1932

Abstract

The ability to regulate water movement is vital for the survival of cells and organisms. In addition to passively crossing lipid bilayers by diffusion, water transport is also driven across cell membranes by osmotic gradients through aquaporin water channels. There are 13 aquaporins in human tissues, and of these, aquaporin-2 (AQP2) is the most highly regulated water channel in the kidney: The expression and trafficking of AQP2 respond to body volume status and plasma osmolality via the antidiuretic hormone, vasopressin (VP). Dysfunctional VP signaling in renal epithelial cells contributes to disorders of water balance, and research initially focused on regulating the major cAMP/PKA pathway to normalize urine concentrating ability. With the discovery of novel and more complex signaling networks that regulate AQP2 trafficking, promising therapeutic targets have since been identified. Several strategies based on data from preclinical studies may ultimately translate to the care of patients with defective water homeostasis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010919-023654
2020-01-06
2024-04-21
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/60/1/annurev-pharmtox-010919-023654.html?itemId=/content/journals/10.1146/annurev-pharmtox-010919-023654&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Agre P. 2000. Homer W. Smith award lecture. Aquaporin water channels in kidney. J. Am. Soc. Nephrol. 11:764–77
    [Google Scholar]
  2. 2. 
    Agre P. 2006. The aquaporin water channels. Proc. Am. Thorac. Soc. 3:5–13
    [Google Scholar]
  3. 3. 
    Day RE, Kitchen P, Owen DS, Bland C, Marshall L et al. 2014. Human aquaporins: regulators of transcellular water flow. Biochim. Biophys. Acta 1840:1492–506
    [Google Scholar]
  4. 4. 
    Bie P. 1980. Osmoreceptors, vasopressin, and control of renal water excretion. Physiol. Rev. 60:961–1048
    [Google Scholar]
  5. 5. 
    Schrier RW. 2006. Body water homeostasis: clinical disorders of urinary dilution and concentration. J. Am. Soc. Nephrol. 17:1820–32
    [Google Scholar]
  6. 6. 
    Bedford JJ, Weggery S, Ellis G, McDonald FJ, Joyce PR et al. 2008. Lithium-induced nephrogenic diabetes insipidus: renal effects of amiloride. Clin. J. Am. Soc. Nephrol. 3:1324–31
    [Google Scholar]
  7. 7. 
    Sterns RH. 2015. Disorders of plasma sodium—causes, consequences, and correction. N. Engl. J. Med. 372:55–65
    [Google Scholar]
  8. 8. 
    Kuo SCH, Kuo PJ, Rau CS, Wu SC, Hsu SY, Hsieh CH 2017. Hyponatremia is associated with worse outcomes from fall injuries in the elderly. Int. J. Environ. Res. Public Health 14:460
    [Google Scholar]
  9. 9. 
    Romanovsky A, Bagshaw S, Rosner MH 2011. Hyponatremia and congestive heart failure: a marker of increased mortality and a target for therapy. Int. J. Nephrol. 2011:732746
    [Google Scholar]
  10. 10. 
    Dunlap ME, Hauptman PJ, Amin AN, Chase SL, Chiodo JA 3rd et al. 2017. Current management of hyponatremia in acute heart failure: a report from the Hyponatremia Registry for patients with euvolemic and hypervolemic hyponatremia (HN Registry). J. Am. Heart Assoc. 6:8e005261
    [Google Scholar]
  11. 11. 
    Adrogue HJ, Madias NE. 2000. Hyponatremia. N. Engl. J. Med. 342:1581–89
    [Google Scholar]
  12. 12. 
    Watkins PB, Lewis JH, Kaplowitz N, Alpers DH, Blais JD et al. 2015. Clinical pattern of tolvaptan-associated liver injury in subjects with autosomal dominant polycystic kidney disease: analysis of clinical trials database. Drug Saf 38:1103–13
    [Google Scholar]
  13. 13. 
    Totsuka Y, Ferdows MS, Nielsen TB, Field JB 1983. Effects of forskolin on adenylate cyclase, cyclic AMP, protein kinase and intermediary metabolism of the thyroid gland. Biochim. Biophys. Acta 756:319–27
    [Google Scholar]
  14. 14. 
    Hozawa S, Holtzman EJ, Ausiello DA 1996. cAMP motifs regulating transcription in the aquaporin 2 gene. Am. J. Physiol. 270:C1695–702
    [Google Scholar]
  15. 15. 
    de Rouffignac C, Elalouf JM 1983. Effects of calcitonin on the renal concentrating mechanism. Am. J. Physiol. 245:F506–11
    [Google Scholar]
  16. 16. 
    Bouley R, Lu HA, Nunes P, Da Silva N, McLaughlin M et al. 2011. Calcitonin has a vasopressin-like effect on aquaporin-2 trafficking and urinary concentration. J. Am. Soc. Nephrol. 22:59–72
    [Google Scholar]
  17. 17. 
    Eur. Med. Agency 2012. European Medicines Agency recommends limiting long-term use of calcitonin medicines Press Release, July 20. https://www.ema.europa.eu/en/news/european-medicines-agency-recommends-limiting-long-term-use-calcitonin-medicines
  18. 18. 
    Lempicki KA, Borchert JS. 2014. Cancer risk associated with calcitonin use. J. Am. Geriatr. Soc. 62:2447–50
    [Google Scholar]
  19. 19. 
    Overman RA, Borse M, Gourlay ML 2013. Salmon calcitonin use and associated cancer risk. Ann. Pharmacother. 47:1675–84
    [Google Scholar]
  20. 20. 
    Sun LM, Lin MC, Muo CH, Liang JA, Kao CH 2014. Calcitonin nasal spray and increased cancer risk: a population-based nested case-control study. J. Clin. Endocrinol. Metab. 99:4259–64
    [Google Scholar]
  21. 21. 
    US Food Drug Admin 2014. Miacalcin (calcitonin-salmon) injection, synthetic, for subcutaneous or intramuscular use Highlights of Prescribing Information, US Food Drug Admin. Silver Spring, MD: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/017808s035lbl.pdf
  22. 22. 
    Freychet L, Rizkalla SW, Desplanque N, Basdevant A, Zirinis P et al. 1988. Effect of intranasal glucagon on blood glucose levels in healthy subjects and hypoglycaemic patients with insulin-dependent diabetes. Lancet 1:1364–66
    [Google Scholar]
  23. 23. 
    Butlen D, Morel F. 1985. Glucagon receptors along the nephron: [125I]glucagon binding in rat tubules. Pflugers Arch 404:348–53
    [Google Scholar]
  24. 24. 
    Ahloulay M, Bouby N, Machet F, Kubrusly M, Coutaud C, Bankir L 1992. Effects of glucagon on glomerular filtration rate and urea and water excretion. Am. J. Physiol. 263:F24–36
    [Google Scholar]
  25. 25. 
    Yano Y, Cesar KR, Araujo M, Rodrigues AC Jr., Andrade LC, Magaldi AJ 2009. Aquaporin 2 expression increased by glucagon in normal rat inner medullary collecting ducts. Am. J. Physiol. Ren. Physiol 296:F54–59
    [Google Scholar]
  26. 26. 
    Bailly C, Imbert-Teboul M, Chabardes D, Hus-Citharel A, Montegut M et al. 1980. The distal nephron of rat kidney: a target site for glucagon. PNAS 77:3422–24
    [Google Scholar]
  27. 27. 
    Mulvehill JB, Hui YS, Barnes LD, Palumbo PJ, Dousa TP 1976. Glucagon-sensitive adenylate cyclase in human renal medulla. J. Clin. Endocrinol. Metab. 42:380–84
    [Google Scholar]
  28. 28. 
    Maeda Y, Terada Y, Nonoguchi H, Knepper MA 1992. Hormone and autacoid regulation of cAMP production in rat IMCD subsegments. Am. J. Physiol. 263:F319–27
    [Google Scholar]
  29. 29. 
    Charlton CG, Quirion R, Handelmann GE, Miller RL, Jensen RT et al. 1986. Secretin receptors in the rat kidney: adenylate cyclase activation and renal effects. Peptides 7:865–71
    [Google Scholar]
  30. 30. 
    Procino G, Milano S, Carmosino M, Barbieri C, Nicoletti MC et al. 2014. Combination of secretin and fluvastatin ameliorates the polyuria associated with X-linked nephrogenic diabetes insipidus in mice. Kidney Int 86:127–38
    [Google Scholar]
  31. 31. 
    Chu JY, Chung SC, Lam AK, Tam S, Chung SK, Chow BK 2007. Phenotypes developed in secretin receptor-null mice indicated a role for secretin in regulating renal water reabsorption. Mol. Cell. Biol. 27:2499–511
    [Google Scholar]
  32. 32. 
    Fabian TJ, Amico JA, Kroboth PD, Mulsant BH, Corey SE et al. 2004. Paroxetine-induced hyponatremia in older adults: a 12-week prospective study. Arch. Intern. Med. 164:327–32
    [Google Scholar]
  33. 33. 
    Lien YH. 2018. Antidepressants and hyponatremia. Am. J. Med. 131:7–8
    [Google Scholar]
  34. 34. 
    Moyses ZP, Nakandakari FK, Magaldi AJ 2008. Fluoxetine effect on kidney water reabsorption. Nephrol. Dial. Transplant. 23:1173–78
    [Google Scholar]
  35. 35. 
    Raymond JR, Kim J, Beach RE, Tisher CC 1993. Immunohistochemical mapping of cellular and subcellular distribution of 5-HT1A receptors in rat and human kidneys. Am. J. Physiol. 264:F9–19
    [Google Scholar]
  36. 36. 
    Schrier RW. 2009. Interactions between angiotensin II and arginine vasopressin in water homeostasis. Kidney Int 76:137–39
    [Google Scholar]
  37. 37. 
    Wang W, Li C, Summer S, Falk S, Schrier RW 2010. Interaction between vasopressin and angiotensin II in vivo and in vitro: effect on aquaporins and urine concentration. Am. J. Physiol. Ren. Physiol. 299:F577–84
    [Google Scholar]
  38. 38. 
    Li C, Wang W, Rivard CJ, Lanaspa MA, Summer S, Schrier RW 2011. Molecular mechanisms of angiotensin II stimulation on aquaporin-2 expression and trafficking. Am. J. Physiol. Ren. Physiol. 300:F1255–61
    [Google Scholar]
  39. 39. 
    Lee BH, Kwon TH. 2007. Regulation of AQP2 in collecting duct: an emphasis on the effects of angiotensin II or aldosterone. Electrolytes Blood Press 5:15–22
    [Google Scholar]
  40. 40. 
    Lee YJ, Song IK, Jang KJ, Nielsen J, Frokiaer J et al. 2007. Increased AQP2 targeting in primary cultured IMCD cells in response to angiotensin II through AT1 receptor. Am. J. Physiol. Ren. Physiol. 292:F340–50
    [Google Scholar]
  41. 41. 
    Kwon TH, Nielsen J, Knepper MA, Frokiaer J, Nielsen S 2005. Angiotensin II AT1 receptor blockade decreases vasopressin-induced water reabsorption and AQP2 levels in NaCl-restricted rats. Am. J. Physiol. Ren. Physiol. 288:F673–84
    [Google Scholar]
  42. 42. 
    Li XC, Shao Y, Zhuo JL 2009. AT1a receptor knockout in mice impairs urine concentration by reducing basal vasopressin levels and its receptor signaling proteins in the inner medulla. Kidney Int 76:169–77
    [Google Scholar]
  43. 43. 
    Zhang Y, Peti-Peterdi J,, Müller CE, Carlson NG, Baqi Yet al. 2015. P2Y12 receptor localizes in the renal collecting duct and its blockade augments arginine vasopressin action and alleviates nephrogenic diabetes insipidus. J. Am. Soc. Nephrol 26:297887
    [Google Scholar]
  44. 44. 
    Yusuf S, Zhao F, Mehta SR, Chrolavicius S, Tognoni G et al. 2001. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N. Engl. J. Med. 345:494–502
    [Google Scholar]
  45. 45. 
    Chen ZM, Jiang LX, Chen YP, Xie JX, Pan HC et al. 2005. Addition of clopidogrel to aspirin in 45,852 patients with acute myocardial infarction: randomised placebo-controlled trial. Lancet 366:1607–21
    [Google Scholar]
  46. 46. 
    CAPRIE Steer. Comm 1996. A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). Lancet 348:1329–39
    [Google Scholar]
  47. 47. 
    Sugimoto Y, Narumiya S. 2007. Prostaglandin E receptors. J. Biol. Chem. 282:11613–17
    [Google Scholar]
  48. 48. 
    Olesen ET, Rutzler MR, Moeller HB, Praetorius HA, Fenton RA 2011. Vasopressin-independent targeting of aquaporin-2 by selective E-prostanoid receptor agonists alleviates nephrogenic diabetes insipidus. PNAS 108:12949–54
    [Google Scholar]
  49. 49. 
    Li JH, Chou CL, Li B, Gavrilova O, Eisner C et al. 2009. A selective EP4 PGE2 receptor agonist alleviates disease in a new mouse model of X-linked nephrogenic diabetes insipidus. J. Clin. Investig. 119:3115–26
    [Google Scholar]
  50. 50. 
    Gao M, Cao R, Du S, Jia X, Zheng S et al. 2015. Disruption of prostaglandin E2 receptor EP4 impairs urinary concentration via decreasing aquaporin 2 in renal collecting ducts. PNAS 112:8397–402
    [Google Scholar]
  51. 51. 
    Li Y, Wei Y, Zheng F, Guan Y, Zhang X 2017. Prostaglandin E2 in the regulation of water transport in renal collecting ducts. Int. J. Mol. Sci. 18:2539
    [Google Scholar]
  52. 52. 
    Guan Y, Zhang Y, Breyer RM, Fowler B, Davis L et al. 1998. Prostaglandin E2 inhibits renal collecting duct Na+ absorption by activating the EP1 receptor. J. Clin. Investig. 102:194–201
    [Google Scholar]
  53. 53. 
    Fleming EF, Athirakul K, Oliverio MI, Key M, Goulet J et al. 1998. Urinary concentrating function in mice lacking EP3 receptors for prostaglandin E2. Am. J. Physiol. 275:F955–61
    [Google Scholar]
  54. 54. 
    Kim GH, Choi NW, Jung JY, Song JH, Lee CH et al. 2008. Treating lithium-induced nephrogenic diabetes insipidus with a COX-2 inhibitor improves polyuria via upregulation of AQP2 and NKCC2. Am. J. Physiol. Ren. Physiol. 294:F702–9
    [Google Scholar]
  55. 55. 
    Kim S, Joo KW. 2007. Electrolyte and acid-base disturbances associated with non-steroidal anti-inflammatory drugs. Electrolytes Blood Press 5:116–25
    [Google Scholar]
  56. 56. 
    Cheung PW, Nomura N, Nair AV, Pathomthongtaweechai N, Ueberdiek L et al. 2016. EGF receptor inhibition by erlotinib increases aquaporin 2-mediated renal water reabsorption. J. Am. Soc. Nephrol. 27:3105–16
    [Google Scholar]
  57. 57. 
    Homma S, Gapstur SM, Coffey A, Valtin H, Dousa TP 1991. Role of cAMP-phosphodiesterase isozymes in pathogenesis of murine nephrogenic diabetes insipidus. Am. J. Physiol. 261:F345–53
    [Google Scholar]
  58. 58. 
    Sohara E, Rai T, Yang SS, Uchida K, Nitta K et al. 2006. Pathogenesis and treatment of autosomal-dominant nephrogenic diabetes insipidus caused by an aquaporin 2 mutation. PNAS 103:14217–22
    [Google Scholar]
  59. 59. 
    Bichet DG, Ruel N, Arthus MF, Lonergan M 1990. Rolipram, a phosphodiesterase inhibitor, in the treatment of two male patients with congenital nephrogenic diabetes insipidus. Nephron 56:449–50
    [Google Scholar]
  60. 60. 
    Brown D, Hasler U, Nunes P, Bouley R, Lu HA 2008. Phosphorylation events and the modulation of aquaporin 2 cell surface expression. Curr. Opin. Nephrol. Hypertens. 17:491–98
    [Google Scholar]
  61. 61. 
    Pearce D, Soundararajan R, Trimpert C, Kashlan OB, Deen PM, Kohan DE 2015. Collecting duct principal cell transport processes and their regulation. Clin. J. Am. Soc. Nephrol. 10:135–46
    [Google Scholar]
  62. 62. 
    Reimann EM, Brostrom CO, Corbin JD, King CA, Krebs EG 1971. Separation of regulatory and catalytic subunits of the cyclic 3′,5′-adenosine monophosphate-dependent protein kinase(s) of rabbit skeletal muscle. Biochem. Biophys. Res. Commun. 42:187–94
    [Google Scholar]
  63. 63. 
    Wong W, Scott JD. 2004. AKAP signalling complexes: focal points in space and time. Nat. Rev. Mol. Cell Biol. 5:959–70
    [Google Scholar]
  64. 64. 
    Henn V, Edemir B, Stefan E, Wiesner B, Lorenz D et al. 2004. Identification of a novel A-kinase anchoring protein 18 isoform and evidence for its role in the vasopressin-induced aquaporin-2 shuttle in renal principal cells. J. Biol. Chem. 279:26654–65
    [Google Scholar]
  65. 65. 
    Okutsu R, Rai T, Kikuchi A, Ohno M, Uchida K et al. 2008. AKAP220 colocalizes with AQP2 in the inner medullary collecting ducts. Kidney Int 74:1429–33
    [Google Scholar]
  66. 66. 
    Ando F, Mori S, Yui N, Morimoto T, Nomura N et al. 2018. AKAPs-PKA disruptors increase AQP2 activity independently of vasopressin in a model of nephrogenic diabetes insipidus. Nat. Commun. 9:1411
    [Google Scholar]
  67. 67. 
    Bouley R, Breton S, Sun T, McLaughlin M, Nsumu NN et al. 2000. Nitric oxide and atrial natriuretic factor stimulate cGMP-dependent membrane insertion of aquaporin 2 in renal epithelial cells. J. Clin. Investig. 106:1115–26
    [Google Scholar]
  68. 68. 
    Bouley R, Pastor-Soler N, Cohen O, McLaughlin M, Breton S, Brown D 2005. Stimulation of AQP2 membrane insertion in renal epithelial cells in vitro and in vivo by the cGMP phosphodiesterase inhibitor sildenafil citrate (Viagra). Am. J. Physiol. Ren. Physiol. 288:F1103–12
    [Google Scholar]
  69. 69. 
    Sanches TR, Volpini RA, Massola Shimizu MH, Braganca AC, Oshiro-Monreal F et al. 2012. Sildenafil reduces polyuria in rats with lithium-induced NDI. Am. J. Physiol. Ren. Physiol. 302:F216–25
    [Google Scholar]
  70. 70. 
    Walker DK, Ackland MJ, James GC, Muirhead GJ, Rance DJ et al. 1999. Pharmacokinetics and metabolism of sildenafil in mouse, rat, rabbit, dog and man. Xenobiotica 29:297–310
    [Google Scholar]
  71. 71. 
    Assadi F, Sharbaf FG. 2015. Sildenafil for the treatment of congenital nephrogenic diabetes insipidus. Am. J. Nephrol. 42:65–69
    [Google Scholar]
  72. 72. 
    Lin CS. 2004. Tissue expression, distribution, and regulation of PDE5. Int. J. Impot. Res. 16:Suppl. 1S8–10
    [Google Scholar]
  73. 73. 
    Ando F, Uchida S. 2018. Activation of AQP2 water channels without vasopressin: therapeutic strategies for congenital nephrogenic diabetes insipidus. Clin. Exp. Nephrol. 22:501–7
    [Google Scholar]
  74. 74. 
    Yip KP. 2002. Coupling of vasopressin-induced intracellular Ca2+ mobilization and apical exocytosis in perfused rat kidney collecting duct. J. Physiol. 538:891–99
    [Google Scholar]
  75. 75. 
    Li Y, Konings IB, Zhao J, Price LS, de Heer E, Deen PM 2008. Renal expression of exchange protein directly activated by cAMP (Epac) 1 and 2. Am. J. Physiol. Ren. Physiol. 295:F525–33
    [Google Scholar]
  76. 76. 
    Cheng X, Ji Z, Tsalkova T, Mei F 2008. Epac and PKA: a tale of two intracellular cAMP receptors. Acta Biochim. Biophys. Sin. 40:651–62
    [Google Scholar]
  77. 77. 
    Yip KP. 2006. Epac-mediated Ca2+ mobilization and exocytosis in inner medullary collecting duct. Am. J. Physiol. Ren. Physiol. 291:F882–90
    [Google Scholar]
  78. 78. 
    Chou CL, Yip KP, Michea L, Kador K, Ferraris JD et al. 2000. Regulation of aquaporin-2 trafficking by vasopressin in the renal collecting duct: roles of ryanodine-sensitive Ca2+ stores and calmodulin. J. Biol. Chem. 275:36839–46
    [Google Scholar]
  79. 79. 
    Hoffert JD, Chou CL, Fenton RA, Knepper MA 2005. Calmodulin is required for vasopressin-stimulated increase in cyclic AMP production in inner medullary collecting duct. J. Biol. Chem. 280:13624–30
    [Google Scholar]
  80. 80. 
    Chin D, Means AR. 2000. Calmodulin: a prototypical calcium sensor. Trends Cell Biol 10:322–28
    [Google Scholar]
  81. 81. 
    Cheng L, Wu Q, Kortenoeven ML, Pisitkun T, Fenton RA 2015. A systems level analysis of vasopressin-mediated signaling networks in kidney distal convoluted tubule cells. Sci. Rep. 5:12829
    [Google Scholar]
  82. 82. 
    Tajika Y, Matsuzaki T, Suzuki T, Aoki T, Hagiwara H et al. 2004. Aquaporin-2 is retrieved to the apical storage compartment via early endosomes and phosphatidylinositol 3-kinase-dependent pathway. Endocrinology 145:4375–83
    [Google Scholar]
  83. 83. 
    Gooch JL, Pergola PE, Guler RL, Abboud HE, Barnes JL 2004. Differential expression of calcineurin A isoforms in the diabetic kidney. J. Am. Soc. Nephrol. 15:1421–29
    [Google Scholar]
  84. 84. 
    Cheung PW, Ueberdiek L, Day J, Bouley R, Brown D 2017. Protein phosphatase 2C is responsible for VP-induced dephosphorylation of AQP2 serine 261. Am. J. Physiol. Ren. Physiol. 313:F404–13
    [Google Scholar]
  85. 85. 
    Lim SW, Li C, Sun BK, Han KH, Kim WY et al. 2004. Long-term treatment with cyclosporine decreases aquaporins and urea transporters in the rat kidney. Am. J. Physiol. Ren. Physiol. 287:F139–51
    [Google Scholar]
  86. 86. 
    Gooch JL, Guler RL, Barnes JL, Toro JJ 2006. Loss of calcineurin Aα results in altered trafficking of AQP2 and in nephrogenic diabetes insipidus. J. Cell Sci. 119:2468–76
    [Google Scholar]
  87. 87. 
    Moeller HB, Praetorius J, Rutzler MR, Fenton RA 2010. Phosphorylation of aquaporin-2 regulates its endocytosis and protein-protein interactions. PNAS 107:424–29
    [Google Scholar]
  88. 88. 
    Lu HJ, Matsuzaki T, Bouley R, Hasler U, Qin QH, Brown D 2008. The phosphorylation state of serine 256 is dominant over that of serine 261 in the regulation of AQP2 trafficking in renal epithelial cells. Am. J. Physiol. Ren. Physiol. 295:F290–94
    [Google Scholar]
  89. 89. 
    Rice WL, Zhang Y, Chen Y, Matsuzaki T, Brown D, Lu HA 2012. Differential, phosphorylation dependent trafficking of AQP2 in LLC-PK1 cells. PLOS ONE 7:e32843
    [Google Scholar]
  90. 90. 
    Ando F, Sohara E, Morimoto T, Yui N, Nomura N et al. 2016. Wnt5a induces renal AQP2 expression by activating calcineurin signalling pathway. Nat. Commun. 7:13636
    [Google Scholar]
  91. 91. 
    Hoorn EJ, Walsh SB, McCormick JA, Zietse R, Unwin RJ, Ellison DH 2012. Pathogenesis of calcineurin inhibitor-induced hypertension. J. Nephrol. 25:269–75
    [Google Scholar]
  92. 92. 
    Procino G, Gerbino A, Milano S, Nicoletti MC, Mastrofrancesco L et al. 2015. Rosiglitazone promotes AQP2 plasma membrane expression in renal cells via a Ca-dependent/cAMP-independent mechanism. Cell Physiol. Biochem. 35:1070–85
    [Google Scholar]
  93. 93. 
    Tiwari S, Blasi ER, Heyen JR, McHarg AD, Ecelbarger CM 2008. Time course of AQP-2 and ENaC regulation in the kidney in response to PPAR agonists associated with marked edema in rats. Pharmacol. Res. 57:383–92
    [Google Scholar]
  94. 94. 
    Rizos CV, Elisaf MS, Mikhailidis DP, Liberopoulos EN 2009. How safe is the use of thiazolidinediones in clinical practice. ? Expert Opin. Drug Saf. 8:15–32
    [Google Scholar]
  95. 95. 
    Moeller HB, Rittig S, Fenton RA 2013. Nephrogenic diabetes insipidus: essential insights into the molecular background and potential therapies for treatment. Endocr. Rev. 34:278–301
    [Google Scholar]
  96. 96. 
    Christensen BM, Zuber AM, Loffing J, Stehle JC, Deen PM et al. 2011. αENaC-mediated lithium absorption promotes nephrogenic diabetes insipidus. J. Am. Soc. Nephrol. 22:253–61
    [Google Scholar]
  97. 97. 
    Kortenoeven ML, Li Y, Shaw S, Gaeggeler HP, Rossier BC et al. 2009. Amiloride blocks lithium entry through the sodium channel thereby attenuating the resultant nephrogenic diabetes insipidus. Kidney Int 76:44–53
    [Google Scholar]
  98. 98. 
    Jackson BA, Edwards RM, Dousa TP 1980. Lithium-induced polyuria: effect of lithium on adenylate cyclase and adenosine 3′,5′-monophosphate phosphodiesterase in medullary ascending limb of Henle's loop and in medullary collecting tubules. Endocrinology 107:1693–98
    [Google Scholar]
  99. 99. 
    Li Y, Shaw S, Kamsteeg EJ, Vandewalle A, Deen PM 2006. Development of lithium-induced nephrogenic diabetes insipidus is dissociated from adenylyl cyclase activity. J. Am. Soc. Nephrol. 17:1063–72
    [Google Scholar]
  100. 100. 
    O'Brien WT, Klein PS. 2009. Validating GSK3 as an in vivo target of lithium action. Biochem. Soc. Trans. 37:1133–38
    [Google Scholar]
  101. 101. 
    Rao R, Patel S, Hao C, Woodgett J, Harris R 2010. GSK3β mediates renal response to vasopressin by modulating adenylate cyclase activity. J. Am. Soc. Nephrol. 21:428–37
    [Google Scholar]
  102. 102. 
    Berridge MJ. 2016. The inositol trisphosphate/calcium signaling pathway in health and disease. Physiol. Rev. 96:1261–96
    [Google Scholar]
  103. 103. 
    Christensen BM, Marples D, Kim YH, Wang W, Frokiaer J, Nielsen S 2004. Changes in cellular composition of kidney collecting duct cells in rats with lithium-induced NDI. Am. J. Physiol. Cell Physiol. 286:C952–64
    [Google Scholar]
  104. 104. 
    Nielsen J, Hoffert JD, Knepper MA, Agre P, Nielsen S, Fenton RA 2008. Proteomic analysis of lithium-induced nephrogenic diabetes insipidus: mechanisms for aquaporin 2 down-regulation and cellular proliferation. PNAS 105:3634–39
    [Google Scholar]
  105. 105. 
    Timmer RT, Sands JM. 1999. Lithium intoxication. J. Am. Soc. Nephrol. 10:666–74
    [Google Scholar]
  106. 106. 
    Gow CB, Phillips PA. 1994. Epidermal growth factor as a diuretic in sheep. J. Physiol. 477:27–33
    [Google Scholar]
  107. 107. 
    Breyer MD, Jacobson HR, Breyer JA 1988. Epidermal growth factor inhibits the hydroosmotic effect of vasopressin in the isolated perfused rabbit cortical collecting tubule. J. Clin. Investig. 82:1313–20
    [Google Scholar]
  108. 108. 
    Olmez I, Donahue BR, Butler JS, Huang Y, Rubin P, Xu Y 2010. Clinical outcomes in extracranial tumor sites and unusual toxicities with concurrent whole brain radiation (WBRT) and Erlotinib treatment in patients with non-small cell lung cancer (NSCLC) with brain metastasis. Lung Cancer 70:174–79
    [Google Scholar]
  109. 109. 
    Jhaveri KD, Wanchoo R, Sakhiya V, Ross DW, Fishbane S 2017. Adverse renal effects of novel molecular oncologic targeted therapies: a narrative review. Kidney Int. Rep. 2:108–23
    [Google Scholar]
  110. 110. 
    Hirsh V. 2011. Managing treatment-related adverse events associated with EGFR tyrosine kinase inhibitors in advanced non-small-cell lung cancer. Curr. Oncol. 18:126–38
    [Google Scholar]
  111. 111. 
    Kiyohara Y, Yamazaki N, Kishi A 2013. Erlotinib-related skin toxicities: treatment strategies in patients with metastatic non-small cell lung cancer. J. Am. Acad. Dermatol. 69:463–72
    [Google Scholar]
  112. 112. 
    Tsubata Y, Hamada A, Sutani A, Isobe T 2012. Erlotinib-induced acute interstitial lung disease associated with extreme elevation of the plasma concentration in an elderly non-small-cell lung cancer patient. J. Cancer Res. Ther. 8:154–56
    [Google Scholar]
  113. 113. 
    Vahid B, Esmaili A. 2007. Erlotinib-associated acute pneumonitis: report of two cases. Can. Respir. J. 14:167–70
    [Google Scholar]
  114. 114. 
    Klein JD, Wang Y, Blount MA, Molina PA, LaRocque LM et al. 2016. Metformin, an AMPK activator, stimulates the phosphorylation of aquaporin 2 and urea transporter A1 in inner medullary collecting ducts. Am. J. Physiol. Ren. Physiol. 310:F1008–12
    [Google Scholar]
  115. 115. 
    Bech AP, Wetzels JFM, Nijenhuis T 2018. Effects of sildenafil, metformin, and simvastatin on ADH-independent urine concentration in healthy volunteers. Physiol. Rep. 6:e13665
    [Google Scholar]
  116. 116. 
    Natl. Inst. Health 2018. Metformin and Congenital Nephrogenic Diabetes Insipidus NCT02460354, Natl. Inst. Health Bethesda, MD: https://clinicaltrials.gov/ct2/show/NCT02460354
  117. 117. 
    Brown D. 2003. The ins and outs of aquaporin-2 trafficking. Am. J. Physiol. Ren. Physiol. 284:F893–901
    [Google Scholar]
  118. 118. 
    Knepper MA, Nielsen S. 1993. Kinetic model of water and urea permeability regulation by vasopressin in collecting duct. Am. J. Physiol. 265:F214–24
    [Google Scholar]
  119. 119. 
    Subtil A, Gaidarov I, Kobylarz K, Lampson MA, Keen JH, McGraw TE 1999. Acute cholesterol depletion inhibits clathrin-coated pit budding. PNAS 96:6775–80
    [Google Scholar]
  120. 120. 
    Sidaway JE, Davidson RG, McTaggart F, Orton TC, Scott RC et al. 2004. Inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase reduce receptor-mediated endocytosis in opossum kidney cells. J. Am. Soc. Nephrol. 15:2258–65
    [Google Scholar]
  121. 121. 
    Smythe E, Ayscough KR. 2006. Actin regulation in endocytosis. J. Cell Sci. 119:4589–98
    [Google Scholar]
  122. 122. 
    Li W, Zhang Y, Bouley R, Chen Y, Matsuzaki T et al. 2011. Simvastatin enhances aquaporin-2 surface expression and urinary concentration in vasopressin-deficient Brattleboro rats through modulation of Rho GTPase. Am. J. Physiol. Ren. Physiol. 301:F309–18
    [Google Scholar]
  123. 123. 
    Procino G, Barbieri C, Carmosino M, Rizzo F, Valenti G, Svelto M 2010. Lovastatin-induced cholesterol depletion affects both apical sorting and endocytosis of aquaporin-2 in renal cells. Am. J. Physiol. Ren. Physiol. 298:F266–78
    [Google Scholar]
  124. 124. 
    Procino G, Barbieri C, Carmosino M, Tamma G, Milano S et al. 2011. Fluvastatin modulates renal water reabsorption in vivo through increased AQP2 availability at the apical plasma membrane of collecting duct cells. Pflugers Arch 462:753–66
    [Google Scholar]
  125. 125. 
    Procino G, Portincasa P, Mastrofrancesco L, Castorani L, Bonfrate L et al. 2016. Simvastatin increases AQP2 urinary excretion in hypercholesterolemic patients: a pleiotropic effect of interest for patients with impaired AQP2 trafficking. Clin. Pharmacol. Ther. 99:528–37
    [Google Scholar]
  126. 126. 
    Valenti G, Procino G, Carmosino M, Frigeri A, Mannucci R et al. 2000. The phosphatase inhibitor okadeic acid induces AQP2 translocation independently from AQP2 phosphorylation in renal collecting duct cells. J. Cell Sci. 113:1985–92
    [Google Scholar]
  127. 127. 
    Ren H, Yang B, Ruiz JA, Efe O, Ilori TO et al. 2016. Phosphatase inhibition increases AQP2 accumulation in the rat IMCD apical plasma membrane. Am. J. Physiol. Ren. Physiol. 311:F1189–F97
    [Google Scholar]
  128. 128. 
    Ha M, Kim VN. 2014. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 15:509–24
    [Google Scholar]
  129. 129. 
    Pereira DM, Rodrigues PM, Borralho PM, Rodrigues CM 2013. Delivering the promise of miRNA cancer therapeutics. Drug Discov. Today 18:282–89
    [Google Scholar]
  130. 130. 
    Rupaimoole R, Slack FJ. 2017. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov. 16:203–22
    [Google Scholar]
  131. 131. 
    Kim JE, Jung HJ, Lee YJ, Kwon TH 2015. Vasopressin-regulated miRNAs and AQP2-targeting miRNAs in kidney collecting duct cells. Am. J. Physiol. Ren. Physiol. 308:F749–64
    [Google Scholar]
  132. 132. 
    Ranieri M, Zahedi K, Tamma G, Centrone M, Di Mise A et al. 2018. CaSR signaling down-regulates AQP2 expression via a novel microRNA pathway in pendrin and NaCl cotransporter knockout mice. FASEB J 32:2148–59
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010919-023654
Loading
/content/journals/10.1146/annurev-pharmtox-010919-023654
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error