1932

Abstract

Recent advances in our understanding of the structure and function of class B G protein–coupled receptors (GPCRs) provide multiple opportunities for targeted development of allosteric modulators. Given the pleiotropic signaling patterns emanating from these receptors in response to a variety of natural agonist ligands, modulators have the potential to sculpt the responses to meet distinct needs of different groups of patients. In this review, we provide insights into how this family of GPCRs differs from the rest of the superfamily, how orthosteric agonists bind and activate these receptors, the potential for allosteric modulators to interact with various regions of these targets, and the allosteric influence of endogenous proteins on the pharmacology of these receptors, all of which are important considerations when developing new therapies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010919-023301
2020-01-06
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/60/1/annurev-pharmtox-010919-023301.html?itemId=/content/journals/10.1146/annurev-pharmtox-010919-023301&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Bortolato A, Dore AS, Hollenstein K, Tehan BG, Mason JS, Marshall FH 2014. Structure of Class B GPCRs: new horizons for drug discovery. Br. J. Pharmacol. 171:3132–45
    [Google Scholar]
  2. 2. 
    Traynor K. 2018. FDA approves licensing of erenumab-aooe to prevent migraine. Am. J. Health Syst. Pharm. 75:929–30
    [Google Scholar]
  3. 3. 
    Liang YL, Khoshouei M, Radjainia M, Zhang Y, Glukhova A et al. 2017. Phase-plate cryo-EM structure of a class B GPCR-G–protein complex. Nature 546:118–23
    [Google Scholar]
  4. 4. 
    Liang YL, Khoshouei M, Glukhova A, Furness SGB, Zhao P et al. 2018. Phase-plate cryo-EM structure of a biased agonist-bound human GLP-1 receptor-Gs complex. Nature 555:121–25
    [Google Scholar]
  5. 5. 
    Hollenstein K, Kean J, Bortolato A, Cheng RK, Dore AS et al. 2013. Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature 499:438–43
    [Google Scholar]
  6. 6. 
    Siu FY, He M, de Graaf C, Han GW, Yang D et al. 2013. Structure of the human glucagon class B G-protein-coupled receptor. Nature 499:444–49
    [Google Scholar]
  7. 7. 
    Dillon C, Hughes H, O'Reilly NJ, McLoughlin P 2017. Formulation and characterisation of dissolving microneedles for the transdermal delivery of therapeutic peptides. Int. J. Pharm. 526:125–36
    [Google Scholar]
  8. 8. 
    Gudiksen N, Hofstatter T, Ronn BB, Sparre T 2017. FlexTouch: an insulin pen-injector with a low activation force across different insulin formulations, needle technologies, and temperature conditions. Diabetes Technol. Ther. 19:603–7
    [Google Scholar]
  9. 9. 
    Wootten D, Miller LJ, Koole C, Christopoulos A, Sexton PM 2017. Allostery and biased agonism at class B G protein–coupled receptors. Chem. Rev. 117:111–38
    [Google Scholar]
  10. 10. 
    Thal DM, Glukhova A, Sexton PM, Christopoulos A 2018. Structural insights into G-protein-coupled receptor allostery. Nature 559:45–53
    [Google Scholar]
  11. 11. 
    Iqbal J, Zaidi M, Schneider AE 2003. Cinacalcet hydrochloride (Amgen). IDrugs 6:587–92
    [Google Scholar]
  12. 12. 
    Christopoulos A. 2014. Advances in G protein–coupled receptor allostery: from function to structure. Mol. Pharmacol. 86:463–78
    [Google Scholar]
  13. 13. 
    de Graaf C, Song G, Cao C, Zhao Q, Wang MW et al. 2017. Extending the structural view of class B GPCRs. Trends Biochem. Sci. 42:946–60
    [Google Scholar]
  14. 14. 
    Kenakin TP. 2012. Biased signalling and allosteric machines: new vistas and challenges for drug discovery. Br. J. Pharmacol. 165:1659–69
    [Google Scholar]
  15. 15. 
    Wootten D, Simms J, Miller LJ, Christopoulos A, Sexton PM 2013. Polar transmembrane interactions drive formation of ligand-specific and signal pathway–biased family B G protein–coupled receptor conformations. PNAS 110:5211–16
    [Google Scholar]
  16. 16. 
    Cvicek V, Goddard WA 3rd, Abrol R 2016. Structure-based sequence alignment of the transmembrane domains of all human GPCRs: phylogenetic, structural and functional implications. PLOS Comput. Biol. 12:e1004805
    [Google Scholar]
  17. 17. 
    Vass M, Kooistra AJ, Yang D, Stevens RC, Wang MW, de Graaf C 2018. Chemical diversity in the G protein–coupled receptor superfamily. Trends Pharmacol. Sci. 39:494–512
    [Google Scholar]
  18. 18. 
    Grace CR, Perrin MH, DiGruccio MR, Miller CL, Rivier JE et al. 2004. NMR structure and peptide hormone binding site of the first extracellular domain of a type B1 G protein–coupled receptor. PNAS 101:12836–41
    [Google Scholar]
  19. 19. 
    Liang YL, Khoshouei M, Deganutti G, Glukhova A, Koole C et al. 2018. Cryo-EM structure of the active, Gs-protein complexed, human CGRP receptor. Nature 561:492–97
    [Google Scholar]
  20. 20. 
    Zhang Y, Sun B, Feng D, Hu H, Chu M et al. 2017. Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. Nature 546:248–53
    [Google Scholar]
  21. 21. 
    Erlandson SC, McMahon C, Kruse AC 2018. Structural basis for G protein–coupled receptor signaling. Annu. Rev. Biophys. 47:1–18
    [Google Scholar]
  22. 22. 
    Zhang H, Qiao A, Yang D, Yang L, Dai A et al. 2017. Structure of the full-length glucagon class B G-protein-coupled receptor. Nature 546:259–64
    [Google Scholar]
  23. 23. 
    Zhang H, Qiao A, Yang L, Van Eps N, Frederiksen KS et al. 2018. Structure of the glucagon receptor in complex with a glucagon analogue. Nature 553:106–10
    [Google Scholar]
  24. 24. 
    Ehrenmann J, Schoppe J, Klenk C, Rappas M, Kummer L et al. 2018. High-resolution crystal structure of parathyroid hormone 1 receptor in complex with a peptide agonist. Nat. Struct. Mol. Biol. 25:1086–92
    [Google Scholar]
  25. 25. 
    Jazayeri A, Rappas M, Brown AJH, Kean J, Errey JC et al. 2017. Crystal structure of the GLP-1 receptor bound to a peptide agonist. Nature 546:254–58
    [Google Scholar]
  26. 26. 
    Koth CM, Murray JM, Mukund S, Madjidi A, Minn A et al. 2012. Molecular basis for negative regulation of the glucagon receptor. PNAS 109:14393–98
    [Google Scholar]
  27. 27. 
    Mukund S, Shang Y, Clarke HJ, Madjidi A, Corn JE et al. 2013. Inhibitory mechanism of an allosteric antibody targeting the glucagon receptor. J. Biol. Chem. 288:36168–78
    [Google Scholar]
  28. 28. 
    Wootten D, Reynolds CA, Koole C, Smith KJ, Mobarec JC et al. 2016. A hydrogen-bonded polar network in the core of the glucagon-like peptide-1 receptor is a fulcrum for biased agonism: lessons from class B crystal structures. Mol. Pharmacol. 89:335–47
    [Google Scholar]
  29. 29. 
    Hoare SR. 2005. Mechanisms of peptide and nonpeptide ligand binding to Class B G-protein-coupled receptors. Drug Disc. Today 10:417–27
    [Google Scholar]
  30. 30. 
    Castro M, Nikolaev VO, Palm D, Lohse MJ, Vilardaga JP 2005. Turn-on switch in parathyroid hormone receptor by a two-step parathyroid hormone binding mechanism. PNAS 102:16084–89
    [Google Scholar]
  31. 31. 
    Montrose-Rafizadeh C, Yang H, Rodgers BD, Beday A, Pritchette LA, Eng J 1997. High potency antagonists of the pancreatic glucagon-like peptide-1 receptor. J. Biol. Chem. 272:21201–6
    [Google Scholar]
  32. 32. 
    Hoare SR. 2007. Allosteric modulators of class B G-protein-coupled receptors. Curr. Neuropharmacol. 5:168–79
    [Google Scholar]
  33. 33. 
    Hager MV, Clydesdale L, Gellman SH, Sexton PM, Wootten D 2017. Characterization of signal bias at the GLP-1 receptor induced by backbone modification of GLP-1. Biochem. Pharmacol. 136:99–108
    [Google Scholar]
  34. 34. 
    Hager MV, Johnson LM, Wootten D, Sexton PM, Gellman SH 2016. β-arrestin-biased agonists of the GLP-1 receptor from β-amino acid residue incorporation into GLP-1 analogues. J. Am. Chem. Soc. 138:14970–79
    [Google Scholar]
  35. 35. 
    Furness SGB, Christopoulos A, Sexton PM, Wootten D 2018. Differential engagement of polar networks in the glucagon-like peptide 1 receptor by endogenous variants of the glucagon-like peptide 1. Biochem. Pharmacol. 156:223–40
    [Google Scholar]
  36. 36. 
    Dal Maso E, Zhu Y, Pham V, Reynolds CA, Deganutti G et al. 2018. Extracellular loops 2 and 3 of the calcitonin receptor selectively modify agonist binding and efficacy. Biochem. Pharmacol. 150:214–44
    [Google Scholar]
  37. 37. 
    Wootten D, Reynolds CA, Smith KJ, Mobarec JC, Koole C et al. 2016. The extracellular surface of the GLP-1 receptor is a molecular trigger for biased agonism. Cell 165:1632–43
    [Google Scholar]
  38. 38. 
    Koole C, Wootten D, Simms J, Miller LJ, Christopoulos A, Sexton PM 2012. Second extracellular loop of human glucagon-like peptide-1 receptor (GLP-1R) has a critical role in GLP-1 peptide binding and receptor activation. J. Biol. Chem. 287:3642–58
    [Google Scholar]
  39. 39. 
    Koole C, Wootten D, Simms J, Savage EE, Miller LJ et al. 2012. Second extracellular loop of human glucagon-like peptide-1 receptor (GLP-1R) differentially regulates orthosteric but not allosteric agonist binding and function. J. Biol. Chem. 287:3659–73
    [Google Scholar]
  40. 40. 
    Lei S, Clydesdale L, Dai A, Cai X, Feng Y et al. 2018. Two distinct domains of the glucagon-like peptide-1 receptor control peptide-mediated biased agonism. J. Biol. Chem. 293:9370–87
    [Google Scholar]
  41. 41. 
    Wootten D, Reynolds CA, Smith KJ, Mobarec JC, Furness SG et al. 2016. Key interactions by conserved polar amino acids located at the transmembrane helical boundaries in Class B GPCRs modulate activation, effector specificity and biased signalling in the glucagon-like peptide-1 receptor. Biochem. Pharmacol. 118:68–87
    [Google Scholar]
  42. 42. 
    Koole C, Wootten D, Simms J, Valant C, Sridhar R et al. 2010. Allosteric ligands of the glucagon-like peptide 1 receptor (GLP-1R) differentially modulate endogenous and exogenous peptide responses in a pathway-selective manner: implications for drug screening. Mol. Pharmacol. 78:456–65
    [Google Scholar]
  43. 43. 
    Broichhagen J, Podewin T, Meyer-Berg H, von Ohlen Y, Johnston NR et al. 2015. Optical control of insulin secretion using an incretin switch. Angew. Chem. Int. Ed. 54:15565–69
    [Google Scholar]
  44. 44. 
    Shi L, Lehto SG, Zhu DX, Sun H, Zhang J et al. 2016. Pharmacologic characterization of AMG 334, a potent and selective human monoclonal antibody against the calcitonin gene–related peptide receptor. J. Pharmacol. Exp. Ther. 356:223–31
    [Google Scholar]
  45. 45. 
    ter Haar E, Koth CM, Abdul-Manan N, Swenson L, Coll JT et al. 2010. Crystal structure of the ectodomain complex of the CGRP receptor, a class-B GPCR, reveals the site of drug antagonism. Structure 18:1083–93
    [Google Scholar]
  46. 46. 
    Hennen S, Kodra JT, Soroka V, Krogh BO, Wu X et al. 2016. Structural insight into antibody-mediated antagonism of the glucagon-like peptide-1 receptor. Sci. Rep. 6:26236
    [Google Scholar]
  47. 47. 
    Edvinsson L, Haanes KA, Warfvinge K, Krause DN 2018. CGRP as the target of new migraine therapies—successful translation from bench to clinic. Nat. Rev. Neurol. 14:338–50
    [Google Scholar]
  48. 48. 
    Dong M, Cox RF, Miller LJ 2009. Juxtamembranous region of the amino terminus of the family B G protein–coupled calcitonin receptor plays a critical role in small-molecule agonist action. J. Biol. Chem. 284:21839–47
    [Google Scholar]
  49. 49. 
    Freeman J, Weaver S, Davis S, Rao M, Quada J et al. 2016. TTP273: oral, G protein pathway selective clinical-stage GLP-1 receptor (GLP-1R) agonist Paper presented at the Keystone Symposium, Keystone, CO, Febr 22
    [Google Scholar]
  50. 50. 
    Jazayeri A, Dore AS, Lamb D, Krishnamurthy H, Southall SM et al. 2016. Extra-helical binding site of a glucagon receptor antagonist. Nature 533:274–77
    [Google Scholar]
  51. 51. 
    Song G, Yang D, Wang Y, de Graaf C, Zhou Q et al. 2017. Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators. Nature 546:312–315
    [Google Scholar]
  52. 52. 
    Li H, Papadopoulos V. 1998. Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern. Endocrinology 139:4991–97
    [Google Scholar]
  53. 53. 
    Baier CJ, Fantini J, Barrantes FJ 2011. Disclosure of cholesterol recognition motifs in transmembrane domains of the human nicotinic acetylcholine receptor. Sci. Rep. 1:69
    [Google Scholar]
  54. 54. 
    Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola VP et al. 2008. A specific cholesterol binding site is established by the 2.8 Å structure of the human β2-adrenergic receptor. Structure 16:897–905
    [Google Scholar]
  55. 55. 
    Genheden S, Essex JW, Lee AG 2017. G protein coupled receptor interactions with cholesterol deep in the membrane. Biochim. Biophys. Acta Biomembr. 1859:268–81
    [Google Scholar]
  56. 56. 
    Zocher M, Zhang C, Rasmussen SG, Kobilka BK, Muller DJ 2012. Cholesterol increases kinetic, energetic, and mechanical stability of the human β2-adrenergic receptor. PNAS 109:E3463–72
    [Google Scholar]
  57. 57. 
    Desai AJ, Miller LJ. 2018. Changes in the plasma membrane in metabolic disease: impact of the membrane environment on G protein–coupled receptor structure and function. Br. J. Pharmacol. 175:4009–25
    [Google Scholar]
  58. 58. 
    Knudsen LB, Kiel D, Teng M, Behrens C, Bhumralkar D et al. 2007. Small-molecule agonists for the glucagon-like peptide 1 receptor. PNAS 104:937–42
    [Google Scholar]
  59. 59. 
    Sloop KW, Willard FS, Brenner MB, Ficorilli J, Valasek K et al. 2010. Novel small molecule glucagon-like peptide-1 receptor agonist stimulates insulin secretion in rodents and from human islets. Diabetes 59:3099–107
    [Google Scholar]
  60. 60. 
    Nolte WM, Fortin JP, Stevens BD, Aspnes GE, Griffith DA et al. 2014. A potentiator of orthosteric ligand activity at GLP-1R acts via covalent modification. Nat. Chem. Biol. 10:629–31
    [Google Scholar]
  61. 61. 
    Broichhagen J, Johnston NR, von Ohlen Y, Meyer-Berg H, Jones BJ et al. 2016. Allosteric optical control of a class B G-protein-coupled receptor. Angew. Chem. Int. Ed. 55:5865–68
    [Google Scholar]
  62. 62. 
    Harikumar KG, Wootten D, Pinon DI, Koole C, Ball AM et al. 2012. Glucagon-like peptide-1 receptor dimerization differentially regulates agonist signaling but does not affect small molecule allostery. PNAS 109:18607–12
    [Google Scholar]
  63. 63. 
    DeVree BT, Mahoney JP, Velez-Ruiz GA, Rasmussen SG, Kuszak AJ et al. 2016. Allosteric coupling from G protein to the agonist-binding pocket in GPCRs. Nature 535:182–86
    [Google Scholar]
  64. 64. 
    van der Westhuizen ET, Valant C, Sexton PM, Christopoulos A 2015. Endogenous allosteric modulators of G protein-coupled receptors. J. Pharmacol. Exp. Ther. 353:246–60
    [Google Scholar]
  65. 65. 
    Liu W, Chun E, Thompson AA, Chubukov P, Xu F et al. 2012. Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337:232–36
    [Google Scholar]
  66. 66. 
    White KL, Eddy MT, Gao ZG, Han GW, Lian T et al. 2018. Structural connection between activation microswitch and allosteric sodium site in GPCR signaling. Structure 26:259–69.e5
    [Google Scholar]
  67. 67. 
    Selvam B, Shamsi Z, Shukla D 2018. Universality of the sodium ion binding mechanism in class A G-protein-coupled receptors. Angew. Chem. Int. Ed. 57:3048–53
    [Google Scholar]
  68. 68. 
    Foord SM, Marshall FH. 1999. RAMPs: accessory proteins for seven transmembrane domain receptors. Trends Pharmacol. Sci. 20:184–87
    [Google Scholar]
  69. 69. 
    Poyner DR, Sexton PM, Marshall I, Smith DM, Quirion R et al. 2002. International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol. Rev. 54:233–46
    [Google Scholar]
  70. 70. 
    Klein KR, Matson BC, Caron KM 2016. The expanding repertoire of receptor activity modifying protein (RAMP) function. Crit. Rev. Biochem. Mol. Biol. 51:65–71
    [Google Scholar]
  71. 71. 
    Sleno R, Hébert TE. 2019. Shaky ground—the nature of metastable GPCR signalling complexes. Neuropharmacology 152:4–14
    [Google Scholar]
  72. 72. 
    Harikumar K, Dong M, Miller L 2010. Secretin receptor dimerization: a possible functionally important paradigm for Family B G protein-coupled receptors. GPCR Molecular Pharmacology and Drug Targeting: Shifting Paradigms and New Directions A Gilchrist 138–64 Hoboken, NJ: John Wiley & Sons, Inc.
    [Google Scholar]
  73. 73. 
    Gao F, Harikumar KG, Dong M, Lam PC, Sexton PM et al. 2009. Functional importance of a structurally distinct homodimeric complex of the family B G protein-coupled secretin receptor. Mol. Pharmacol. 76:264–74
    [Google Scholar]
  74. 74. 
    Harikumar KG, Morfis MM, Sexton PM, Miller LJ 2008. Pattern of intra-family hetero-oligomerization involving the G-protein-coupled secretin receptor. J. Mol. Neurosci. 36:279–85
    [Google Scholar]
  75. 75. 
    Roed SN, Nohr AC, Wismann P, Iversen H, Brauner-Osborne H et al. 2015. Functional consequences of glucagon-like peptide-1 receptor cross-talk and trafficking. J. Biol. Chem. 290:1233–43
    [Google Scholar]
  76. 76. 
    Roed SN, Orgaard A, Jorgensen R, De Meyts P 2012. Receptor oligomerization in family B1 of G-protein-coupled receptors: focus on BRET investigations and the link between GPCR oligomerization and binding cooperativity. Front. Endocrinol. 3:62
    [Google Scholar]
  77. 77. 
    Harikumar KG, Lau S, Sexton PM, Wootten D, Miller LJ 2017. Coexpressed class B G protein-coupled secretin and GLP-1 receptors self- and cross-associate: impact on pancreatic islets. Endocrinology 158:1685–700
    [Google Scholar]
  78. 78. 
    Lee LT, Ng SY, Chu JY, Sekar R, Harikumar KG et al. 2014. Transmembrane peptides as unique tools to demonstrate the in vivo action of a cross-class GPCR heterocomplex. FASEB J 28:2632–44
    [Google Scholar]
  79. 79. 
    Harikumar KG, Augustine ML, Lee LT, Chow BK, Miller LJ 2016. Structure and function of cross-class complexes of G protein-coupled secretin and angiotensin 1a receptors. J. Biol. Chem. 291:17332–44
    [Google Scholar]
  80. 80. 
    Finan B, Ma T, Ottaway N, Muller TD, Habegger KM et al. 2013. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci. Transl. Med. 5:209ra151
    [Google Scholar]
  81. 81. 
    Frias JP, Bastyr EJ 3rd, Vignati L, Tschop MH, Schmitt C et al. 2017. The sustained effects of a dual GIP/GLP-1 receptor agonist, NNC0090-2746, in patients with type 2 diabetes. Cell Metab 26:343–52.e2
    [Google Scholar]
  82. 82. 
    Finan B, Yang B, Ottaway N, Smiley DL, Ma T et al. 2015. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat. Med. 21:27–36
    [Google Scholar]
  83. 83. 
    Knerr PJ, Finan B, Gelfanov V, Perez-Tilve D, Tschop MH, DiMarchi RD 2018. Optimization of peptide-based polyagonists for treatment of diabetes and obesity. Bioorg. Med. Chem. 26:2873–81
    [Google Scholar]
  84. 84. 
    Fahmy H, Kuppast B, Ismail MT 2017. Structure and function of small non-peptide CRF antagonists and their potential clinical use. Curr. Mol. Pharmacol. 10:270–81
    [Google Scholar]
  85. 85. 
    Scheen AJ, Paquot N, Lefebvre PJ 2017. Investigational glucagon receptor antagonists in phase I and II clinical trials for diabetes. Expert Opin. Investig. Drugs 26:1373–89
    [Google Scholar]
  86. 86. 
    Sammons MF, Lee EC. 2015. Recent progress in the development of small-molecule glucagon receptor antagonists. Bioorg. Med. Chem. Lett. 25:4057–64
    [Google Scholar]
  87. 87. 
    Maasumi K, Michael RL, Rapoport AM 2018. CGRP and migraine: the role of blocking calcitonin gene-related peptide ligand and receptor in the management of migraine. Drugs 78:913–28
    [Google Scholar]
  88. 88. 
    Willard FS, Bueno AB, Sloop KW 2012. Small molecule drug discovery at the glucagon-like peptide-1 receptor. Exp. Diab. Res. 2012:709893
    [Google Scholar]
  89. 89. 
    Booe JM, Walker CS, Barwell J, Kuteyi G, Simms J et al. 2015. Structural basis for receptor activity-modifying protein-dependent selective peptide recognition by a G protein–coupled receptor. Mol. Cell 58:1040–52
    [Google Scholar]
  90. 90. 
    Gingell JJ, Simms J, Barwell J, Poyner DR, Watkins HA et al. 2016. An allosteric role for receptor activity-modifying proteins in defining GPCR pharmacology. Cell Discov 2:16012
    [Google Scholar]
  91. 91. 
    Lau J, Behrens C, Sidelmann UG, Knudsen LB, Lundt B et al. 2007. New β-alanine derivatives are orally available glucagon receptor antagonists. J. Med. Chem. 50:113–28
    [Google Scholar]
  92. 92. 
    Xiong Y, Guo J, Candelore MR, Liang R, Miller C et al. 2012. Discovery of a novel glucagon receptor antagonist N-[(4-{(1S)-1-[3-(3, 5-dichlorophenyl)-5-(6-methoxynaphthalen-2-yl)-1H-pyrazol-1-yl]ethyl}phenyl)carbonyl]-β-alanine (MK-0893) for the treatment of type II diabetes. J. Med. Chem. 55:6137–48
    [Google Scholar]
  93. 93. 
    Carter PH, Dean T, Bhayana B, Khatri A, Rajur R, Gardella TJ 2015. Actions of the small molecule ligands SW106 and AH-3960 on the type-1 parathyroid hormone receptor. Mol. Endocrinol. 29:307–21
    [Google Scholar]
  94. 94. 
    Chen D, Liao J, Li N, Zhou C, Liu Q et al. 2007. A nonpeptidic agonist of glucagon-like peptide 1 receptors with efficacy in diabetic db/db mice. PNAS 104:943–48
    [Google Scholar]
  95. 95. 
    Liu Q, Li N, Yuan Y, Lu H, Wu X et al. 2012. Cyclobutane derivatives as novel nonpeptidic small molecule agonists of glucagon-like peptide-1 receptor. J. Med. Chem. 55:250–67
    [Google Scholar]
  96. 96. 
    Bueno AB, Showalter AD, Wainscott DB, Stutsman C, Marin A et al. 2016. Positive allosteric modulation of the glucagon-like peptide-1 receptor by diverse electrophiles. J. Biol. Chem. 291:10700–15
    [Google Scholar]
  97. 97. 
    Wootten D, Savage EE, Willard FS, Bueno AB, Sloop KW et al. 2013. Differential activation and modulation of the glucagon-like peptide-1 receptor by small molecule ligands. Mol. Pharmacol. 83:822–34
    [Google Scholar]
  98. 98. 
    Li N, Lu J, Willars GB 2012. Allosteric modulation of the activity of the glucagon-like peptide-1 (GLP-1) metabolite GLP-1 9–36 amide at the GLP-1 receptor. PLOS ONE 7:e47936
    [Google Scholar]
  99. 99. 
    Wootten D, Savage EE, Valant C, May LT, Sloop KW et al. 2012. Allosteric modulation of endogenous metabolites as an avenue for drug discovery. Mol. Pharmacol. 82:281–90
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010919-023301
Loading
/content/journals/10.1146/annurev-pharmtox-010919-023301
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error