We face an impending crisis in our ability to treat infectious disease brought about by the emergence of antibiotic-resistant pathogens and a decline in the development of new antibiotics. Urgent action is needed. This review focuses on a less well-understood aspect of antibiotic action: the complex metabolic events that occur subsequent to the interaction of antibiotics with their molecular targets and play roles in antibiotic lethality. Independent lines of evidence from studies of the action of bactericidal antibiotics on diverse bacteria collectively suggest that the initial interactions of drugs with their targets cannot fully account for the antibiotic lethality and that these interactions elicit the production of reactive oxidants including reactive oxygen species that contribute to bacterial cell death. Recent challenges to this concept are considered in the context of the broader literature of this emerging area of research. Possible ways that this new knowledge might be exploited to improve antibiotic therapy are also considered.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. 1. Cent. Dis. Control Prev 2013. Antibiotic resistance threats in the United States, 2013. Rep., Cent. Dis. Control Prev., Atlanta, GA [Google Scholar]
  2. Wright GD. 2.  2007. The antibiotic resistome: the nexus of chemical and genetic diversity. Nat. Rev. Microbiol. 5:175–86 [Google Scholar]
  3. Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher HW. 3.  et al. 2008. The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin. Infect. Dis. 46:155–64 [Google Scholar]
  4. Fischbach MA, Walsh CT. 4.  2009. Antibiotics for emerging pathogens. Science 325:1089–93 [Google Scholar]
  5. Davies J, Davies D. 5.  2010. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74:417–33 [Google Scholar]
  6. Piddock LJV. 6.  2012. The crisis of no new antibiotics–what is the way forward?. Lancet Infect. Dis. 12:249–53 [Google Scholar]
  7. 7. Editorial. 2013. The antibiotic alarm. Nature 495:141 [Google Scholar]
  8. Drlica K, Perlin DS. 8.  2011. Antibiotic Resistance: Understanding and Responding to an Emerging Crisis Upper Saddle River, NJ: FT [Google Scholar]
  9. Walsh C. 9.  2003. Antibiotics: Actions, Origins, Resistance Washington, DC: ASM [Google Scholar]
  10. Kohanski MA, Dwyer DJ, Collins JJ. 10.  2010. How antibiotics kill bacteria: from targets to networks. Nat. Rev. Microbiol. 8:423–35 [Google Scholar]
  11. Ezraty B, Vergnes A, Banzhaf M, Duverger Y, Huguenot A. 11.  et al. 2013. Fe-S cluster biosynthesis controls uptake of aminoglycosides in a ROS-less death pathway. Science 340:1583–87 [Google Scholar]
  12. Keren I, Wu Y, Inocencio J, Mulcahy LR, Lewis K. 12.  2013. Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science 339:1213–16 [Google Scholar]
  13. Liu Y, Imlay JA. 13.  2013. Cell death from antibiotics without the involvement of reactive oxygen species. Science 339:1210–13 [Google Scholar]
  14. Greenberg JT, Monach P, Chou JH, Josephy PD, Demple B. 14.  1990. Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proc. Natl. Acad. Sci. USA 87:6181–85 [Google Scholar]
  15. Arriaga-Alba M, Rivera-Sánchez R, Parra-Cervantes G, Barro-Moreno F, Flores-Paz R, García-Jiménez E. 15.  2000. Antimutagenesis of β-carotene to mutations induced by quinolone on Salmonella typhimurium. Arch. Med. Res. 31:156–61 [Google Scholar]
  16. Becerra MC, Albesa I. 16.  2002. Oxidative stress induced by ciprofloxacin in Staphylococcus aureus. Biochem. Biophys. Res. Commun. 297:1003–7 [Google Scholar]
  17. Utaida S, Dunman PM, Macapagal D, Murphy E, Projan SJ. 17.  et al. 2003. Genome-wide transcriptional profiling of the response of Staphylococcus aureus to cell-wall-active antibiotics reveals a cell-wall-stress stimulon. Microbiology 149:2719–32 [Google Scholar]
  18. Storz GZM. 18.  2000. Oxidative stress. Bacterial Stress Responses R Hengge-Aronis, G Storz 47–59 Washington, DC: ASM [Google Scholar]
  19. Waddell SJ, Stabler RA, Laing K, Kremer L, Reynolds RC, Besra GS. 19.  2004. The use of microarray analysis to determine the gene expression profiles of Mycobacterium tuberculosis in response to anti-bacterial compounds. Tuberculosis 84:263–74 [Google Scholar]
  20. Albesa I, Becerra MC, Battán PC, Páez PL. 20.  2004. Oxidative stress involved in the antibacterial action of different antibiotics. Biochem. Biophys. Res. Commun. 317:605–9 [Google Scholar]
  21. Becerra MC, Páez PL, Laróvere LE, Albesa I. 21.  2006. Lipids and DNA oxidation in Staphylococcus aureus as a consequence of oxidative stress generated by ciprofloxacin. Mol. Cell Biochem. 285:29–34 [Google Scholar]
  22. Goswami M, Mangoli SH, Jawali N. 22.  2006. Involvement of reactive oxygen species in the action of ciprofloxacin against Escherichia coli. Antimicrob. Agents Chemother. 50:949–54 [Google Scholar]
  23. Malik M, Hussain S, Drlica K. 23.  2007. Effect of anaerobic growth on quinolone lethality with Escherichia coli. Antimicrob. Agents Chemother. 51:28–34 [Google Scholar]
  24. Lewin CS, Morrissey I, Smith JT. 24.  1991. The mode of action of quinolones: the paradox in activity of low and high concentrations and activity in the anaerobic environment. Eur. J. Clin. Microbiol. Infect. Dis. 10:240–48 [Google Scholar]
  25. Morrissey I, Smith JT. 25.  1994. The importance of oxygen in the killing of bacteria by ofloxacin and ciprofloxacin. Microbios 79:43–53 [Google Scholar]
  26. Kitano H. 26.  2002. Systems biology: a brief overview. Science 295:1662–64 [Google Scholar]
  27. Brazas MD, Hancock RE. 27.  2005. Using microarray gene signatures to elucidate mechanisms of antibiotic action and resistance. Drug Discov. Today 10:1245–52 [Google Scholar]
  28. Dwyer DJ, Kohanski MA, Hayete B, Collins JJ. 28.  2007. Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli. Mol. Syst. Biol. 3:91 [Google Scholar]
  29. Hayes F. 29.  2003. Toxins-antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science 301:1496–99 [Google Scholar]
  30. Drlica K, Zhao X. 30.  1997. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol. Mol. Biol. Rev. 61:377–92 [Google Scholar]
  31. Setsukinai K, Urano Y, Kakinuma K, Majima HJ, Nagano T. 31.  2003. Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J. Biol. Chem. 278:3170–75 [Google Scholar]
  32. Imlay JA, Chin SM, Linn S. 32.  1988. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240:640–42 [Google Scholar]
  33. Demple B. 33.  1996. Redox signaling and gene control in the Escherichia coli soxRS oxidative stress regulon—a review. Gene 179:53–57 [Google Scholar]
  34. McHugh JP, Rodríguez-Quiñones F, Abdul-Tehrani H, Svistunenko DA, Poole RK. 34.  et al. 2003. Global iron-dependent gene regulation in Escherichia coli: a new mechanism for iron homeostasis. J. Biol. Chem. 278:29478–86 [Google Scholar]
  35. Zheng L, Cash VL, Flint DH, Dean DR. 35.  1998. Assembly of iron-sulfur clusters: identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii. J. Biol. Chem. 273:13264–72 [Google Scholar]
  36. Roche B, Aussel L, Ezraty B, Mandin P, Py B, Barras F. 36.  2013. Iron/sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity. Biochim. Biophys. Acta 1827:455–69 [Google Scholar]
  37. Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. 37.  2007. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130:797–810 [Google Scholar]
  38. Helling RB, Kukora JS. 38.  1971. Nalidixic acid-resistant mutants of Escherichia coli deficient in isocitrate dehydrogenase. J. Bacteriol. 105:1224–26 [Google Scholar]
  39. Akhova AV, Tkachenko AG. 39.  2014. The ATP/ADP alteration as a sign of the oxidative stress development in Escherichia coli cells under antibiotic treatment. FEMS Microbiol. Lett. 353:69–76 [Google Scholar]
  40. Wang X, Zhao X. 40.  2009. Contribution of oxidative damage to antimicrobial lethality. Antimicrob. Agents Chemother. 53:1395–402 [Google Scholar]
  41. Seaver LC, Imlay JA. 41.  2001. Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J. Bacteriol. 183:7173–81 [Google Scholar]
  42. Mosel M, Li L, Drlica K, Zhao X. 42.  2013. Superoxide-mediated protection of Escherichia coli from antimicrobials. Antimicrob. Agents Chemother. 57:5755–59 [Google Scholar]
  43. Girgis HS, Hottes AK, Tavazoie S. 43.  2009. Genetic architecture of intrinsic antibiotic susceptibility. PLOS ONE 4:e5629 [Google Scholar]
  44. Yamamoto N, Nakahigashi K, Nakamichi T, Yoshino M, Takai Y. 44.  et al. 2009. Update on the Keio collection of Escherichia coli single-gene deletion mutants. Mol. Syst. Biol. 5:335 [Google Scholar]
  45. Liu A, Tran L, Becket E, Lee K, Chinn L. 45.  et al. 2010. Antibiotic sensitivity profiles determined with an Escherichia coli gene knockout collection: generating an antibiotic bar code. Antimicrob. Agents Chemother. 54:1393–403 [Google Scholar]
  46. Kohanski MA, Dwyer DJ, Wierzbowski J, Cottarel G, Collins JJ. 46.  2008. Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death. Cell 135:679–90 [Google Scholar]
  47. Wickner W, Schekman R. 47.  2005. Protein translocation across biological membranes. Science 310:1452–56 [Google Scholar]
  48. Ruiz N, Silhavy TJ. 48.  2005. Sensing external stress: watchdogs of the Escherichia coli cell envelope. Curr. Opin. Microbiol. 8:122–26 [Google Scholar]
  49. Dukan S, Farewell A, Ballesteros M, Taddei F, Radman M, Nystrom T. 49.  2000. Protein oxidation in response to increased transcriptional or translational errors. Proc. Natl. Acad. Sci. USA 97:5746–49 [Google Scholar]
  50. Iuchi S, Furlong D, Lin ECC. 50.  1989. Differentiation of arcA, arcB, and cpxA mutant phenotypes of Escherichia coli by sex pilus formation and enzyme regulation. J. Bacteriol. 171:2889–93 [Google Scholar]
  51. Ronson CW, Nixon BT, Ausubel FM. 51.  1987. Conserved domains in bacterial regulatory proteins that respond to environmental stimuli. Cell 49:579–81 [Google Scholar]
  52. Mahoney TF, Silhavy TJ. 52.  2013. The Cpx stress response confers resistance to some, but not all, bactericidal antibiotics. J. Bacteriol. 195:1869–74 [Google Scholar]
  53. Raivio TL, Silhavy TJ. 53.  1997. Transduction of envelope stress in Escherichia coli by the Cpx two-component system. J. Bacteriol. 179:7724–33 [Google Scholar]
  54. Raivio TL, Leblanc SK, Price NL. 54.  2013. The Escherichia coli Cpx envelope stress response regulates genes of diverse function that impact antibiotic resistance and membrane integrity. J. Bacteriol. 195:2755–67 [Google Scholar]
  55. Raivio TL. 55.  2013. Everything old is new again: an update on current research on the Cpx envelope stress response. Biochim. Biophys. Acta 1843:1529–41 [Google Scholar]
  56. Dorsey-Oresto A, Lu T, Mosel M, Wang X, Salz T. 56.  et al. 2013. YihE kinase is a central regulator of programmed cell death in bacteria. Cell Rep. 3:528–37 [Google Scholar]
  57. Foti JJ, Devadoss B, Winkler JA, Collins JJ, Walker GC. 57.  2012. Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics. Science 336:315–19 [Google Scholar]
  58. Yeom J, Imlay JA, Park W. 58.  2010. Iron homeostasis affects antibiotic-mediated cell death in Pseudomonas species. J. Biol. Chem. 285:22689–95 [Google Scholar]
  59. Daung-nkern J, Vattanaviboon P, Mongkolsuk S. 59.  2010. Inactivation of nfuA enhances susceptibility of Pseudomonas aeruginosa to fluoroquinolone antibiotics. J. Antimicrob. Chemother. 65:1831–32 [Google Scholar]
  60. Nguyen D, Joshi-Datar A, Lepine F, Bauerle E, Olakanmi O. 60.  et al. 2011. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 334:982–86 [Google Scholar]
  61. Khakimova M, Ahlgren HG, Harrison JJ, English AM, Nguyen D. 61.  2013. The stringent response controls catalases in Pseudomonas aeruginosa and is required for hydrogen peroxide and antibiotic tolerance. J. Bacteriol. 195:2011–20 [Google Scholar]
  62. Kim JJ, Lee HM, Shin DM, Kim W, Yuk JM. 62.  et al. 2012. Host cell autophagy activated by antibiotics is required for their effective antimycobacterial drug action. Cell Host Microbe 11:457–68 [Google Scholar]
  63. Pandey R, Rodriguez GM. 63.  2012. A ferritin mutant of Mycobacterium tuberculosis is highly susceptible to killing by antibiotics and is unable to establish a chronic infection in mice. Infect. Immun. 80:3650–59 [Google Scholar]
  64. Grant SS, Kaufmann BB, Chand NS, Haseley N, Hung DT. 64.  2012. Eradication of bacterial persisters with antibiotic-generated hydroxyl radicals. Proc. Natl. Acad. Sci. USA 109:12147–52 [Google Scholar]
  65. Mukherjee P, Sureka K, Datta P, Hossain T, Barik S. 65.  et al. 2009. Novel role of Wag31 in protection of mycobacteria under oxidative stress. Mol. Microbiol. 73:103–19 [Google Scholar]
  66. Calhoun LN, Kwon YM. 66.  2011. The ferritin-like protein Dps protects Salmonella enterica serotype Enteritidis from the Fenton-mediated killing mechanism of bactericidal antibiotics. Int. J. Antimicrob. Agents 37:261–65 [Google Scholar]
  67. Frawley ER, Crouch ML, Bingham-Ramos LK, Robbins HF, Wang W. 67.  et al. 2013. Iron and citrate export by a major facilitator superfamily pump regulates metabolism and stress resistance in Salmonella Typhimurium. Proc. Natl. Acad. Sci. USA 110:12054–59 [Google Scholar]
  68. Krawczyk-Balska A, Marchlewicz J, Dudek D, Wasiak K, Samluk A. 68.  2012. Identification of a ferritin-like protein of Listeria monocytogenes as a mediator of β-lactam tolerance and innate resistance to cephalosporins. BMC Microbiol. 12:278 [Google Scholar]
  69. Páez PL, Becerra MC, Albesa I. 69.  2010. Antioxidative mechanisms protect resistant strains of Staphylococcus aureus against ciprofloxacin oxidative damage. Fundam. Clin. Pharmacol. 24:771–76 [Google Scholar]
  70. Liu Y, Liu X, Qu Y, Wang X, Li L, Zhao X. 70.  2012. Inhibitors of reactive oxygen species accumulation delay and/or reduce the lethality of several antistaphylococcal agents. Antimicrob. Agents Chemother. 56:6048–50 [Google Scholar]
  71. Ferrándiz MJ, de la Campa AG. 71.  2014. The fluoroquinolone levofloxacin triggers the transcriptional activation of iron transport genes that contribute to cell death in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 58:247–57 [Google Scholar]
  72. Soares NC, Cabral MP, Gayoso C, Mallo S, Rodriguez-Velo P. 72.  et al. 2010. Associating growth-phase-related changes in the proteome of Acinetobacter baumannii with increased resistance to oxidative stress. J. Proteome Res. 9:1951–64 [Google Scholar]
  73. Aranda J, Bardina C, Beceiro A, Rumbo S, Cabral MP. 73.  et al. 2011. Acinetobacter baumannii RecA protein in repair of DNA damage, antimicrobial resistance, general stress response, and virulence. J. Bacteriol. 193:3740–47 [Google Scholar]
  74. Sampson TR, Liu X, Schroeder MR, Kraft CS, Burd EM, Weiss DS. 74.  2012. Rapid killing of Acinetobacter baumannii by polymyxins is mediated by a hydroxyl radical death pathway. Antimicrob. Agents Chemother. 56:5642–49 [Google Scholar]
  75. Perez F, Hujer AM, Hujer KM, Decker BK, Rather PN, Bonomo RA. 75.  2007. Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 51:3471–84 [Google Scholar]
  76. Hoskins J, Alborn WE Jr, Arnold J, Blaszczak LC, Burgett S. 76.  et al. 2001. Genome of the bacterium Streptococcus pneumoniae strain R6. J. Bacteriol. 183:5709–17 [Google Scholar]
  77. Tettelin H, Nelson KE, Paulsen IT, Eisen JA, Read TD. 77.  et al. 2001. Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293:498–506 [Google Scholar]
  78. Webber MA, Coldham NG, Woodward MJ, Piddock LJV. 78.  2008. Proteomic analysis of triclosan resistance in Salmonella enterica serovar Typhimurium. J. Antimicrob. Chemother. 62:92–97 [Google Scholar]
  79. Chittezham Thomas V, Kinkead LC, Janssen A, Schaeffer CR, Woods KM. 79.  et al. 2013. A dysfunctional tricarboxylic acid cycle enhances fitness of Staphylococcus epidermidis during β-lactam stress. MBio 4:e00437–13 [Google Scholar]
  80. Hao Z, Lou H, Zhu R, Zhu J, Zhang D. 80.  et al. 2014. The multiple antibiotic resistance regulator MarR is a copper sensor in Escherichia coli. Nat. Chem. Biol. 10:21–28 [Google Scholar]
  81. Zhao BS, Liang Y, Song Y, Zheng C, Hao Z, Chen PR. 81.  2010. A highly selective fluorescent probe for visualization of organic hydroperoxides in living cells. J. Am. Chem. Soc. 132:17065–67 [Google Scholar]
  82. de la Cruz Rodríguez LC, Farías RN, Massa EM. 82.  1990. Damage of Escherichia coli cells by t-butylhydroperoxide involves the respiratory chain but is independent of the presence of oxygen. Biochim. Biophys. Acta 1015:510–16 [Google Scholar]
  83. Rodriguez-Montelongo L, de la Cruz Rodríguez LC, Farías RN, Massa EM. 83.  1993. Membrane-associated redox cycling of copper mediates hydroperoxide toxicity in Escherichia coli. Biochim. Biophys. Acta114477–84 [Google Scholar]
  84. Gusarov I, Nudler E. 84.  2005. NO-mediated cytoprotection: instant adaptation to oxidative stress in bacteria. Proc. Natl. Acad. Sci. USA 102:13855–60 [Google Scholar]
  85. Shatalin K, Gusarov I, Avetissova E, Shatalina Y, McQuade LE. 85.  et al. 2008. Bacillus anthracis-derived nitric oxide is essential for pathogen virulence and survival in macrophages. Proc. Natl. Acad. Sci. USA 105:1009–13 [Google Scholar]
  86. Gusarov I, Shatalin K, Starodubtseva M, Nudler E. 86.  2009. Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics. Science 325:1380–84 [Google Scholar]
  87. van Sorge NM, Beasley FC, Gusarov I, Gonzalez DJ, von Kockritz-Blickwede M. 87.  et al. 2013. Methicillin-resistant Staphylococcus aureus bacterial nitric-oxide synthase affects antibiotic sensitivity and skin abscess development. J. Biol. Chem. 288:6417–26 [Google Scholar]
  88. Holden JK, Li H, Jing Q, Kang S, Richo J. 88.  et al. 2013. Structural and biological studies on bacterial nitric oxide synthase inhibitors. Proc. Natl. Acad. Sci. USA 110:18127–31 [Google Scholar]
  89. Shatalin K, Shatalina E, Mironov A, Nudler E. 89.  2011. H2S: a universal defense against antibiotics in bacteria. Science 334:986–90 [Google Scholar]
  90. Traub WH, Kleber I. 90.  1975. Characterization of two H2S-producing, multiple drug-resistant isolates of Escherichia coli from clinical urine specimens. Pathol. Microbiol. 43:10–16 [Google Scholar]
  91. Jones RT, Thai LP, Silver RP. 91.  1978. Genetic and molecular characterization of an Escherichia coli plasmid coding for hydrogen sulfide production and drug resistance. Antimicrob. Agents Chemother. 14:765–70 [Google Scholar]
  92. Neeley WL, Essigmann JM. 92.  2006. Mechanisms of formation, genotoxicity, and mutation of guanine oxidation products. Chem. Res. Toxicol. 19:491–505 [Google Scholar]
  93. Yamada M, Nunoshiba T, Shimizu M, Gruz P, Kamiya H. 93.  et al. 2006. Involvement of Y-family DNA polymerases in mutagenesis caused by oxidized nucleotides in Escherichia coli. J. Bacteriol. 188:4992–95 [Google Scholar]
  94. Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T. 94.  2006. DNA Repair and Mutagenesis Washington, DC: ASM, 2nd ed.. [Google Scholar]
  95. Bonura T, Town CD, Smith KC, Kaplan HS. 95.  1975. The influence of oxygen on the yield of DNA double-strand breaks in X-irradiated Escherichia coli K-12. Radiat. Res. 63:567–77 [Google Scholar]
  96. Ward JF, Evans JW, Limoli CL, Calabro-Jones PM. 96.  1987. Radiation and hydrogen peroxide induced free radical damage to DNA. Br. J. Cancer Suppl. 8:105–12 [Google Scholar]
  97. Brenner DJ, Ward JF. 97.  1992. Constraints on energy deposition and target size of multiply damaged sites associated with DNA double-strand breaks. Int. J. Radiat. Biol. 61:737–48 [Google Scholar]
  98. Zhao J, Winkler ME. 98.  2000. Reduction of GC → TA transversion mutation by overexpression of MutS in Escherichia coli K-12. J. Bacteriol. 182:5025–28 [Google Scholar]
  99. Dwyer DJ, Belenky P, Yang JH, MacDonald IC, Martell JD. 99.  et al. 2014. Antibiotics induce redox-related physiological alterations as part of their lethality. Proc. Natl. Acad. Sci. USA 111:E2100–9 [Google Scholar]
  100. Sekiguchi T, Ito R, Hayakawa H, Sekiguchi M. 100.  2013. Elimination and utilization of oxidized guanine nucleotides in the synthesis of RNA and its precursors. J. Biol. Chem. 288:8128–35 [Google Scholar]
  101. Taddei F, Hayakawa H, Bouton M, Cirinesi A, Matic I. 101.  et al. 1997. Counteraction by MutT protein of transcriptional errors caused by oxidative damage. Science 278:128–30 [Google Scholar]
  102. Imlay JA. 102.  2013. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat. Rev. Microbiol. 11:443–54 [Google Scholar]
  103. Weaver J, Pollack S. 103.  1989. Low-Mr iron isolated from guinea pig reticulocytes as AMP–Fe and ATP–Fe complexes. Biochem. J. 261:787–92 [Google Scholar]
  104. Floyd RA. 104.  1983. Direct demonstration that ferrous ion complexes of di- and triphosphate nucleotides catalyze hydroxyl free radical formation from hydrogen peroxide. Arch. Biochem. Biophys. 225:263–70 [Google Scholar]
  105. Rush JD, Maskos Z, Koppenol WH. 105.  1990. Reactions of iron(II) nucleotide complexes with hydrogen peroxide. FEBS Lett. 261:121–23 [Google Scholar]
  106. Richter Y, Fischer B. 106.  2003. Characterization and elucidation of coordination requirements of adenine nucleotides complexes with Fe(II) ions. Nucleosides Nucleotides Nucleic Acids 22:1757–80 [Google Scholar]
  107. Yamamoto N, Koga N, Nagaoka M. 107.  2012. Ferryl-oxo species produced from Fenton's reagent via a two-step pathway: minimum free-energy path analysis. J. Phys. Chem. B 116:14178–82 [Google Scholar]
  108. Tkachenko AG, Akhova AV, Shumkov MS, Nesterova LY. 108.  2012. Polyamines reduce oxidative stress in Escherichia coli cells exposed to bactericidal antibiotics. Res. Microbiol. 163:83–91 [Google Scholar]
  109. Winterbourn CC. 109.  2008. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 4:278–86 [Google Scholar]
  110. Pursell ZF, McDonald JT, Mathews CK, Kunkel TA. 110.  2008. Trace amounts of 8-oxo-dGTP in mitochondrial dNTP pools reduce DNA polymerase γ replication fidelity. Nucleic Acids Res. 36:2174–81 [Google Scholar]
  111. Gad H, Koolmeister T, Jemth AS, Eshtad S, Jacques SA. 111.  et al. 2014. MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool. Nature 508:215–21 [Google Scholar]
  112. Huber KV, Salah E, Radic B, Gridling M, Elkins JM. 112.  et al. 2014. Stereospecific targeting of MTH1 by (S)-crizotinib as an anticancer strategy. Nature 508:222–27 [Google Scholar]
  113. Rai P, Onder TT, Young JJ, McFaline JL, Pang B. 113.  et al. 2009. Continuous elimination of oxidized nucleotides is necessary to prevent rapid onset of cellular senescence. Proc. Natl. Acad. Sci. USA 106:169–74 [Google Scholar]
  114. Rai P, Young JJ, Burton DG, Giribaldi MG, Onder TT, Weinberg RA. 114.  2011. Enhanced elimination of oxidized guanine nucleotides inhibits oncogenic RAS-induced DNA damage and premature senescence. Oncogene 30:1489–96 [Google Scholar]
  115. De Luca G, Russo MT, Degan P, Tiveron C, Zijno A. 115.  et al. 2008. A role for oxidized DNA precursors in Huntington's disease–like striatal neurodegeneration. PLOS Genet. 4:e1000266 [Google Scholar]
  116. Yamaguchi H, Kajitani K, Dan Y, Furuichi M, Ohno M. 116.  et al. 2006. MTH1, an oxidized purine nucleoside triphosphatase, protects the dopamine neurons from oxidative damage in nucleic acids caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Cell Death Differ. 13:551–63 [Google Scholar]
  117. Murakami Y, Ikeda Y, Yoshida N, Notomi S, Hisatomi T. 117.  et al. 2012. MutT homolog-1 attenuates oxidative DNA damage and delays photoreceptor cell death in inherited retinal degeneration. Am. J. Pathol. 181:1378–86 [Google Scholar]
  118. Kohanski MA, DePristo MA, Collins JJ. 118.  2010. Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol. Cell 37:311–20 [Google Scholar]
  119. Thi TD, López E, Rodríguez-Rojas A, Rodríguez-Beltrán J, Couce A. 119.  et al. 2011. Effect of recA inactivation on mutagenesis of Escherichia coli exposed to sublethal concentrations of antimicrobials. J. Antimicrob. Chemother. 66:531–38 [Google Scholar]
  120. Gutierrez A, Laureti L, Crussard S, Abida H, Rodríguez-Rojas A. 120.  et al. 2013. β-Lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity. Nat. Commun. 4:1610 [Google Scholar]
  121. Yamada M, Shimizu M, Katafuchi A, Gruz P, Fujii S. 121.  et al. 2012. Escherichia coli DNA polymerase III is responsible for the high level of spontaneous mutations in mutT strains. Mol. Microbiol. 86:1364–75 [Google Scholar]
  122. Davies J, Spiegelman GB, Yim G. 122.  2006. The world of subinhibitory antibiotic concentrations. Curr. Opin. Microbiol. 9:445–53 [Google Scholar]
  123. Kummerer K. 123.  2003. Significance of antibiotics in the environment. J. Antimicrob. Chemother. 52:5–7 [Google Scholar]
  124. Baharoglu Z, Babosan A, Mazel D. 124.  2013. Identification of genes involved in low aminoglycoside-induced SOS response in Vibrio cholerae: a role for transcription stalling and Mfd helicase. Nucleic Acids Res. 42:2366–79 [Google Scholar]
  125. Kang TM, Yuan J, Nguyen A, Becket E, Yang H, Miller JH. 125.  2012. The aminoglycoside antibiotic kanamycin damages DNA bases in Escherichia coli: caffeine potentiates the DNA-damaging effects of kanamycin while suppressing cell killing by ciprofloxacin in Escherichia coli and Bacillus anthracis. Antimicrob. Agents Chemother. 56:3216–23 [Google Scholar]
  126. Ling J, Cho C, Guo LT, Aerni HR, Rinehart J, Soll D. 126.  2012. Protein aggregation caused by aminoglycoside action is prevented by a hydrogen peroxide scavenger. Mol. Cell 48:713–22 [Google Scholar]
  127. Poole K. 127.  2012. Bacterial stress responses as determinants of antimicrobial resistance. J. Antimicrob. Chemother. 67:2069–89 [Google Scholar]
  128. Jang S, Imlay JA. 128.  2010. Hydrogen peroxide inactivates the Escherichia coli Isc iron-sulphur assembly system, and OxyR induces the Suf system to compensate. Mol. Microbiol. 78:1448–67 [Google Scholar]
  129. Nachin L, Loiseau L, Expert D, Barras F. 129.  2003. SufC: an unorthodox cytoplasmic ABC/ATPase required for [Fe–S] biogenesis under oxidative stress. EMBO J. 22:427–37 [Google Scholar]
  130. Yeo WS, Lee JH, Lee KC, Roe JH. 130.  2006. IscR acts as an activator in response to oxidative stress for the suf operon encoding Fe-S assembly proteins. Mol. Microbiol. 61:206–18 [Google Scholar]
  131. Nakayashiki T, Saito N, Takeuchi R, Kadokura H, Nakahigashi K. 131.  et al. 2013. The tRNA thiolation pathway modulates the intracellular redox state in Escherichia coli. J. Bacteriol. 195:2039–49 [Google Scholar]
  132. Wang X, Zhao X, Malik M, Drlica K. 132.  2010. Contribution of reactive oxygen species to pathways of quinolone-mediated bacterial cell death. J. Antimicrob. Chemother. 65:520–24 [Google Scholar]
  133. Lu TK, Collins JJ. 133.  2009. Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc. Natl. Acad. Sci. USA 106:4629–34 [Google Scholar]
  134. Brynildsen MP, Winkler JA, Spina CS, MacDonald IC, Collins JJ. 134.  2013. Potentiating antibacterial activity by predictably enhancing endogenous microbial ROS production. Nat. Biotechnol. 31:160–65 [Google Scholar]
  135. Hwang IS, Hwang JH, Choi H, Kim KJ, Lee DG. 135.  2012. Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. J. Med. Microbiol. 61:1719–26 [Google Scholar]
  136. Hwang IS, Hwang JS, Hwang JH, Choi H, Lee E. 136.  et al. 2013. Synergistic effect and antibiofilm activity between the antimicrobial peptide coprisin and conventional antibiotics against opportunistic bacteria. Curr. Microbiol. 66:56–60 [Google Scholar]
  137. Choi H, Lee DG. 137.  2012. Synergistic effect of antimicrobial peptide arenicin-1 in combination with antibiotics against pathogenic bacteria. Res. Microbiol. 163:479–86 [Google Scholar]
  138. Choi H, Lee DG. 138.  2012. Antimicrobial peptide pleurocidin synergizes with antibiotics through hydroxyl radical formation and membrane damage, and exerts antibiofilm activity. Biochim. Biophys. Acta 1820:1831–38 [Google Scholar]
  139. Morones-Ramirez JR, Winkler JA, Spina CS, Collins JJ. 139.  2013. Silver enhances antibiotic activity against gram-negative bacteria. Sci. Transl. Med. 5:190ra81 [Google Scholar]
  140. Molina-Quiroz RC, Muñoz-Villagrán CM, de la Torre E, Tantaleán JC, Vásquez CC, Pérez-Donoso JM. 140.  2012. Enhancing the antibiotic antibacterial effect by sub lethal tellurite concentrations: tellurite and cefotaxime act synergistically in Escherichia coli. PLOS ONE 7:e35452 [Google Scholar]
  141. Molina-Quiroz RC, Loyola DE, Muñoz-Villagrán CM, Quatrini R, Vásquez CC, Pérez-Donoso JM. 141.  2013. DNA, cell wall and general oxidative damage underlie the tellurite/cefotaxime synergistic effect in Escherichia coli. PLOS ONE 8:e79499 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error