1932

Abstract

The most common applications of artificial intelligence (AI) in drug treatment have to do with matching patients to their optimal drug or combination of drugs, predicting drug-target or drug-drug interactions, and optimizing treatment protocols. This review outlines some of the recently developed AI methods aiding the drug treatment and administration process. Selection of the best drug(s) for a patient typically requires the integration of patient data, such as genetics or proteomics, with drug data, like compound chemical descriptors, to score the therapeutic efficacy of drugs. The prediction of drug interactions often relies on similarity metrics, assuming that drugs with similar structures or targets will have comparable behavior or may interfere with each other. Optimizing the dosage schedule for administration of drugs is performed using mathematical models to interpret pharmacokinetic and pharmacodynamic data. The recently developed and powerful models for each of these tasks are addressed, explained, and analyzed here.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010919-023746
2020-01-06
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/60/1/annurev-pharmtox-010919-023746.html?itemId=/content/journals/10.1146/annurev-pharmtox-010919-023746&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Li J, Zheng S, Chen B, Butte AJ, Swamidass SJ, Lu Z 2016. A survey of current trends in computational drug repositioning. Brief Bioinform 17:12–12
    [Google Scholar]
  2. 2. 
    Menden MP, Iorio F, Garnett M, Mcdermott U, Benes CH et al. 2013. Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties. PLOS One 8:4e61318
    [Google Scholar]
  3. 3. 
    Veerasamy R, Rajak H, Jain A, Sivadasan S, Varghese CP, Agrawal RK 2011. Validation of QSAR models—strategies and importance. Int. J. Drug. Des. Discov. 2:3511–19
    [Google Scholar]
  4. 4. 
    Chang Y, Park H, Yang H, Lee S, Lee K et al. 2018. Cancer Drug Response Profile scan (CDRscan): a deep learning model that predicts drug effectiveness from cancer genomic signature. Sci. Rep. 8:8857
    [Google Scholar]
  5. 5. 
    Murnane K. 2016. What is deep learning and how is it useful?. Forbes April 1. https://www.forbes.com/sites/kevinmurnane/2016/04/01/what-is-deep-learning-and-how-is-it-useful/#56be0bbbd547
    [Google Scholar]
  6. 6. 
    Cheng F, Liu C, Jiang J, Lu W, Li W et al. 2012. Prediction of drug-target interactions and drug repositioning via network-based inference. PLOS Comput. Biol. 8:5e1002503
    [Google Scholar]
  7. 7. 
    Smith TF, Waterman M. 1981. Identification of common molecular subsequences. J. Mol. Biol. 147:1195–97
    [Google Scholar]
  8. 8. 
    Xiao X, Min JL, Lin WZ, Liu Z, Cheng X, Chou KC 2015. iDrug-Target: predicting the interactions between drug compounds and target proteins in cellular networking via benchmark dataset optimization approach. J. Biomol. Struct. Dyn. 33:102221–33
    [Google Scholar]
  9. 9. 
    Campillos M, Kuhn M, Gavin A, Jensen LJ, Bork P 2008. Drug target identification using side-effect similarity. Science 321:5886263–66
    [Google Scholar]
  10. 10. 
    Dimitriadou A, Gogas P, Papadimitriou T, Plakandaras V 2019. Oil market efficiency under machine learning perspective. Forecasting 1:1157–68
    [Google Scholar]
  11. 11. 
    Yamanishi Y, Araki M, Gutteridge A, Honda W, Kanehisa M 2008. Prediction of drug–target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24:13i232–40
    [Google Scholar]
  12. 12. 
    Kanehisa M, Goto S, Hattori M, Aoki-Konishita KF, Itoh M et al. 2006. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34:Suppl. 1D354–57
    [Google Scholar]
  13. 13. 
    Hattori M, Okuno Y, Goto S, Kanehisa M 2003. Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways. J. Am. Chem. Soc. 125:3911853–65
    [Google Scholar]
  14. 14. 
    Schomburg I, Chang A, Ebeling C, Gremse M, Heldt C et al. 2004. BRENDA, the enzyme database: updates and major new developments. Nucleic Acids Res 32:Suppl. 1D431–33
    [Google Scholar]
  15. 15. 
    Günther S, Kuhn M, Dunkel M, Campillos M, Senger C et al. 2008. SuperTarget and Matador: resources for exploring drug–target relationships. Nucleic Acids Res 36:Suppl. 1D919–22
    [Google Scholar]
  16. 16. 
    Wishart DS, Know C, Guo AC, Cheng D, Shrivastava S et al. 2008. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 36:Suppl. 1D901–6
    [Google Scholar]
  17. 17. 
    Brownlee J. 2018. How and when to use ROC curves and precision-recall curves for classification in Python. Machine Learning Mastery https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-classification-in-python/
    [Google Scholar]
  18. [Google Scholar]
  19. 19. 
    Al Abdouli NO, Aung Z, Woon WL, Svetinovic D 2015. Tackling class imbalance problem in binary classification using augmented neighborhood cleaning algorithm. Information Science and Applications: Lecture Notes in Electrical Engineering K Kim 827–34 Berlin/Heidelberg: Springer
    [Google Scholar]
  20. 20. 
    Mason DJ, Eastman RT, Lewis RPI, Stott IP, Guha R, Bender A 2018. Using machine learning to predict synergistic antimalarial compound combinations with novel structures. Front. Pharmacol. 9:1096
    [Google Scholar]
  21. 21. 
    Wang D, Larder B, Revell A, Montaner J, Harrigan R et al. 2009. A comparison of three computational modelling methods for the prediction of virological response to combination HIV therapy. Artif. Intell. Med. 47:163–74
    [Google Scholar]
  22. 22. 
    Prosperi MC, Altmann A, Rosen-Zvi M, Aharoni E, Borgulya G et al. 2009. Investigation of expert rule bases, logistic regression, and non-linear machine learning techniques for predicting response to antiretroviral treatment. Antivir. Ther. 14:3433–42
    [Google Scholar]
  23. 23. 
    Xia F, Shukla M, Brettin T, Garcia-Cardona C, Cohn J et al. 2018. Predicting tumor cell line response to drug pairs with deep learning. BMC Bioinform 19:Suppl. 18486
    [Google Scholar]
  24. 24. 
    Li X, Xu Y, Cui H, Huang T, Wang D et al. 2017. Prediction of synergistic anti-cancer drug combinations based on drug target network and drug induced gene expression profiles. Artif. Intell. Med. 83:35–43
    [Google Scholar]
  25. 25. 
    Xu Q, Xiong Y, Dai H, Kumari KM, Xu Q et al. 2017. PDC-SGB: prediction of effective drug combinations using a stochastic gradient boosting algorithm. J. Theor. Biol. 417:1–7
    [Google Scholar]
  26. 26. 
    Sun Y, Xiong Y, Xu Q, Wei D 2014. A hadoop-based method to predict potential effective drug combination. Biomed. Res. Int. 2014 196858
    [Google Scholar]
  27. 27. 
    Kastrin A, Ferk P, Leskos B 2018. Predicting potential drug-drug interactions on topological and semantic similarity features using statistical learning. PLOS One 13:5e0196865
    [Google Scholar]
  28. 28. 
    Zhao XM, Iskar M, Zeller G, Kuhn M, van Noort V, Bork P 2011. Prediction of drug combinations by integrating molecular and pharmacological data. PLOS Comput. Biol. 7:12e1002323
    [Google Scholar]
  29. 29. 
    Tsigelny IF. 2019. Artificial intelligence in drug combination therapy. Brief Bioinform 20:143448
    [Google Scholar]
  30. 30. 
    Aaron 2015. Everything you need to know about artificial neural networks. Medium Dec. 28. https://medium.com/technology-invention-and-more/everything-you-need-to-know-about-artificial-neural-networks-57fac18245a1
    [Google Scholar]
  31. 31. 
    EuResist 2019. EuResist prediction engine Database, EuResist, Rome, accessed May 8, 2009. http://engine.euresist.org
    [Google Scholar]
  32. 32. 
    Kose U. 2018. An ant-lion optimizer-trained artificial neural network system for chaotic electroencephalogram (EEG) prediction. Appl. Sci. 8:91613
    [Google Scholar]
  33. 33. 
    Janizek JD, Celik S, Lee S-I 2018. Explainable machine learning prediction of synergistic drug combinations for precision cancer medicine. bioRxiv 331769. https://doi.org/10.1101/331769
    [Crossref]
  34. 34. 
    Brownlee J. 2016. A gentle introduction to the gradient boosting algorithm for machine learning. Machine Learning Mastery Sept. 9. https://machinelearningmastery.com/gentle-introduction-gradient-boosting-algorithm-machine-learning/
    [Google Scholar]
  35. 35. 
    Preuer K, Lewis RPI, Hochreiter S, Bender A, Bulusu KC, Klambauer G 2018. DeepSynergy: predicting anti-cancer drug synergy with deep learning. Bioinformatics 34:91538–46
    [Google Scholar]
  36. 36. 
    Lundberg SM, Erion GG, Lee S-I 2018. Consistent individualized feature attribution for tree ensembles. arXiv:1802.03888 [cs.LG]
  37. 37. 
    Liu Y, Wei Q, Yu G, Gai W, Li Y, Chen X 2014. DCDB 2.0: a major update of the drug combination database. Database 2014 bau124
    [Google Scholar]
  38. 38. 
    Liu Y, Hu B, Fu C, Chen X 2010. DCDB: drug combination database. Bioinformatics 26:4587–88
    [Google Scholar]
  39. 39. 
    Chen L, Li BQ, Zheng MY, Zhang J, Feng KY, Cai YD 2013. Prediction of effective drug combinations by chemical interaction, protein interaction and target enrichment of KEGG pathways. Biomed. Res. Int. 2013:723780
    [Google Scholar]
  40. 40. 
    Kuhn M, Letunic I, Jensen LJ, Bork P 2016. The SIDER database of drugs and side effects. Nucleic Acids Res 44:D1D1075–79
    [Google Scholar]
  41. 41. 
    Hajjar ER, Cafiero AC, Hanlon JT 2007. Polypharmacy in elderly patients. Am. J. Geriatr. Pharmacother. 5:4345–51
    [Google Scholar]
  42. 42. 
    Charlesworth CJ, Smit E, Lee DSH, Alramadhan F, Odden MC 2015. Polypharmacy among adults aged 65 years and older in the United States: 1988–2010. J. Gerontol. A Biol. Sci. Med. Sci. 70:8989–95
    [Google Scholar]
  43. 43. 
    Cheng F, Zhao Z. 2014. Machine learning-based prediction of drug–drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties. J. Am. Med. Inform. Assoc. 21:e2e278–86
    [Google Scholar]
  44. 44. 
    KEGG 2019. KEGG: Kyoto Encyclopedia of Genes and Genomes Database, Kyoto, Japan. https://www.genome.jp/kegg/kegg1.html
    [Google Scholar]
  45. 45. 
    US Natl. Lib. Med 2019. NDFRT (National Drug File—Reference Terminology)—Synopsis Drug File Database, US Natl. Lib. Med., US Natl. Inst. Health Bethesda, MD: https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/NDFRT/
    [Google Scholar]
  46. 46. 
    US Natl. Inst. Health 2017. Semantic Knowledge Representation SKR Database, US Natl. Inst. Health Bethesda, MD: https://skr3.nlm.nih.gov/
    [Google Scholar]
  47. 47. 
    Tatonetti NP, Ye PP, Daneshjou R, Altman RB 2012. Data-driven prediction of drug effects and interactions. Sci. Transl. Med. 4:125125ra31
    [Google Scholar]
  48. 48. 
    Siegel RA, Rathbone MJ. 2012. Overview of controlled release mechanisms. Fundamentals and Applications of Controlled Release Drug Delivery J Siepmann, RA Siegal, MJ Rathbone 19–43 Boston: Springer
    [Google Scholar]
  49. 49. 
    Houy N, Le Grand F 2018. Optimal dynamic regimens with artificial intelligence: the case of temozolomide. PLOS One 13:6e0199076
    [Google Scholar]
  50. 50. 
    Panetta JC, Kirstein MN, Gajjar AJ, Nair G, Fouladi M, Stewart CF 2003. A mechanistic mathematical model of temozolomide myelosuppression in children with high-grade gliomas. Math. Biosci. 186:129–41
    [Google Scholar]
  51. 51. 
    Yang SY, Huang Q, Li LL, Ma CY, Zhang H 2009. An integrated scheme for feature selection and parameter setting in the support vector machine modeling and its application to the prediction of pharmacokinetic properties of drugs. Artif. Intell. Med. 46:2155–63
    [Google Scholar]
  52. 52. 
    Hestenes MR, Stiefel E. 1952. Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49:6409–36
    [Google Scholar]
  53. 53. 
    Mallawaarachchi V. 2017. Introduction to genetic algorithms—including example code. Towards Data Science https://towardsdatascience.com/introduction-to-genetic-algorithms-including-example-code-e396e98d8bf3
    [Google Scholar]
  54. 54. 
    Huang C-L, Wang C-J. 2006. A GA-based feature selection and parameters optimization for support vector machines. Expert Syst. Appl. 31:2231–40
    [Google Scholar]
  55. 55. 
    Frohlich H, Chapelle O, Scholkopf B 2003. Feature selection for support vector machines by means of genetic algorithms. Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence, Sacramento, CA, November 5142–48 New York: IEEE
    [Google Scholar]
  56. 56. 
    Xue Y, Li ZR, Yap CW, Sun LZ, Chen X, Chen YZ 2004. Effect of molecular descriptor feature selection in support vector machine classification of pharmacokinetic and toxicological properties of chemical agents. J. Chem. Inf. Comput. Sci. 44:51630–38
    [Google Scholar]
  57. 57. 
    Zhao YH, Abraham MH, Ibrahim A, Fish PV, Cole S et al. 2007. Predicting penetration across the blood–brain barrier from simple descriptors and fragmentation schemes. J. Chem. Inf. Model. 47:1170–75
    [Google Scholar]
  58. 58. 
    Li H, Yap CW, Ung CY, Xue Y, Cao ZW, Chen YZ 2005. Effect of selection of molecular descriptors on the prediction of blood—brain barrier penetrating and nonpenetrating agents by statistical learning methods. J. Chem. Inf. Model. 45:51376–84
    [Google Scholar]
  59. 59. 
    Lim B, Alaa A, van der Schaar M 2018. Forecasting treatment responses over time using recurrent marginal structural networks Poster presented at the 32nd Conference on Neural Information Processing Systems, Montreal Canada:
    [Google Scholar]
  60. 60. 
    Natl. Cent. Biotechnol. Inf 2019. Acitretin PubChem Database, Natl. Cent. Biotechnol. Inf., US Natl. Inst. Health Bethesda, MD: https://pubchem.ncbi.nlm.nih.gov/compound/5284513
    [Google Scholar]
  61. 61. 
    Natl. Cent. Biotechnol. Inf 2019. Cetirizine PubChem Database, Natl. Cent. Biotechnol. Inf., US Natl. Inst. Health Bethesda, MD: https://pubchem.ncbi.nlm.nih.gov/compound/2678
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010919-023746
Loading
/content/journals/10.1146/annurev-pharmtox-010919-023746
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error