Although the field of pharmacogenetics has existed for decades, practioners have been slow to implement pharmacogenetic testing in clinical care. Numerous publications describe the barriers to clinical implementation of pharmacogenetics. Recently, several freely available resources have been developed to help address these barriers. In this review, we discuss current programs that use preemptive genotyping to optimize the pharmacotherapy of patients. Array-based preemptive testing includes a large number of relevant pharmacogenes that impact multiple high-risk drugs. Using a preemptive approach allows genotyping results to be available prior to any prescribing decision so that genomic variation may be considered as an inherent patient characteristic in the planning of therapy. This review describes the common elements among programs that have implemented preemptive genotyping and highlights key processes for implementation, including clinical decision support.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Meyer UA. 1.  2004. Pharmacogenetics – five decades of therapeutic lessons from genetic diversity. Nat. Rev. Genet. 5:669–76 [Google Scholar]
  2. Veenstra DL, Roth JA, Garrison LP Jr, Ramsey SD, Burke W. 2.  2010. A formal risk-benefit framework for genomic tests: facilitating the appropriate translation of genomics into clinical practice. Genet. Med. 12:686–93 [Google Scholar]
  3. Green ED, Guyer MS. 3.  2011. Charting a course for genomic medicine from base pairs to bedside. Nature 470:204–13 [Google Scholar]
  4. Manolio TA, Green ED. 4.  2011. Genomics reaches the clinic: from basic discoveries to clinical impact. Cell 147:14–16 [Google Scholar]
  5. Voora D, Ginsburg GS. 5.  2011. A hub for bench-to-bedside pharmacogenomic-based research. Pharmacogenomics 12:1095–98 [Google Scholar]
  6. Wang L, McLeod HL, Weinshilboum RM. 6.  2011. Genomics and drug response. N. Engl. J. Med. 364:1144–53 [Google Scholar]
  7. Muir AJ, Gong L, Johnson SG, Lee MT, Williams MS. 7.  et al. 2013. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for IFNL3 (IL28B) genotype and PEG interferon-α-based regimens. Clin. Pharmacol. Ther. 95:141–46 [Google Scholar]
  8. Caudle KE, Thorn CF, Klein TE, Swen JJ, McLeod HL. 8.  et al. 2013. Clinical Pharmacogenetics Implementation Consortium guidelines for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing. Clin. Pharmacol. Ther. 94:640–45 [Google Scholar]
  9. Relling MV, Gardner EE, Sandborn WJ, Schmiegelow K, Pui CH. 9.  et al. 2013. Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing: 2013 update. Clin. Pharmacol. Ther. 93:324–25 [Google Scholar]
  10. Scott SA, Sangkuhl K, Stein CM, Hulot JS, Mega JL. 10.  et al. 2013. Clinical pharmacogenetics implementation consortium guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clin. Pharmacol. Ther. 94:317–23 [Google Scholar]
  11. Leckband SG, Kelsoe JR, Dunnenberger HM, George AL Jr, Tran E. 11.  et al. 2013. Clinical Pharmacogenetics Implementation Consortium guidelines for HLA-B genotype and carbamazepine dosing. Clin. Pharmacol. Ther. 94:324–28 [Google Scholar]
  12. Hicks JK, Swen JJ, Thorn CF, Sangkuhl K, Kharasch ED. 12.  et al. 2013. Clinical Pharmacogenetics Implementation Consortium guideline for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants. Clin. Pharmacol. Ther. 93:402–8 [Google Scholar]
  13. Hershfield MS, Callaghan JT, Tassaneeyakul W, Mushiroda T, Thorn CF. 13.  et al. 2013. Clinical Pharmacogenetics Implementation Consortium guidelines for human leukocyte antigen-B genotype and allopurinol dosing. Clin. Pharmacol. Ther. 93:153–58 [Google Scholar]
  14. Wilke RA, Ramsey LB, Johnson SG, Maxwell WD, McLeod HL. 14.  et al. 2012. The Clinical Pharmacogenomics Implementation Consortium: CPIC guideline for SLCO1B1 and simvastatin-induced myopathy. Clin. Pharmacol. Ther. 92:112–17 [Google Scholar]
  15. Martin MA, Klein TE, Dong BJ, Pirmohamed M, Haas DW, Kroetz DL. 15.  2012. Clinical Pharmacogenetics Implementation Consortium guidelines for HLA-B genotype and abacavir dosing. Clin. Pharmacol. Ther. 91:734–38 [Google Scholar]
  16. Crews KR, Gaedigk A, Dunnenberger HM, Klein TE, Shen DD. 16.  et al. 2012. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for codeine therapy in the context of Cytochrome P450 2D6 (CYP2D6) genotype. Clin. Pharmacol. Ther. 91:321–26 [Google Scholar]
  17. Johnson JA, Gong L, Whirl-Carrillo M, Gage BF, Scott SA. 17.  et al. 2011. Clinical Pharmacogenetics Implementation Consortium guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin. Pharmacol. Ther. 90:625–29 [Google Scholar]
  18. Scott SA, Sangkuhl K, Gardner EE, Stein CM, Hulot JS. 18.  et al. 2011. Clinical Pharmacogenetics Implementation Consortium guidelines for cytochrome P450-2C19 (CYP2C19) genotype and clopidogrel therapy. Clin. Pharmacol. Ther. 90:328–32 [Google Scholar]
  19. Relling MV, Gardner EE, Sandborn WJ, Schmiegelow K, Pui CH. 19.  et al. 2011. Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin. Pharmacol. Ther. 89:387–91 [Google Scholar]
  20. Crews KR, Gaedigk A, Dunnenberger HM, Leeder JS, Klein TE. 20.  et al. 2014. Clinical Pharmacogenetics Implementation Consortium guidelines for cytochrome P450 2D6 genotype and codeine therapy: 2014 update. Clin. Pharmacol. Ther. 95:376–82 [Google Scholar]
  21. Relling MV, McDonagh EM, Chang T, Caudle KE, McLeod HL. 21.  et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for rasburicase therapy in the context of G6PD deficiency genotype. Clin. Pharmacol. Ther. 96:169–74 [Google Scholar]
  22. Wu AC, Fuhlbrigge AL. 22.  2008. Economic evaluation of pharmacogenetic tests. Clin. Pharmacol. Ther. 84:272–74 [Google Scholar]
  23. Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE. 23.  et al. 2009. Estimation of the warfarin dose with clinical and pharmacogenetic data. N. Engl. J. Med. 360:753–64 [Google Scholar]
  24. Gage BF, Eby C, Johnson JA, Deych E, Rieder MJ. 24.  et al. 2008. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin. Pharmacol. Ther. 84:326–31 [Google Scholar]
  25. Kim HS, Lee SS, Oh M, Jang YJ, Kim EY. 25.  et al. 2009. Effect of CYP2C9 and VKORC1 genotypes on early-phase and steady-state warfarin dosing in Korean patients with mechanical heart valve replacement. Pharmacogenet. Genomics 19:103–12 [Google Scholar]
  26. Lenzini P, Wadelius M, Kimmel S, Anderson JL, Jorgensen AL. 26.  et al. 2010. Integration of genetic, clinical, and INR data to refine warfarin dosing. Clin. Pharmacol. Ther. 87:572–78 [Google Scholar]
  27. Altman RB. 27.  2013. Personal genomic measurements: the opportunity for information integration. Clin. Pharmacol. Ther. 93:21–23 [Google Scholar]
  28. Shuldiner AR, Relling MV, Peterson JF, Hicks K, Freimuth RR. 28.  et al. 2013. The Pharmacogenomics Research Network Translational Pharmacogenetics Program: overcoming challenges of real-world implementation. Clin. Pharmacol. Ther. 2:207–10 [Google Scholar]
  29. Altman RB, Whirl-Carrillo M, Klein TE. 29.  2013. Challenges in the pharmacogenomic annotation of whole genomes. Clin. Pharmacol. Ther. 94:211–13 [Google Scholar]
  30. Hamburg MA, Collins FS. 30.  2010. The path to personalized medicine. N. Engl. J. Med. 363:301–4 [Google Scholar]
  31. Schildcrout JS, Denny JC, Bowton E, Gregg W, Pulley JM. 31.  et al. 2012. Optimizing drug outcomes through pharmacogenetics: a case for preemptive genotyping. Clin. Pharmacol. Ther. 92:235–42 [Google Scholar]
  32. 32. IMS Health 2013. National prescription audit HSRN data brief, Collegeville, PA [Google Scholar]
  33. O'Donnell PH, Bush A, Spitz J, Danahey K, Saner D. 33.  et al. 2012. The 1200 Patients Project: creating a new medical model system for clinical implementation of pharmacogenomics. Clin. Pharmacol. Ther. 92:446–49 [Google Scholar]
  34. Pereira NL, Weinshilboum RM. 34.  2011. The impact of pharmacogenomics on the management of cardiac disease. Clin. Pharmacol. Ther. 90:493–95 [Google Scholar]
  35. Johnson JA, Burkley BM, Langaee TY, Clare-Salzler MJ, Klein TE, Altman RB. 35.  2012. Implementing personalized medicine: development of a cost-effective customized pharmacogenetics genotyping array. Clin. Pharmacol. Ther. 92:437–39 [Google Scholar]
  36. Farrugia G, Weinshilboum RM. 36.  2013. Challenges in implementing genomic medicine: the Mayo Clinic Center for Individualized Medicine. Clin. Pharmacol. Ther. 94:204–6 [Google Scholar]
  37. Johnson JA. 37.  2013. Pharmacogenetics in clinical practice: How far have we come and where are we going?. Pharmacogenomics 14:835–43 [Google Scholar]
  38. Johnson JA, Elsey AR, Clare-Salzler MJ, Nessl D, Conlon M, Nelson DR. 38.  2013. Institutional profile: University of Florida and Shands Hospital Personalized Medicine Program: clinical implementation of pharmacogenetics. Pharmacogenomics 14:723–26 [Google Scholar]
  39. Pulley JM, Denny JC, Peterson JF, Bernard GR, Vnencak-Jones CL. 39.  et al. 2012. Operational implementation of prospective genotyping for personalized medicine: the design of the Vanderbilt PREDICT project. Clin. Pharmacol. Ther. 92:87–95 [Google Scholar]
  40. Relling MV, Altman RB, Goetz MP, Evans WE. 40.  2010. Clinical implementation of pharmacogenomics: overcoming genetic exceptionalism. Lancet Oncol. 11:507–9 [Google Scholar]
  41. Scott SA. 41.  2011. Personalizing medicine with clinical pharmacogenetics. Genet. Med. 13:987–95 [Google Scholar]
  42. Gottesman O, Scott SA, Ellis SB, Overby CL, Ludtke A. 42.  et al. 2013. The CLIPMERGE PGx Program: clinical implementation of personalized medicine through electronic health records and genomics–pharmacogenomics. Clin. Pharmacol. Ther. 94:214–17 [Google Scholar]
  43. Bielinski SJ, Olson JE, Pathak J, Weinshilboum RM, Wang L. 43.  et al. 2014. Preemptive genotyping for personalized medicine: design of the right drug, right dose, right time—using genomic data to individualize treatment protocol. Mayo Clin. Proc. 89:25–33 [Google Scholar]
  44. Swen JJ, Wilting I, de Goede AL, Grandia L, Mulder H. 44.  et al. 2008. Pharmacogenetics: from bench to byte. Clin. Pharmacol. Ther. 83:781–87 [Google Scholar]
  45. Swen JJ, Nijenhuis M, de Boer A, Grandia L, Maitland-van der Zee AH. 45.  et al. 2011. Pharmacogenetics: from bench to byte–an update of guidelines. Clin. Pharmacol. Ther. 89:662–73 [Google Scholar]
  46. Pham HH, Schrag D, O'Malley AS, Wu B, Bach PB. 46.  2007. Care patterns in Medicare and their implications for pay for performance. N. Engl. J. Med. 356:1130–39 [Google Scholar]
  47. Stanek EJ, Sanders CL, Taber KA, Khalid M, Patel A. 47.  et al. 2012. Adoption of pharmacogenomic testing by US physicians: results of a nationwide survey. Clin. Pharmacol. Ther. 91:450–58 [Google Scholar]
  48. Relling MV, Klein TE. 48.  2011. CPIC: Clinical Pharmacogenetics Implementation Consortium of the Pharmacogenomics Research Network. Clin. Pharmacol. Ther. 89:464–67 [Google Scholar]
  49. McCullough KB, Formea CM, Berg KD, Burzynski JA, Cunningham JL. 49.  et al. 2011. Assessment of the pharmacogenomics educational needs of pharmacists. Am. J. Pharm. Educ. 75:51 [Google Scholar]
  50. Shields AE, Lerman C. 50.  2008. Anticipating clinical integration of pharmacogenetic treatment strategies for addiction: are primary care physicians ready?. Clin. Pharmacol. Ther. 83:635–39 [Google Scholar]
  51. Cohen J, Wilson A, Manzolillo K. 51.  2013. Clinical and economic challenges facing pharmacogenomics. Pharmacogenomics J. 13:378–88 [Google Scholar]
  52. Thorn CF, Klein TE, Altman RB. 52.  2013. PharmGKB: the Pharmacogenetics and Pharmacogenomics Knowledge Base. Methods Mol. Biol. 1015:311–20 [Google Scholar]
  53. Caudle KE, Klein TE, Hoffman JM, Muller DJ, Whirl-Carrillo M. 53.  et al. 2014. Incorporation of pharmacogenomics into routine clinical practice: the Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline development process. Curr. Drug Metab. 15:209–17 [Google Scholar]
  54. 54. Eval. Genomic Appl. Pract. Prev. Work. Group 2009. Recommendations from the EGAPP Working Group: Can UGT1A1 genotyping reduce morbidity and mortality in patients with metastatic colorectal cancer treated with irinotecan?. Genet. Med. 11:15–20 [Google Scholar]
  55. Valdes R Jr, Payne D, Linder MW. 55.  2010. Laboratory medicine practice guidelines: Laboratory analysis and application of pharmacogenetics to clinical practice Rep., Natl. Acad. Clin. Biochem. [Google Scholar]
  56. 56. Eval. Genomic Appl. Pract. Prev. Work. Group 2011. Recommendations from the EGAPP Working Group: routine testing for Factor V Leiden (R506Q) and prothrombin (20210G>A) mutations in adults with a history of idiopathic venous thromboembolism and their adult family members. Genet. Med. 13:67–76 [Google Scholar]
  57. Manns MP, Czaja AJ, Gorham JD, Krawitt EL, Mieli-Vergani G. 57.  et al. 2010. Diagnosis and management of autoimmune hepatitis. Hepatology 51:2193–213 [Google Scholar]
  58. Meggitt SJ, Anstey AV, Mohd Mustapa MF, Reynolds NJ, Wakelin S. 58.  2011. British Association of Dermatologists' guidelines for the safe and effective prescribing of azathioprine 2011. Br. J. Dermatol. 165:711–34 [Google Scholar]
  59. Rubinstein WS, Maglott DR, Lee JM, Kattman BL, Malheiro AJ. 59.  et al. 2013. The NIH genetic testing registry: a new, centralized database of genetic tests to enable access to comprehensive information and improve transparency. Nucleic Acids Res. 41:D925–35 [Google Scholar]
  60. Relling MV, Pui CH, Cheng C, Evans WE. 60.  2006. Thiopurine methyltransferase in acute lymphoblastic leukemia. Blood 107:843–44 [Google Scholar]
  61. Crews KR, Cross SJ, McCormick JN, Baker DK, Molinelli AR. 61.  et al. 2011. Development and implementation of a pharmacist-managed clinical pharmacogenetics service. Am. J. Health Syst. Pharm. 68:143–50 [Google Scholar]
  62. Stocco G, Cheok MH, Crews KR, Dervieux T, French D. 62.  et al. 2009. Genetic polymorphism of inosine triphosphate pyrophosphatase is a determinant of mercaptopurine metabolism and toxicity during treatment for acute lymphoblastic leukemia. Clin. Pharmacol. Ther. 85:164–72 [Google Scholar]
  63. Crews KR, Hicks JK, Pui CH, Relling MV, Evans WE. 63.  2012. Pharmacogenomics and individualized medicine: translating science into practice. Clin. Pharmacol. Ther. 92:467–75 [Google Scholar]
  64. Hoffman JM, Haidar CE, Wilkinson MR, Crews KR, Baker DK. 64.  et al. 2014. PG4KDS: a model for the clinical implementation of pre-emptive pharmacogenetics. Am. J. Med. Genet. Part C Semin. Med. Genet. 1:45–55 [Google Scholar]
  65. Fernandez CA, Smith C, Yang W, Lorier R, Crews KR. 65.  et al. 2012. Concordance of DMET Plus genotyping results with those of orthogonal genotyping methods. Clin. Pharmacol. Ther. 92:360–65 [Google Scholar]
  66. Hicks JK, Crews KR, Hoffman JM, Kornegay NM, Wilkinson MR. 66.  et al. 2012. A clinician-driven automated system for integration of pharmacogenetic interpretations into an electronic medical record. Clin. Pharmacol. Ther. 92:563–66 [Google Scholar]
  67. Bell GC, Crews KR, Wilkinson MR, Haidar CE, Hicks JK. 67.  et al. 2013. Development and use of active clinical decision support for preemptive pharmacogenomics. J. Am. Med. Inform. Assoc. e1:e93–99 [Google Scholar]
  68. Van Driest SL, Shi Y, Bowton EA, Schildcrout JS, Peterson JF. 68.  et al. 2013. Clinically actionable genotypes among 10,000 patients with preemptive pharmacogenomic testing. Clin. Pharmacol. Ther. 95:423–31 [Google Scholar]
  69. Oetjens MT, Denny JC, Ritchie MD, Gillani NB, Richardson DM. 69.  et al. 2013. Assessment of a pharmacogenomic marker panel in a polypharmacy population identified from electronic medical records. Pharmacogenomics 14:735–44 [Google Scholar]
  70. Overby CL, Kohane I, Kannry JL, Williams MS, Starren J. 70.  et al. 2013. Opportunities for genomic clinical decision support interventions. Genet. Med. 15:817–23 [Google Scholar]
  71. Goldspiel BR, Flegel WA, Dipatrizio G, Sissung T, Adams SD. 71.  et al. 2013. Integrating pharmacogenetic information and clinical decision support into the electronic health record. J. Am. Med. Inform. Assoc. 3:522–28 [Google Scholar]
  72. Welch B, Kawamoto K. 72.  2013. The need for clinical decision support integrated with the electronic health record for the clinical application of whole genome sequencing information. J. Personalized Med. 3:306–25 [Google Scholar]
  73. Wilke RA, Xu H, Denny JC, Roden DM, Krauss RM. 73.  et al. 2011. The emerging role of electronic medical records in pharmacogenomics. Clin. Pharmacol. Ther. 89:379–86 [Google Scholar]
  74. Jaspers MWM, Smeulers M, Vermeulen H, Peute LW. 74.  2011. Effects of clinical decision-support systems on practitioner performance and patient outcomes: a synthesis of high-quality systematic review findings. J. Am. Med. Inform. Assoc. 18:327–34 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error