114.  2010. Disruption of TrkB-mediated phospholipase Cγ signaling inhibits limbic epileptogenesis. J. Neurosci. 30:6188–96 [Google Scholar]
  115. Rawlings JS, Rosler KM, Harrison DA. 115.  2004. The JAK/STAT signaling pathway. J. Cell Sci. 117:1281–83 [Google Scholar]
  116. Lund IV, Hu Y, Raol YH, Benham RS, Faris R. 116.  et al. 2008. BDNF selectively regulates GABAA receptor transcription by activation of the JAK/STAT pathway. Sci. Signal. 1:ra9 [Google Scholar]
  117. Murray PJ. 117.  2007. The JAK-STAT signaling pathway: input and output integration. J. Immunol. 178:2623–29 [Google Scholar]
  118. Xu Z, Xue T, Zhang Z, Wang X, Xu P. 118.  et al. 2011. Role of signal transducer and activator of transcription-3 in up-regulation of GFAP after epilepsy. Neurochem. Res. 36:2208–15 [Google Scholar]
  119. Oliva AA Jr, Kang Y, Sanchez-Molano J, Furones C, Atkins CM. 119.  2012. STAT3 signaling after traumatic brain injury. J. Neurochem. 120:710–20 [Google Scholar]
  120. Bolli R, Stein AB, Guo Y, Wang OL, Rokosh G. 120.  et al. 2011. A murine model of inducible, cardiac-specific deletion of STAT3: its use to determine the role of STAT3 in the upregulation of cardioprotective proteins by ischemic preconditioning. J. Mol. Cell. Cardiol. 50:589–97 [Google Scholar]
  121. Grabenstatter HL, Del Angel YC, Carlsen J, Wempe MF, White AM. 121.  et al. 2014. The effect of STAT3 inhibition on status epilepticus and subsequent spontaneous seizures in the pilocarpine model of acquired epilepsy. Neurobiol. Dis. 62:73–85 [Google Scholar]
  122. Blobe GC, Schiemann WP, Lodish HF. 122.  2000. Role of transforming growth factor β in human disease. N. Engl. J. Med. 342:1350–58 [Google Scholar]
  123. Heinemann U, Kaufer D, Friedman A. 123.  2012. Blood-brain barrier dysfunction, TGFβ signaling, and astrocyte dysfunction in epilepsy. Glia 60:1251–57 [Google Scholar]
  124. Wajant H, Pfizenmaier K, Scheurich P. 124.  2003. Tumor necrosis factor signaling. Cell Death Differ. 10:45–65 [Google Scholar]
  125. Wallach D, Varfolomeev EE, Malinin NL, Goltsev YV, Kovalenko AV, Boldin MP. 125.  1999. Tumor necrosis factor receptor and Fas signaling mechanisms. Annu. Rev. Immunol. 17:331–67 [Google Scholar]
  126. McCoy MK, Tansey MG. 126.  2008. TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J. Neuroinflamm. 5:45 [Google Scholar]
  127. Aderka D, Engelmann H, Maor Y, Brakebusch C, Wallach D. 127.  1992. Stabilization of the bioactivity of tumor necrosis factor by its soluble receptors. J. Exp. Med. 175:323–29 [Google Scholar]
  128. Balosso S, Ravizza T, Perego C, Peschon J, Campbell IL. 128.  et al. 2005. Tumor necrosis factor-α inhibits seizures in mice via p75 receptors. Ann. Neurol. 57:804–12 [Google Scholar]
  129. Akassoglou K, Probert L, Kontogeorgos G, Kollias G. 129.  1997. Astrocyte-specific but not neuron-specific transmembrane TNF triggers inflammation and degeneration in the central nervous system of transgenic mice. J. Immunol. 158:438–45 [Google Scholar]
  130. Yuhas Y, Weizman A, Ashkenazi S. 130.  2003. Bidirectional concentration-dependent effects of tumor necrosis factor alpha in Shigella dysenteriae-related seizures. Infect. Immun. 71:2288–91 [Google Scholar]
  131. Fischer R, Maier O, Siegemund M, Wajant H, Scheurich P, Pfizenmaier K. 131.  2011. A TNF receptor 2 selective agonist rescues human neurons from oxidative stress-induced cell death. PLOS ONE 6:e27621 [Google Scholar]
  132. Kitagaki M, Isoda K, Kamada H, Kobayashi T, Tsunoda S. 132.  et al. 2012. Novel TNF-α receptor 1 antagonist treatment attenuates arterial inflammation and intimal hyperplasia in mice. J. Atheroscler. Thromb. 19:36–46 [Google Scholar]
  133. Strahl BD, Allis CD. 133.  2000. The language of covalent histone modifications. Nature 403:41–45 [Google Scholar]
  134. Johnson DS, Mortazavi A, Myers RM, Wold B. 134.  2007. Genome-wide mapping of in vivo protein-DNA interactions. Science 316:1497–502 [Google Scholar]
  135. Roopra A, Dingledine R, Hsieh J. 135.  2012. Epigenetics and epilepsy. Epilepsia 53:Suppl. 92–10 [Google Scholar]
  136. Jessberger S, Nakashima K, Clemenson GD Jr, Mejia E, Mathews E. 136.  et al. 2007. Epigenetic modulation of seizure-induced neurogenesis and cognitive decline. J. Neurosci. 27:5967–75 [Google Scholar]
  137. Palm K, Belluardo N, Metsis M, Timmusk T. 137.  1998. Neuronal expression of zinc finger transcription factor REST/NRSF/XBR gene. J. Neurosci. 18:1280–96 [Google Scholar]
  138. Santoro B, Lee JY, Englot DJ, Gildersleeve S, Piskorowski RA. 138.  et al. 2010. Increased seizure severity and seizure-related death in mice lacking HCN1 channels. Epilepsia 51:1624–27 [Google Scholar]
  139. McClelland S, Flynn C, Dubé C, Richichi C, Zha Q. 139.  et al. 2011. Neuron-restrictive silencer factor-mediated hyperpolarization-activated cyclic nucleotide gated channelopathy in experimental temporal lobe epilepsy. Ann. Neurol. 70:454–64 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error