1932

Abstract

A chimeric antigen receptor (CAR) is a recombinant fusion protein combining an antibody-derived targeting fragment with signaling domains capable of activating T cells. Recent early-phase clinical trials have demonstrated the remarkable ability of CAR-modified T cells to eliminate B cell malignancies. This review describes the choice of target antigens and CAR manipulations to maximize antitumor specificity. Benefits and current limitations of CAR-modified T cells are discussed, with a special focus on the distribution of tumor antigens on normal tissues and the risk of on-target, off-tumor toxicities in the clinical setting. We present current methodologies for pre-evaluating these risks and review the strategies for counteracting potential off-tumor effects. Successful implementation of these approaches will improve the safety and efficacy of CAR T cell therapy and extend the range of cancer patients who may be treated.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010814-124844
2016-01-06
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/56/1/annurev-pharmtox-010814-124844.html?itemId=/content/journals/10.1146/annurev-pharmtox-010814-124844&mimeType=html&fmt=ahah

Literature Cited

  1. Gill S, June CH. 1.  2015. Going viral: chimeric antigen receptor T-cell therapy for hematological malignancies. Immunol. Rev. 263:68–89 [Google Scholar]
  2. Gross G, Waks T, Eshhar Z. 2.  1989. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. PNAS 86:10024–28 [Google Scholar]
  3. Eshhar Z, Waks T, Gross G, Schindler DG. 3.  1993. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the γ or ζ subunits of the immunoglobulin and T-cell receptors. PNAS 90:720–24 [Google Scholar]
  4. Eshhar Z. 4.  2014. From the mouse cage to human therapy: a personal perspective of the emergence of T-bodies/chimeric antigen receptor T cells. Hum. Gene Ther. 25:773–78 [Google Scholar]
  5. Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S. 5.  2000. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv. Immunol. 74:181–273 [Google Scholar]
  6. Garrido F, Algarra I. 6.  2001. MHC antigens and tumor escape from immune surveillance. Adv. Cancer Res. 83:117–58 [Google Scholar]
  7. Crespo J, Sun H, Welling TH, Tian Z, Zou W. 7.  2013. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr. Opin. Immunol. 25:214–21 [Google Scholar]
  8. Gross G, Gorochov G, Waks T, Eshhar Z. 8.  1989. Generation of effector T cells expressing chimeric T cell receptor with antibody type-specificity. Transplant. Proc. 21:127–30 [Google Scholar]
  9. Eshhar Z. 9.  2008. The T-body approach: redirecting T cells with antibody specificity. Handb. Exp. Pharmacol. 181:329–42 [Google Scholar]
  10. Sadelain M, Brentjens R, Rivière I. 10.  2009. The promise and potential pitfalls of chimeric antigen receptors. Curr. Opin. Immunol. 21:215–23 [Google Scholar]
  11. Barrett DM, Singh N, Porter DL, Grupp SA, June CH. 11.  2014. Chimeric antigen receptor therapy for cancer. Annu. Rev. Med. 65:333–47 [Google Scholar]
  12. Cheadle EJ, Gornall H, Baldan V, Hanson V, Hawkins RE, Gilham DE. 12.  2014. CAR T cells: driving the road from the laboratory to the clinic. Immunol. Rev. 257:91–106 [Google Scholar]
  13. Friedmann-Morvinski D, Bendavid A, Waks T, Schindler D, Eshhar Z. 13.  2005. Redirected primary T cells harboring a chimeric receptor require costimulation for their antigen-specific activation. Blood 105:3087–93 [Google Scholar]
  14. Kochenderfer JN, Wilson WH, Janik JE, Dudley ME, Stetler-Stevenson M. 14.  et al. 2010. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 116:4099–102 [Google Scholar]
  15. Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE. 15.  et al. 2012. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 119:2709–20 [Google Scholar]
  16. Kochenderfer JN, Dudley ME, Carpenter RO, Kassim SH, Rose JJ. 16.  et al. 2013. Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation. Blood 122:4129–39 [Google Scholar]
  17. Kochenderfer JN, Dudley ME, Kassim SH, Somerville RPT, Carpenter RO. 17.  et al. 2015. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J. Clin. Oncol. 33540–49
  18. Porter DL, Levine BL, Kalos M, Bagg A, June CH. 18.  2011. Chimeric antigen receptor–modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365:725–33 [Google Scholar]
  19. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA. 19.  et al. 2011. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med. 3:95ra73 [Google Scholar]
  20. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL. 20.  et al. 2013. Chimeric antigen receptor–modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 368:1509–18 [Google Scholar]
  21. Brentjens RJ, Davila ML, Riviere I, Park J, Wang X. 21.  et al. 2013. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl. Med. 5:177ra38 [Google Scholar]
  22. Davila ML, Riviere I, Wang X, Bartido S, Park J. 22.  et al. 2014. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med. 6:224ra25 [Google Scholar]
  23. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM. 23.  et al. 2014. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371:1507–17 [Google Scholar]
  24. Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C. 24.  et al. 2014. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385:517–28 [Google Scholar]
  25. Löwenberg B. 25.  2014. 56th ASH annual meeting: abstracts and meeting program. Blood 124:21 http://www.bloodjournal.org/content/124/21 [Google Scholar]
  26. Wikstrand CJ, Hale LP, Batra SK, Hill ML, Humphrey PA. 26.  et al. 1995. Monoclonal antibodies against EGFRvIII are tumor specific and react with breast and lung carcinomas and malignant gliomas. Cancer Res. 55:3140–48 [Google Scholar]
  27. Kochenderfer JN, Rosenberg SA. 27.  2013. Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors. Nat. Rev. Clin. Oncol. 10:267–76 [Google Scholar]
  28. Till BG, Jensen MC, Wang J, Chen EY, Wood BL. 28.  et al. 2008. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood 112:2261–71 [Google Scholar]
  29. Till BG, Jensen MC, Wang J, Qian X, Gopal AK. 29.  et al. 2012. CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood 119:3940–50 [Google Scholar]
  30. Haso W, Lee DW, Shah NN, Stetler-Stevenson M, Yuan CM. 30.  et al. 2013. Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia. Blood 121:1165–71 [Google Scholar]
  31. Long AH, Haso WM, Orentas RJ. 31.  2013. Lessons learned from a highly-active CD22-specific chimeric antigen receptor. Oncoimmunology 2:e23621 [Google Scholar]
  32. Carpenter RO, Evbuomwan MO, Pittaluga S, Rose JJ, Raffeld M. 32.  et al. 2013. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin. Cancer Res. 19:2048–60 [Google Scholar]
  33. Vera J, Savoldo B, Vigouroux S, Biagi E, Pule M. 33.  et al. 2006. T lymphocytes redirected against the κ light chain of human immunoglobulin efficiently kill mature B lymphocyte-derived malignant cells. Blood 108:3890–97 [Google Scholar]
  34. Ramos CA, Savoldo B, Liu E, Gee AP, Mei Z. 34.  et al. 2013. Clinical responses in patients infused with T lymphocytes redirected to target κ-light immunoglobulin chain. Presented at 55th Am. Soc. Hematol. Meet., Dec. 7–10, New Orleans, LA
  35. Mannweiler S, Amersdorfer P, Trajanoski S, Terrett JA, King D, Mehes G. 35.  2009. Heterogeneity of prostate-specific membrane antigen (PSMA) expression in prostate carcinoma with distant metastasis. Pathol. Oncol. Res. 15:167–72 [Google Scholar]
  36. Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan DN. 36.  et al. 2011. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol. Ther. 19:620–26 [Google Scholar]
  37. Wilkie S, Picco G, Foster J, Davies DM, Julien S. 37.  et al. 2008. Retargeting of human T cells to tumor-associated MUC1: the evolution of a chimeric antigen receptor. J. Immunol. 180:4901–909 [Google Scholar]
  38. Kershaw MH, Westwood JA, Parker LL, Wang G, Eshhar Z. 38.  et al. 2006. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin. Cancer Res. 12:6106–15 [Google Scholar]
  39. Dahan R, Reiter Y. 39.  2012. T-cell-receptor-like antibodies – generation, function and applications. Expert Rev. Mol. Med. 14:e6 [Google Scholar]
  40. Willemsen RA, Debets R, Hart E, Hoogenboom HR, Bolhuis RLH, Chames P. 40.  2001. A phage display selected Fab fragment with MHC class I-restricted specificity for MAGE-A1 allows for retargeting of primary human T lymphocytes. Gene Ther. 8:1601–8 [Google Scholar]
  41. Willemsen RA, Ronteltap C, Chames P, Debets R, Bolhuis RLH. 41.  2005. T cell retargeting with MHC class I-restricted antibodies: The CD28 costimulatory domain enhances antigen-specific cytotoxicity and cytokine production. J. Immunol. 174:7853–58 [Google Scholar]
  42. Stewart-Jones G, Wadle A, Hombach A, Shenderov E, Held G. 42.  et al. 2009. Rational development of high-affinity T-cell receptor-like antibodies. PNAS 106:5784–88 [Google Scholar]
  43. Zhang G, Wang L, Cui H, Wang X, Zhang G. 43.  et al. 2014. Anti-melanoma activity of T cells redirected with a TCR-like chimeric antigen receptor. Sci. Rep. 4:3571 [Google Scholar]
  44. Linette GP, Stadtmauer EA, Maus MV, Rapoport AP, Levine BL. 44.  et al. 2013. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood 122:863–71 [Google Scholar]
  45. Cameron BJ, Gerry AB, Dukes J, Harper JV, Kannan V. 45.  et al. 2013. Identification of a titin-derived HLA-A1–presented peptide as a cross-reactive target for engineered MAGE A3–directed T cells. Sci. Transl. Med. 5:197ra103 [Google Scholar]
  46. Zhong S, Malecek K, Johnson LA, Yu Z, Vega-Saenz de Miera E. 46.  et al. 2013. T-cell receptor affinity and avidity defines antitumor response and autoimmunity in T-cell immunotherapy. PNAS 110:6973–8 [Google Scholar]
  47. Oren R, Hod-Marco M, Haus-Cohen M, Thomas S, Blat D. 47.  et al. 2014. Functional comparison of engineered T cells carrying a native TCR versus TCR-like antibody-based chimeric antigen receptors indicates affinity/avidity thresholds. J. Immunol. 193:5733–43 [Google Scholar]
  48. Wang QS, Wang Y, Lv HY, Han QW, Fan H. 48.  et al. 2014. Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia. Mol. Ther. 23:184–91 [Google Scholar]
  49. Ritchie DS, Neeson PJ, Khot A, Peinert S, Tai T. 49.  et al. 2013. Persistence and efficacy of second generation CAR T cell against the LeY antigen in acute myeloid leukemia. Mol. Ther. 21:2122–29 [Google Scholar]
  50. Lamers CHJ, Sleijfer S, Vulto AG, Kruit WH, Kliffen M. 50.  et al. 2006. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J. Clin. Oncol. 24:e20–22 [Google Scholar]
  51. Lamers CHJ, Langeveld SCL, Groot-van Ruijven CM, Debets R, Sleijfer S, Gratama JW. 51.  2007. Gene-modified T cells for adoptive immunotherapy of renal cell cancer maintain transgene-specific immune functions in vivo. Cancer Immunol. Immunother. 56:1875–83 [Google Scholar]
  52. Lamers CHJ, Sleijfer S, van Steenbergen S, van Elzakker P, van Krimpen B. 52.  et al. 2013. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol. Ther. 21:904–12 [Google Scholar]
  53. Stancovski I, Schindler DG, Waks T, Yarden Y, Sela M, Eshhar Z. 53.  1993. Targeting of T lymphocytes to Neu/HER2-expressing cells using chimeric single chain Fv receptors. J. Immunol. 151:6577–82 [Google Scholar]
  54. Pinthus JH, Waks T, Kaufman-Francis K, Schindler DG, Harmelin A. 54.  et al. 2003. Immuno-gene therapy of established prostate tumors using chimeric receptor-redirected human lymphocytes. Cancer Res. 63:2470–76 [Google Scholar]
  55. Pinthus JH, Waks T, Malina V, Kaufman-Francis K, Harmelin A. 55.  et al. 2004. Adoptive immunotherapy of prostate cancer bone lesions using redirected effector lymphocytes. J. Clin. Investig. 114:1774–81 [Google Scholar]
  56. Pinthus JH, Fridman E, Dekel B, Goldberg I, Kaufman-Francis K. 56.  et al. 2004. ErbB2 is a tumor associated antigen and a suitable therapeutic target in Wilms tumor. J. Urol. 172:1644–48 [Google Scholar]
  57. Globerson-Levin A, Waks T, Eshhar Z. 57.  2014. Elimination of progressive mammary cancer by repeated administrations of chimeric antigen receptor-modified T cells. Mol. Ther. 22:1029–38 [Google Scholar]
  58. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA. 58.  2010. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 18:843–51 [Google Scholar]
  59. Pule MA, Savoldo B, Myers GD, Rossig C, Russell HV. 59.  et al. 2008. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat. Med. 14:1264–70 [Google Scholar]
  60. Louis CU, Savoldo B, Dotti G, Pule M, Yvon E. 60.  et al. 2011. Antitumor activity and long-term fate of chimeric antigen receptor–positive T cells in patients with neuroblastoma. Blood 118:6050–56 [Google Scholar]
  61. Park JR, DiGiusto DL, Slovak M, Wright C, Naranjo A. 61.  et al. 2007. Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol. Ther. 15:825–33 [Google Scholar]
  62. Thomas AM, Santarsiero LM, Lutz ER, Armstrong TD, Chen YC. 62.  et al. 2004. Mesothelin-specific CD8+ T cell responses provide evidence of in vivo cross-priming by antigen-presenting cells in vaccinated pancreatic cancer patients. J. Exp. Med. 200:297–306 [Google Scholar]
  63. Ho M, Hassan R, Zhang J, Wang QC, Onda M. 63.  et al. 2005. Humoral immune response to mesothelin in mesothelioma and ovarian cancer patients. Clin. Cancer Res. 11:3814–20 [Google Scholar]
  64. Beatty GL, Haas AR, Maus MV, Torigian DA, Soulen MC. 64.  et al. 2014. Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce antitumor activity in solid malignancies. Cancer Immunol. Res. 2:112–20 [Google Scholar]
  65. Beard RE, Zheng Z, Lagisetty KH, Burns WR, Tran E. 65.  et al. 2014. Multiple chimeric antigen receptors successfully target chondroitin sulfate proteoglycan 4 in several different cancer histologies and cancer stem cells. J. Immunother. Cancer 2:25 [Google Scholar]
  66. Kang HJ, Park JS, Kim DW, Lee J, Jeong YJ. 66.  et al. 2012. Adverse pulmonary reactions associated with the use of monoclonal antibodies in cancer patients. Respir. Med. 106:443–50 [Google Scholar]
  67. Mardiros A, Dos Santos C, McDonald T, Brown CE, Wang X. 67.  et al. 2013. T cells expressing CD123-specific chimeric antigen receptors exhibit specific cytolytic effector functions and antitumor effects against human acute myeloid leukemia. Blood 122:3138–48 [Google Scholar]
  68. Pizzitola I, Anjos-Afonso F, Rouault-Pierre K, Lassailly F, Tettamanti S. 68.  et al. 2014. Chimeric antigen receptors against CD33/CD123 antigens efficiently target primary acute myeloid leukemia cells in vivo. Leukemia 28:1596–605 [Google Scholar]
  69. Gill S, Tasian SK, Ruella M, Shestova O, Li Y. 69.  et al. 2014. Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor-modified T cells. Blood 123:2343–54 [Google Scholar]
  70. Santos AM, Jung J, Aziz N, Kissil JL, Puré E. 70.  2009. Targeting fibroblast activation protein inhibits tumor stromagenesis and growth in mice. J. Clin. Investig. 119:3613–25 [Google Scholar]
  71. Kraman M, Bambrough PJ, Arnold JN, Roberts EW, Magiera L. 71.  et al. 2010. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-α. Science 330:827–30 [Google Scholar]
  72. Petrausch U, Schuberth PC, Hagedorn C, Soltermann A, Tomaszek S. 72.  et al. 2012. Re-directed T cells for the treatment of fibroblast activation protein (FAP)-positive malignant pleural mesothelioma (FAPME-1). BMC Cancer 12:615 [Google Scholar]
  73. Schuberth PC, Hagedorn C, Jensen SM, Gulati P, van den Broek M. 73.  et al. 2013. Treatment of malignant pleural mesothelioma by fibroblast activation protein-specific re-directed T cells. J. Transl. Med. 11:187 [Google Scholar]
  74. Tran E, Chinnasamy D, Yu Z, Morgan RA, Lee CC. 74.  et al. 2013. Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J. Exp. Med. 210:1125–35 [Google Scholar]
  75. Wang LS, Lo A, Scholler J, Sun J, Majumdar RS. 75.  et al. 2014. Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity. Cancer Immunol. Res. 2:154–66 [Google Scholar]
  76. Kakarla S, Chow KKH, Mata M, Shaffer DR, Song XT. 76.  et al. 2013. Antitumor effects of chimeric receptor engineered human T cells directed to tumor stroma. Mol. Ther. 21:1611–20 [Google Scholar]
  77. Eades-Perner AM, van der Putten H, Hirth A, Thompson J, Neumaier M. 77.  et al. 1994. Mice transgenic for the human carcinoembryonic antigen gene maintain its spatiotemporal expression pattern. Cancer Res. 54:4169–76 [Google Scholar]
  78. Chmielewski M, Hahn O, Rappl G, Nowak M, Schmidt-Wolf I. 78.  et al. 2012. T cells that target carcinoembryonic antigen eradicate orthotopic pancreatic carcinomas without inducing autoimmune colitis in mice. Gastroenterology 143:1095–107.e2 [Google Scholar]
  79. Chmielewski M, Rappl G, Hombach AA, Abken H. 79.  2013. T cells redirected by a CD3ζ chimeric antigen receptor can establish self-antigen-specific tumour protection in the long term. Gene Ther. 20:177–86 [Google Scholar]
  80. Chan CHF, Stanners CP. 80.  2004. Novel mouse model for carcinoembryonic antigen-based therapy. Mol. Ther. 9:775–85 [Google Scholar]
  81. Blat D, Zigmond E, Alteber Z, Waks T, Eshhar Z. 81.  2014. Suppression of murine colitis and its associated cancer by carcinoembryonic antigen-specific regulatory T cells. Mol. Ther. 22:1018–28 [Google Scholar]
  82. Piechocki MP, Ho YS, Pilon S, Wei WZ. 82.  2003. Human ErbB-2 (her-2) transgenic mice: A model system for testing her-2 based vaccines. J. Immunol. 171:5787–94 [Google Scholar]
  83. Wang LXJ, Westwood JA, Moeller M, Duong CPM, Wei W. 83.  et al. 2010. Tumor ablation by gene-modified T cells in the absence of autoimmunity. Cancer Res. 70:9591–98 [Google Scholar]
  84. John LB, Devaud C, Duong CPM, Yong CS, Beavis PA. 84.  et al. 2013. Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin. Cancer Res. 19:5636–46 [Google Scholar]
  85. Finkle D, Quan ZR, Asghari V, Kloss J, Ghaboosi N. 85.  et al. 2004. HER2-targeted therapy reduces incidence and progression of midlife mammary tumors in female murine mammary tumor virus huHER2-transgenic mice. Clin. Cancer Res. 10:2499–511 [Google Scholar]
  86. Fedorov VD, Themeli M, Sadelain M. 86.  2013. PD-1– and CTLA-4–based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci. Transl. Med. 5:215ra172 [Google Scholar]
  87. Wilkie S, van Schalkwyk MCI, Hobbs S, Davies DM, van der Stegen SJC. 87.  et al. 2012. Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling. J. Clin. Immunol. 32:1059–70 [Google Scholar]
  88. Kloss CC, Condomines M, Cartellieri M, Bachmann M, Sadelain M. 88.  2013. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat. Biotechnol. 31:71–75 [Google Scholar]
  89. Lanitis E, Poussin M, Klattenhoff AW, Song D, Sandaltzopoulos R. 89.  et al. 2013. Chimeric antigen receptor T cells with dissociated signaling domains exhibit focused anti-tumor activity with reduced potential for toxicity. Cancer. Immunol. Res. 1:43–53 [Google Scholar]
  90. Kahlon KS, Brown C, Cooper LJN, Raubitschek A, Forman SJ, Jensen MC. 90.  2004. Specific recognition and killing of glioblastoma multiforme by interleukin 13-zetakine redirected cytolytic T cells. Cancer Res. 64:9160–66 [Google Scholar]
  91. Kong S, Sengupta S, Tyler B, Bais AJ, Ma Q. 91.  et al. 2012. Suppression of human glioma xenografts with second-generation IL13R-specific chimeric antigen receptor-modified T cells. Clin. Cancer Res. 18:5949–60 [Google Scholar]
  92. Krebs S, Chow KKH, Yi Z, Rodriguez-Cruz T, Hegde M. 92.  et al. 2014. T cells redirected to interleukin-13Rα2 with interleukin-13 mutein–chimeric antigen receptors have anti-glioma activity but also recognize interleukin-13Rα1. Cytotherapy 16:1121–31 [Google Scholar]
  93. Beatty GL, Haas AR, Maus MV, Torigian DA, Soulen MC. 93.  et al. 2014. Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer. Immunol. Res. 2:112–20 [Google Scholar]
  94. Wang W, Ma Y, Li J, Shi HS, Wang LQ. 94.  et al. 2013. Specificity redirection by CAR with human VEGFR-1 affinity endows T lymphocytes with tumor-killing ability and anti-angiogenic potency. Gene Ther. 20:970–78 [Google Scholar]
  95. Marcus A, Waks T, Eshhar Z. 95.  2011. Redirected tumor-specific allogeneic T cells for universal treatment of cancer. Blood 118:975–83 [Google Scholar]
  96. Parente-Pereira A, Burnet J, Ellison D, Foster J, Davies DM. 96.  et al. 2011. Trafficking of CAR-engineered human T cells following regional or systemic adoptive transfer in SCID beige mice. J. Clin. Immunol. 31:710–18 [Google Scholar]
  97. Maliar A, Servais C, Waks T, Chmielewski M, Lavy R. 97.  et al. 2012. Redirected T cells that target pancreatic adenocarcinoma antigens eliminate tumors and metastases in mice. Gastroenterology 143:1375–84.e5 [Google Scholar]
  98. Choi BD, Suryadevara CM, Gedeon PC, Herndon JE II, Sanchez-Perez L. 98.  et al. 2014. Intracerebral delivery of a third generation EGFRvIII-specific chimeric antigen receptor is efficacious against human glioma. J. Clin. Neurosci. 21:189–90 [Google Scholar]
  99. van Schalkwyk MCI, Papa SE, Jeannon JP, Urbano TG, Spicer JF, Maher J. 99.  2013. Design of a Phase I clinical trial to evaluate intratumoral delivery of ErbB-targeted chimeric antigen receptor T-cells in locally advanced or recurrent head and neck cancer. Hum. Gene Ther. Clin. Dev. 24:134–42 [Google Scholar]
  100. Adusumilli PS, Cherkassky L, Villena-Vargas J, Colovos C, Servais E. 100.  et al. 2014. Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Sci. Transl. Med. 6:261ra151 [Google Scholar]
  101. Bonini C, Ferrari G, Verzeletti S, Servida P, Zappone E. 101.  et al. 1997. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 276:1719–24 [Google Scholar]
  102. Straathof KC, Pulè MA, Yotnda P, Dotti G, Vanin EF. 102.  et al. 2005. An inducible caspase 9 safety switch for T-cell therapy. Blood 105:4247–54 [Google Scholar]
  103. Di Stasi A, Tey SK, Dotti G, Fujita Y, Kennedy-Nasser A. 103.  et al. 2011. Inducible apoptosis as a safety switch for adoptive cell therapy. N. Engl. J. Med. 365:1673–83 [Google Scholar]
  104. Wang X, Chang WC, Wong CW, Colcher D, Sherman M. 104.  et al. 2011. A transgene-encoded cell surface polypeptide for selection, in vivo tracking, and ablation of engineered cells. Blood 118:1255–63 [Google Scholar]
  105. Griffioen M, van Egmond EHM, Kester MGD, Willemze R, Falkenburg JHF, Heemskerk MHM. 105.  2009. Retroviral transfer of human CD20 as a suicide gene for adoptive T-cell therapy. Haematologica 94:1316–20 [Google Scholar]
  106. Philip B, Kokalaki E, Mekkaoui L, Thomas S, Straathof K. 106.  et al. 2014. A highly compact epitope-based marker/suicide gene for easier and safer T-cell therapy. Blood 124:1277–87 [Google Scholar]
  107. Kieback E, Charo J, Sommermeyer D, Blankenstein T, Uckert W. 107.  2008. A safeguard eliminates T cell receptor gene-modified autoreactive T cells after adoptive transfer. PNAS 105:623–28 [Google Scholar]
  108. Jena B, Maiti S, Huls H, Singh H, Lee DA. 108.  et al. 2013. Chimeric antigen receptor (CAR)-specific monoclonal antibody to detect CD19-specific T cells in clinical trials. PLOS ONE 8:e57838 [Google Scholar]
  109. Rosenberg SA. 109.  2014. Finding suitable targets is the major obstacle to cancer gene therapy. Cancer Gene Ther. 21:45–47 [Google Scholar]
  110. Davila ML, Brentjens R, Wang X, Rivière I, Sadelain M. 110.  2012. How do CARs work? Early insights from recent clinical studies targeting CD19. OncoImmunology 1:1577–83 [Google Scholar]
  111. Xu XJ, Zhao HZ, Tang YM. 111.  2013. Efficacy and safety of adoptive immunotherapy using anti-CD19 chimeric antigen receptor transduced T-cells: a systematic review of phase I clinical trials. Leuk. Lymphoma 54:255–60 [Google Scholar]
  112. Gill S, Porter DL. 112.  2014. CAR-modified anti-CD19 T cells for the treatment of B-cell malignancies: rules of the road. Expert Opin. Biol. Ther. 14:37–49 [Google Scholar]
  113. Hudecek M, Schmitt TM, Baskar S, Lupo-Stanghellini M, Nishida T. 113.  et al. 2010. The B-cell tumor-associated antigen ROR1 can be targeted with T cells modified to express a ROR1-specific chimeric antigen receptor. Blood 116:4532–41 [Google Scholar]
  114. Hudecek M, Lupo-Stanghellini MT, Kosasih PL, Sommermeyer D, Jensen MC. 114.  et al. 2013. Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells. Clin. Cancer Res. 19:3153–64 [Google Scholar]
  115. Hombach A, Heuser C, Sircar R, Tillmann T, Diehl V. 115.  et al. 1999. Characterization of a chimeric T-cell receptor with specificity for the Hodgkin's lymphoma-associated CD30 antigen. J. Immunother. 22:473–80 [Google Scholar]
  116. Hombach A, Muche JM, Gerken M, Gellrich S, Heuser C. 116.  et al. 2001. T cells engrafted with a recombinant anti-CD30 receptor target autologous CD30+ cutaneous lymphoma cells. Gene Ther. 8:891–95 [Google Scholar]
  117. Savoldo B, Rooney CM, Di Stasi A, Abken H, Hombach A. 117.  et al. 2007. Epstein Barr virus–specific cytotoxic T lymphocytes expressing the anti-CD30ζ¶ artificial chimeric T-cell receptor for immunotherapy of Hodgkin disease. Blood 110:2620–30 [Google Scholar]
  118. Di Stasi A, De Angelis B, Rooney CM, Zhang L, Mahendravada A. 118.  et al. 2009. T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model. Blood 113:6392–402 [Google Scholar]
  119. Dutour A, Marin V, Pizzitola I, Valsesia-Wittmann S, Lee D. 119.  et al. 2012. In vitro and in vivo antitumor effect of anti-CD33 chimeric receptor-expressing EBV-CTL against CD 33+ acute myeloid leukemia. Adv. Hematol. 2012:683065 [Google Scholar]
  120. Barber A, Zhang T, Megli CJ, Wu J, Meehan KR, Sentman CL. 120.  2008. Chimeric NKG2D receptor–expressing T cells as an immunotherapy for multiple myeloma. Exp. Hematol. 36:1318–28 [Google Scholar]
  121. Barber A, Meehan KR, Sentman CL. 121.  2011. Treatment of multiple myeloma with adoptively transferred chimeric NKG2D receptor-expressing T cells. Gene Ther. 18:509–16 [Google Scholar]
  122. Sentman CL, Meehan KR. 122.  2014. NKG2D CARs as cell therapy for cancer. Cancer J. 20:156–59 [Google Scholar]
  123. Jiang H, Zhang W, Shang P, Zhang H, Fu W. 123.  et al. 2014. Transfection of chimeric anti-CD138 gene enhances natural killer cell activation and killing of multiple myeloma cells. Mol. Oncol. 8:297–310 [Google Scholar]
  124. Hong H, Stastny M, Brown C, Chang WC, Ostberg JR. 124.  et al. 2014. Diverse solid tumors expressing a restricted epitope of L1-CAM can be targeted by chimeric antigen receptor redirected T lymphocytes. J. Immunother. 37:93–104 [Google Scholar]
  125. Shen CJ, Yang YX, Han EQ, Cao N, Wang YF. 125.  et al. 2013. Chimeric antigen receptor containing ICOS signaling domain mediates specific and efficient antitumor effect of T cells against EGFRvIII expressing glioma. J. Hematol. Oncol. 6:33 [Google Scholar]
  126. Sampson JH, Choi BD, Sanchez-Perez L, Suryadevara CM, Snyder DJ. 126.  et al. 2014. EGFRvIII mCAR-modified T-cell therapy cures mice with established intracerebral glioma and generates host immunity against tumor-antigen loss. Clin. Cancer Res. 20:972–84 [Google Scholar]
  127. Miao H, Choi BD, Suryadevara CM, Sanchez-Perez L, Yang S. 127.  et al. 2014. EGFRvIII-specific chimeric antigen receptor T cells migrate to and kill tumor deposits infiltrating the brain parenchyma in an invasive xenograft model of glioblastoma. PLOS ONE 9:e94281 [Google Scholar]
  128. Chinnasamy D, Yu Z, Theoret MR, Zhao Y, Shrimali R RK. 128.  et al. 2010. Gene therapy using genetically modified lymphocytes targeting VEGFR-2 inhibits the growth of vascularized syngenic tumors in mice. J. Clin. Investig. 120:3953–68 [Google Scholar]
  129. Chinnasamy D, Yu Z, Kerkar SP, Zhang L, Morgan RA. 129.  et al. 2012. Local delivery of interleukin-12 using T cells targeting VEGF receptor-2 eradicates multiple vascularized tumors in mice. Clin. Cancer Res. 18:1672–83 [Google Scholar]
  130. Tchou J, DeMichele A, Domchek S, Fox K, Tweed C. 130.  et al. 2011. Pilot clinical trial of autologous Met redirected T cells administered intratumorally and intravenously in patients with operable triple negative breast cancer Rev. Discuss. Protoc. #1110-1127, Natl. Inst. Health Recomb. DNA Advis. Comm. 127th Meet.
  131. Gong MC, Latouche JB, Krause A, Heston WDW, Bander NH, Sadelain M. 131.  1999. Cancer patient T cells genetically targeted to prostate-specific membrane antigen specifically lyse prostate cancer cells and release cytokines in response to prostate-specific membrane antigen. Neoplasia 1:123–27 [Google Scholar]
  132. Maher J, Brentjens RJ, Gunset G, Rivière I, Sadelain M. 132.  2002. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ/CD28 receptor. Nat. Biotechnol. 20:70–75 [Google Scholar]
  133. Ma Q, Safar M, Holmes E, Wang Y, Boynton AL, Junghans RP. 133.  2004. Anti-prostate specific membrane antigen designer T cells for prostate cancer therapy. Prostate 61:12–25 [Google Scholar]
  134. Gade TPF, Hassen W, Santos E, Gunset G, Saudemont A. 134.  et al. 2005. Targeted elimination of prostate cancer by genetically directed human T lymphocytes. Cancer Res. 65:9080–88 [Google Scholar]
  135. Ma Q, Gomes EM, Lo AS, Junghans RP. 135.  2014. Advanced generation anti-prostate specific membrane antigen designer T cells for prostate cancer immunotherapy. Prostate 74:286–96 [Google Scholar]
  136. Hombach A, Koch D, Sircar R, Heuser C, Diehl V. 136.  et al. 1999. A chimeric receptor that selectively targets membrane-bound carcinoembryonic antigen (mCEA) in the presence of soluble CEA. Gene Therapy. 6:300–4 [Google Scholar]
  137. Zhou X, Li J, Wang Z, Chen Z, Qiu J. 137.  et al. 2013. Cellular immunotherapy for carcinoma using genetically modified EGFR-specific T lymphocytes. Neoplasia 15:544–53 [Google Scholar]
  138. Mihara K, Yanagihara K, Takigahira M, Imai C, Kitanaka A. 138.  et al. 2009. Activated T-cell-mediated immunotherapy with a chimeric receptor against CD38 in B-cell non-Hodgkin lymphoma. J. Immunother. 32:737–43 [Google Scholar]
  139. Mihara K, Bhattacharyya J, Kitanaka A, Yanagihara K, Kubo T. 139.  et al. 2012. T-cell immunotherapy with a chimeric receptor against CD38 is effective in eliminating myeloma cells. Leukemia 26:365–67 [Google Scholar]
  140. Bhattacharyya J, Mihara K, Kitanaka A, Yanagihara K, Kubo T. 140.  et al. 2012. T-cell immunotherapy with a chimeric receptor against CD38 is effective in eradicating chemotherapy-resistant B-cell lymphoma cells overexpressing survivin induced by BMI-1. Blood Cancer J. 2:e75 [Google Scholar]
  141. Chu J, Deng Y, Benson DM, He S, Hughes T. 141.  et al. 2013. CS1-specific chimeric antigen receptor (CAR)-engineered natural killer cells enhance in vitro and in vivo antitumor activity against human multiple myeloma. Leukemia 28:917–27 [Google Scholar]
  142. Morgenroth A, Cartellieri M, Schmitz M, Günes S, Weigle B. 142.  et al. 2007. Targeting of tumor cells expressing the prostate stem cell antigen (PSCA) using genetically engineered T-cells. Prostate 67:1121–31 [Google Scholar]
  143. Katari UL, Keirnan JM, Worth AC, Hodges SE, Leen AM. 143.  et al. 2011. Engineered T cells for pancreatic cancer treatment. HPB 13:643–50 [Google Scholar]
  144. Casucci M, Nicolis di Robilant B, Falcone L, Camisa B, Norelli M. 144.  et al. 2013. CD44v6-targeted T cells mediate potent antitumor effects against acute myeloid leukemia and multiple myeloma. Blood 122:3461–72 [Google Scholar]
  145. Dall P, Herrmann I, Durst B, Stoff-Khalili MA, Bauerschmitz G. 145.  et al. 2005. In vivo cervical cancer growth inhibition by genetically engineered cytotoxic T cells. Cancer Immunol. Immunother. 54:51–60 [Google Scholar]
  146. Huang G, Yu L, Cooper LJN, Hollomon M, Huls H, Kleinerman ES. 146.  2012. Genetically modified T cells targeting interleukin-11 receptor α-chain kill human osteosarcoma cells and induce the regression of established osteosarcoma lung metastases. Cancer Res. 72:271–81 [Google Scholar]
  147. Chow KKH, Naik S, Kakarla S, Brawley VS, Shaffer DR. 147.  et al. 2012. T cells redirected to EphA2 for the immunotherapy of glioblastoma. Mol. Ther. 21:629–37 [Google Scholar]
  148. Burns WR, Zhao Y, Frankel TL, Hinrichs CS, Zheng Z. 148.  et al. 2010. A high molecular weight melanoma-associated antigen–specific chimeric antigen receptor redirects lymphocytes to target human melanomas. Cancer Res. 70:3027–33 [Google Scholar]
  149. Schmidt P, Kopecky C, Hombach A, Zigrino P, Mauch C, Abken H. 149.  2011. Eradication of melanomas by targeted elimination of a minor subset of tumor cells. PNAS 108:2474–79 [Google Scholar]
  150. Duong CP, Westwood JA, Berry LJ, Darcy PK, Kershaw MH. 150.  2011. Enhancing the specificity of T-cell cultures for adoptive immunotherapy of cancer. Immunotherapy 3:33–48 [Google Scholar]
  151. Hegde M, Corder A, Chow KKH, Mukherjee M, Ashoori A. 151.  et al. 2013. Combinational targeting offsets antigen escape and enhances effector functions of adoptively transferred T cells in glioblastoma. Mol. Ther. 21:2087–101 [Google Scholar]
  152. Cartellieri M, Bachmann M, Feldmann A, Bippes C, Stamova S. 152.  et al. 2010. Chimeric antigen receptor-engineered T cells for immunotherapy of cancer. J. Biomed. Biotechnol. 2010:956304 [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010814-124844
Loading
/content/journals/10.1146/annurev-pharmtox-010814-124844
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error