Despite the fact that G protein–coupled receptors (GPCRs) are the most successful drug targets in history, this supergene family of cell surface receptors has yet to be fully exploited as targets in the treatment of human disease. Here, we present optimism that this may change in the future by reviewing the substantial progress made in the understanding of GPCR molecular pharmacology that has generated an extensive toolbox of ligand types that include orthosteric, allosteric, and bitopic ligands, many of which show signaling bias. We discuss how combining these advances with recently described transgenic, chemical genetic, and optogenetic animal models will provide the framework to allow for the rational design of next-generation GPCR drugs that possess increased therapeutic efficacy and decreased adverse/toxic responses.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Kobilka B. 1.  2013. The structural basis of G-protein-coupled receptor signaling (Nobel Lecture). Angew. Chem. 52:6380–88 [Google Scholar]
  2. Lefkowitz RJ. 2.  2013. A brief history of G-protein coupled receptors (Nobel Lecture). Angew. Chem. 52:6366–78 [Google Scholar]
  3. Audet M, Bouvier M. 3.  2012. Restructuring G-protein-coupled receptor activation. Cell 151:14–23 [Google Scholar]
  4. Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF, Babu MM. 4.  2013. Molecular signatures of G-protein-coupled receptors. Nature 494:185–94 [Google Scholar]
  5. Nygaard R, Zou Y, Dror RO, Mildorf TJ, Arlow DH. 5.  et al. 2013. The dynamic process of β2-adrenergic receptor activation. Cell 152:532–42 [Google Scholar]
  6. Rasmussen SGF, DeVree BT, Zou Y, Kruse AC, Chung KY. 6.  et al. 2011. Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature 477:549–55 [Google Scholar]
  7. Foord SM, Bonner TI, Neubig RR, Rosser EM, Pin JP. 7.  et al. 2005. International Union of Pharmacology. XLVI. G protein–coupled receptor list. Pharmacol. Rev. 57:279–88 [Google Scholar]
  8. Azevedo MF, Sanders PR, Krejany E, Nie CQ, Fu P. 8.  et al. 2013. Inhibition of Plasmodium falciparum CDPK1 by conditional expression of its J-domain demonstrates a key role in schizont development. Biochem. J. 452:433–41 [Google Scholar]
  9. Schlyer S, Horuk R. 9.  2006. I want a new drug: G-protein-coupled receptors in drug development. Drug Discov. Today 11:481–93 [Google Scholar]
  10. Congreve M, Langmead CJ, Mason JS, Marshall FH. 10.  2011. Progress in structure based drug design for G protein–coupled receptors. J. Med. Chem. 54:4283–311 [Google Scholar]
  11. Hopkins AL, Groom CR. 11.  2002. The druggable genome. Nat. Rev. Drug Discov. 1:727–30 [Google Scholar]
  12. Overington JP, Al-Lazikani B, Hopkins AL. 12.  2006. How many drug targets are there?. Nat. Rev. Drug Discov. 5:993–96 [Google Scholar]
  13. Arrowsmith J. 13.  2011. Trial watch: Phase II failures: 2008–2010. Nat. Rev. Drug Discov. 10:328–29 [Google Scholar]
  14. Arrowsmith J. 14.  2011. Trial watch: Phase III and submission failures: 2007–2010. Nat. Rev. Drug Discov. 10:87 [Google Scholar]
  15. Lipworth BJ, McDevitt DG. 15.  1992. Inhaled β2-adrenoceptor agonists in asthma: help or hindrance?. Br. J. Clin. Pharmacol. 33:129–38 [Google Scholar]
  16. Leurs R, Church MK, Taglialatela M. 16.  2002. H1-antihistamines: inverse agonism, anti-inflammatory actions and cardiac effects. Clin. Exp. Allergy: J. Br. Soc. Allergy Clin. Immunol. 32:489–98 [Google Scholar]
  17. Deakin M, Williams JG. 17.  1992. Histamine H2-receptor antagonists in peptic ulcer disease: efficacy in healing peptic ulcers. Drugs 44:709–19 [Google Scholar]
  18. Bodick NC, Offen WW, Levey AI, Cutler NR, Gauthier SG. 18.  et al. 1997. Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch. Neurol. 54:465–73 [Google Scholar]
  19. Shekhar A, Potter WZ, Lightfoot J, Lienemann J, Dube S. 19.  et al. 2008. Selective muscarinic receptor agonist xanomeline as a novel treatment approach for schizophrenia. Am. J. Psychiatry 165:1033–39 [Google Scholar]
  20. Bymaster FP, Carter PA, Peters SC, Zhang W, Ward JS. 20.  et al. 1998. Xanomeline compared to other muscarinic agents on stimulation of phosphoinositide hydrolysis in vivo and other cholinomimetic effects. Brain Res. 795:179–90 [Google Scholar]
  21. Haga K, Kruse AC, Asada H, Yurugi-Kobayashi T, Shiroishi M. 21.  et al. 2012. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482:547–51 [Google Scholar]
  22. Kruse AC, Hu J, Pan AC, Arlow DH, Rosenbaum DM. 22.  et al. 2012. Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482:552–56 [Google Scholar]
  23. Kruse AC, Weiss DR, Rossi M, Hu J, Hu K. 23.  et al. 2013. Muscarinic receptors as model targets and antitargets for structure-based ligand discovery. Mol. Pharmacol. 84:4528–40 [Google Scholar]
  24. May LT, Avlani VA, Sexton PM, Christopoulos A. 24.  2004. Allosteric modulation of G protein–coupled receptors. Curr. Pharm. Des. 10:2003–13 [Google Scholar]
  25. May LT, Leach K, Sexton PM, Christopoulos A. 25.  2007. Allosteric modulation of G protein–coupled receptors. Annu. Rev. Pharmacol. Toxicol. 47:1–51 [Google Scholar]
  26. Langmead CJ, Christopoulos A. 26.  2014. Functional and structural perspectives on allosteric modulation of GPCRs. Curr. Opin. Cell Biol. 27:94–101 [Google Scholar]
  27. Langmead CJ. 27.  2012. Ligand properties and behaviours in an allosteric age. Trends Pharmacol. Sci. 33:621–22 [Google Scholar]
  28. Rajagopal S, Ahn S, Rominger DH, Gowen-MacDonald W, Lam CM. 28.  et al. 2011. Quantifying ligand bias at seven-transmembrane receptors. Mol. Pharmacol. 80:367–77 [Google Scholar]
  29. Kenakin T. 29.  1995. Agonist-receptor efficacy. II. Agonist trafficking of receptor signals. Trends Pharmacol. Sci. 16:232–38 [Google Scholar]
  30. Bradley SJ, Riaz SA, Tobin AB. 30.  2014. Employing novel animal models in the design of clinically efficacious GPCR ligands. Curr. Opin. Cell Biol. 27:117–25 [Google Scholar]
  31. Rosenbaum DM, Zhang C, Lyons JA, Holl R, Aragao D. 31.  et al. 2011. Structure and function of an irreversible agonist-β2 adrenoceptor complex. Nature 469:236–40 [Google Scholar]
  32. Kruse AC, Ring AM, Manglik A, Hu J, Hu K. 32.  et al. 2013. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504:101–6 [Google Scholar]
  33. Srivastava A, Yano J, Hirozane Y, Kefala G, Gruswitz F. 33.  et al. 2014. High-resolution structure of the human GPR40 receptor bound to allosteric agonist TAK-875. Nature 513:124–27 [Google Scholar]
  34. Yabuki C, Komatsu H, Tsujihata Y, Maeda R, Ito R. 34.  et al. 2013. A novel antidiabetic drug, fasiglifam/TAK-875, acts as an ago-allosteric modulator of FFAR1. PLOS ONE 8:e76280 [Google Scholar]
  35. Dror RO, Arlow DH, Maragakis P, Mildorf TJ, Pan AC. 35.  et al. 2011. Activation mechanism of the β2-adrenergic receptor. PNAS 108:18684–89 [Google Scholar]
  36. Dror RO, Jensen MO, Borhani DW, Shaw DE. 36.  2010. Exploring atomic resolution physiology on a femtosecond to millisecond timescale using molecular dynamics simulations. J. Gen. Physiol. 135:555–62 [Google Scholar]
  37. Ghosh E, Kumari P, Jaiman D, Shukla AK. 37.  2015. Methodological advances: the unsung heroes of the GPCR structural revolution. Nat. Rev. Mol. Cell Biol. 16:69–81 [Google Scholar]
  38. Congreve M, Rich RL, Myszka DG, Figaroa F, Siegal G, Marshall FH. 38.  2011. Fragment screening of stabilized G-protein-coupled receptors using biophysical methods. Methods Enzymol. 493:115–36 [Google Scholar]
  39. Lebon G, Warne T, Edwards PC, Bennett K, Langmead CJ. 39.  et al. 2011. Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature 474:521–25 [Google Scholar]
  40. Dore AS, Robertson N, Errey JC, Ng I, Hollenstein K. 40.  et al. 2011. Structure of the adenosine A2A receptor in complex with ZM241385 and the xanthines XAC and caffeine. Structure 19:1283–93 [Google Scholar]
  41. Zhukov A, Andrews SP, Errey JC, Robertson N, Tehan B. 41.  et al. 2011. Biophysical mapping of the adenosine A2A receptor. J. Med. Chem. 54:4312–23 [Google Scholar]
  42. Patching SG. 42.  2014. Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery. Biochim. Biophys. Acta 1838:43–55 [Google Scholar]
  43. Valant C, Robert Lane J, Sexton PM, Christopoulos A. 43.  2012. The best of both worlds? Bitopic orthosteric/allosteric ligands of G protein–coupled receptors. Annu. Rev. Pharmacol. Toxicol. 52:153–78 [Google Scholar]
  44. Steinfeld T, Mammen M, Smith JA, Wilson RD, Jasper JR. 44.  2007. A novel multivalent ligand that bridges the allosteric and orthosteric binding sites of the M2 muscarinic receptor. Mol. Pharmacol. 72:291–302 [Google Scholar]
  45. Griffin MT, Figueroa KW, Liller S, Ehlert FJ. 45.  2007. Estimation of agonist activity at G protein–coupled receptors: analysis of M2 muscarinic receptor signaling through Gi/o,Gs, and G15. J. Pharmacol. Exp. Ther. 321:1193–207 [Google Scholar]
  46. Valant C, Gregory KJ, Hall NE, Scammells PJ, Lew MJ. 46.  et al. 2008. A novel mechanism of G protein–coupled receptor functional selectivity: muscarinic partial agonist McN-A-343 as a bitopic orthosteric/allosteric ligand. J. Biol. Chem. 283:29312–21 [Google Scholar]
  47. Avlani VA, Langmead CJ, Guida E, Wood MD, Tehan BG. 47.  et al. 2010. Orthosteric and allosteric modes of interaction of novel selective agonists of the M1 muscarinic acetylcholine receptor. Mol. Pharmacol. 78:94–104 [Google Scholar]
  48. Jacobson MA, Kreatsoulas C, Pascarella DM, O'Brien JA, Sur C. 48.  2010. The M1 muscarinic receptor allosteric agonists AC-42 and 1-[1′-(2-methylbenzyl)-1,4′-bipiperidin-4-yl]-1,3-dihydro-2H-benzimidazol-2-one bind to a unique site distinct from the acetylcholine orthosteric site. Mol. Pharmacol. 78:648–57 [Google Scholar]
  49. Keov P, Valant C, Devine SM, Lane JR, Scammells PJ. 49.  et al. 2013. Reverse engineering of the selective agonist TBPB unveils both orthosteric and allosteric modes of action at the M1 muscarinic acetylcholine receptor. Mol. Pharmacol. 84:425–37 [Google Scholar]
  50. Langmead CJ, Austin NE, Branch CL, Brown JT, Buchanan KA. 50.  et al. 2008. Characterization of a CNS penetrant, selective M1 muscarinic receptor agonist, 77-LH-28-1. Br. J. Pharmacol. 154:1104–15 [Google Scholar]
  51. Yang Z, Cerniway RJ, Byford AM, Berr SS, French BA, Matherne GP. 51.  2002. Cardiac overexpression of A1-adenosine receptor protects intact mice against myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 282:H949–55 [Google Scholar]
  52. Mustafa SJ, Morrison RR, Teng B, Pelleg A. 52.  2009. Adenosine receptors and the heart: role in regulation of coronary blood flow and cardiac electrophysiology. Handb. Exp. Pharmacol. 193:161–88 [Google Scholar]
  53. Valant C, May LT, Aurelio L, Chuo CH, White PJ. 53.  et al. 2014. Separation of on-target efficacy from adverse effects through rational design of a bitopic adenosine receptor agonist. PNAS 111:4614–19 [Google Scholar]
  54. Aurelio L, Valant C, Flynn BL, Sexton PM, Christopoulos A, Scammells PJ. 54.  2009. Allosteric modulators of the adenosine A1 receptor: synthesis and pharmacological evaluation of 4-substituted 2-amino-3-benzoylthiophenes. J. Med. Chem. 52:4543–47 [Google Scholar]
  55. Boerrigter G, Soergel DG, Violin JD, Lark MW, Burnett JC Jr. 55.  2012. TRV120027, a novel β-arrestin biased ligand at the angiotensin II type I receptor, unloads the heart and maintains renal function when added to furosemide in experimental heart failure. Circ. Heart Fail. 5:627–34 [Google Scholar]
  56. Violin JD, Lefkowitz RJ. 56.  2007. β-arrestin-biased ligands at seven-transmembrane receptors. Trends Pharmacol. Sci. 28:416–22 [Google Scholar]
  57. Wisler JW, DeWire SM, Whalen EJ, Violin JD, Drake MT. 57.  et al. 2007. A unique mechanism of β-blocker action: carvedilol stimulates β-arrestin signaling. PNAS 104:16657–62 [Google Scholar]
  58. Kenakin T, Christopoulos A. 58.  2013. Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat. Rev. Drug Discov. 12:205–16 [Google Scholar]
  59. Kenakin T, Watson C, Muniz-Medina V, Christopoulos A, Novick S. 59.  2012. A simple method for quantifying functional selectivity and agonist bias. ACS Chem. Neurosci. 3:193–203 [Google Scholar]
  60. van der Westhuizen ET, Breton B, Christopoulos A, Bouvier M. 60.  2014. Quantification of ligand bias for clinically relevant β2-adrenergic receptor ligands: implications for drug taxonomy. Mol. Pharmacol. 85:492–509 [Google Scholar]
  61. Warne T, Edwards PC, Leslie AG, Tate CG. 61.  2012. Crystal structures of a stabilized β1-adrenoceptor bound to the biased agonists bucindolol and carvedilol. Structure 20:841–49 [Google Scholar]
  62. Reiter E, Ahn S, Shukla AK, Lefkowitz RJ. 62.  2012. Molecular mechanism of β-arrestin-biased agonism at seven-transmembrane receptors. Annu. Rev. Pharmacol. Toxicol. 52:179–97 [Google Scholar]
  63. Butcher AJ, Prihandoko R, Kong KC, McWilliams P, Edwards JM. 63.  et al. 2011. Differential G-protein-coupled receptor phosphorylation provides evidence for a signaling bar code. J. Biol. Chem. 286:11506–18 [Google Scholar]
  64. Nobles KN, Xiao K, Ahn S, Shukla AK, Lam CM. 64.  et al. 2011. Distinct phosphorylation sites on the β2-adrenergic receptor establish a barcode that encodes differential functions of β-arrestin. Sci. Signal. 4:ra51 [Google Scholar]
  65. Tobin AB, Butcher AJ, Kong KC. 65.  2008. Location, location, location…site-specific GPCR phosphorylation offers a mechanism for cell-type-specific signalling. Trends Pharmacol. Sci. 29:413–20 [Google Scholar]
  66. Zidar DA, Violin JD, Whalen EJ, Lefkowitz RJ. 66.  2009. Selective engagement of G protein coupled receptor kinases (GRKs) encodes distinct functions of biased ligands. PNAS 106:9649–54 [Google Scholar]
  67. Tobin AB. 67.  2008. G-protein-coupled receptor phosphorylation: where, when and by whom. Br. J. Pharmacol. 153:Suppl. 1S167–76 [Google Scholar]
  68. Torrecilla I, Spragg EJ, Poulin B, McWilliams PJ, Mistry SC. 68.  et al. 2007. Phosphorylation and regulation of a G protein–coupled receptor by protein kinase CK2. J. Cell Biol. 177:127–37 [Google Scholar]
  69. DeWire SM, Ahn S, Lefkowitz RJ, Shenoy SK. 69.  2007. β-arrestins and cell signaling. Annu. Rev. Physiol. 69:483–510 [Google Scholar]
  70. Shukla AK, Manglik A, Kruse AC, Xiao K, Reis RI. 70.  et al. 2013. Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 497:137–41 [Google Scholar]
  71. Xiao K, Shenoy SK, Nobles K, Lefkowitz RJ. 71.  2004. Activation-dependent conformational changes in β-arrestin 2. J. Biol. Chem. 279:55744–53 [Google Scholar]
  72. Nobles KN, Guan Z, Xiao K, Oas TG, Lefkowitz RJ. 72.  2007. The active conformation of β-arrestin1: direct evidence for the phosphate sensor in the N-domain and conformational differences in the active states of β-arrestins1 and -2. J. Biol. Chem. 282:21370–81 [Google Scholar]
  73. Capecchi MR. 73.  2005. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat. Rev. Genet. 6:507–12 [Google Scholar]
  74. Thomas KR, Folger KR, Capecchi MR. 74.  1986. High frequency targeting of genes to specific sites in the mammalian genome. Cell 44:419–28 [Google Scholar]
  75. Kobilka BK, Frielle T, Dohlman HG, Bolanowski MA, Dixon RA. 75.  et al. 1987. Delineation of the intronless nature of the genes for the human and hamster β2-adrenergic receptor and their putative promoter regions. J. Biol. Chem. 262:7321–27 [Google Scholar]
  76. Dixon RA, Kobilka BK, Strader DJ, Benovic JL, Dohlman HG. 76.  et al. 1986. Cloning of the gene and cDNA for mammalian β-adrenergic receptor and homology with rhodopsin. Nature 321:75–79 [Google Scholar]
  77. Lefkowitz RJ. 77.  2004. Historical review: a brief history and personal retrospective of seven-transmembrane receptors. Trends Pharmacol. Sci. 25:413–22 [Google Scholar]
  78. Xu M, Hu XT, Cooper DC, Moratalla R, Graybiel AM. 78.  et al. 1994. Elimination of cocaine-induced hyperactivity and dopamine-mediated neurophysiological effects in dopamine D1 receptor mutant mice. Cell 79:945–55 [Google Scholar]
  79. Xu M, Moratalla R, Gold LH, Hiroi N, Koob GF. 79.  et al. 1994. Dopamine D1 receptor mutant mice are deficient in striatal expression of dynorphin and in dopamine-mediated behavioral responses. Cell 79:729–42 [Google Scholar]
  80. Hosoda K, Hammer RE, Richardson JA, Baynash AG, Cheung JC. 80.  et al. 1994. Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell 79:1267–76 [Google Scholar]
  81. Aiba A, Chen C, Herrup K, Rosenmund C, Stevens CF, Tonegawa S. 81.  1994. Reduced hippocampal long-term potentiation and context-specific deficit in associative learning in mGluR1 mutant mice. Cell 79:365–75 [Google Scholar]
  82. Saudou F, Amara DA, Dierich A, LeMeur M, Ramboz S. 82.  et al. 1994. Enhanced aggressive behavior in mice lacking 5-HT1B receptor. Science 265:1875–78 [Google Scholar]
  83. Rohrer DK, Kobilka BK. 83.  1998. G protein–coupled receptors: functional and mechanistic insights through altered gene expression. Physiol. Rev. 78:35–52 [Google Scholar]
  84. Ito M, Oliverio MI, Mannon PJ, Best CF, Maeda N. 84.  et al. 1995. Regulation of blood pressure by the type 1A angiotensin II receptor gene. PNAS 92:3521–25 [Google Scholar]
  85. Coffman TM. 85.  1997. A genetic approach for studying the physiology of the type 1A (AT1A) angiotensin receptor. Semin. Nephrol. 17:404–11 [Google Scholar]
  86. Sora I, Takahashi N, Funada M, Ujike H, Revay RS. 86.  et al. 1997. Opiate receptor knockout mice define μ receptor roles in endogenous nociceptive responses and morphine-induced analgesia. PNAS 94:1544–49 [Google Scholar]
  87. Link RE, Desai K, Hein L, Stevens ME, Chruscinski A. 87.  et al. 1996. Cardiovascular regulation in mice lacking α2-adrenergic receptor subtypes b and c. Science 273:803–5 [Google Scholar]
  88. MacMillan LB, Hein L, Smith MS, Piascik MT, Limbird LE. 88.  1996. Central hypotensive effects of the α2a-adrenergic receptor subtype. Science 273:801–3 [Google Scholar]
  89. Cavalli A, Lattion AL, Hummler E, Nenniger M, Pedrazzini T. 89.  et al. 1997. Decreased blood pressure response in mice deficient of the α1b-adrenergic receptor. PNAS 94:11589–94 [Google Scholar]
  90. Rohrer DK, Chruscinski A, Schauble EH, Bernstein D, Kobilka BK. 90.  1999. Cardiovascular and metabolic alterations in mice lacking both β1- and β2-adrenergic receptors. J. Biol. Chem. 274:16701–8 [Google Scholar]
  91. Susulic VS, Frederich RC, Lawitts J, Tozzo E, Kahn BB. 91.  et al. 1995. Targeted disruption of the β3-adrenergic receptor gene. J. Biol. Chem. 270:29483–92 [Google Scholar]
  92. Bryson-Richardson RJ, Logan DW, Currie PD, Jackson IJ. 92.  2004. Large-scale analysis of gene structure in rhodopsin-like GPCRs: evidence for widespread loss of an ancient intron. Gene 338:15–23 [Google Scholar]
  93. Tong H, Bernstein D, Murphy E, Steenbergen C. 93.  2005. The role of β-adrenergic receptor signaling in cardioprotection. FASEB J. 19:983–85 [Google Scholar]
  94. Duttaroy A, Zimliki CL, Gautam D, Cui Y, Mears D, Wess J. 94.  2004. Muscarinic stimulation of pancreatic insulin and glucagon release is abolished in M3 muscarinic acetylcholine receptor–deficient mice. Diabetes 53:1714–20 [Google Scholar]
  95. Yamada M, Miyakawa T, Duttaroy A, Yamanaka A, Moriguchi T. 95.  et al. 2001. Mice lacking the M3 muscarinic acetylcholine receptor are hypophagic and lean. Nature 410:207–12 [Google Scholar]
  96. Gautam D, Gavrilova O, Jeon J, Pack S, Jou W. 96.  et al. 2006. Beneficial metabolic effects of M3 muscarinic acetylcholine receptor deficiency. Cell Metab. 4:363–75 [Google Scholar]
  97. Gautam D, Han SJ, Hamdan FF, Jeon J, Li B. 97.  et al. 2006. A critical role for β cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo. Cell Metab. 3:449–61 [Google Scholar]
  98. Montmayeur JP, Bausero P, Amlaiky N, Maroteaux L, Hen R, Borrelli E. 98.  1991. Differential expression of the mouse D2 dopamine receptor isoforms. FEBS Lett. 278:239–43 [Google Scholar]
  99. Pothos EN, Davila V, Sulzer D. 99.  1998. Presynaptic recording of quanta from midbrain dopamine neurons and modulation of the quantal size. J. Neurosci. 18:4106–18 [Google Scholar]
  100. Baik JH. 100.  2013. Dopamine signaling in reward-related behaviors. Front. Neural Circuits 7:152 [Google Scholar]
  101. Centonze D, Picconi B, Baunez C, Borrelli E, Pisani A. 101.  et al. 2002. Cocaine and amphetamine depress striatal GABAergic synaptic transmission through D2 dopamine receptors. Neuropsychopharmacology 26:164–75 [Google Scholar]
  102. Kimmel RA, Turnbull DH, Blanquet V, Wurst W, Loomis CA, Joyner AL. 102.  2000. Two lineage boundaries coordinate vertebrate apical ectodermal ridge formation. Genes Dev. 14:1377–89 [Google Scholar]
  103. Anzalone A, Lizardi-Ortiz JE, Ramos M, De Mei C, Hopf FW. 103.  et al. 2012. Dual control of dopamine synthesis and release by presynaptic and postsynaptic dopamine D2 receptors. J. Neurosci. 32:9023–34 [Google Scholar]
  104. Lemberger T, Parlato R, Dassesse D, Westphal M, Casanova E. 104.  et al. 2007. Expression of Cre recombinase in dopaminoceptive neurons. BMC Neurosci. 8:4 [Google Scholar]
  105. Kieffer BL, Gaveriaux-Ruff C. 105.  2002. Exploring the opioid system by gene knockout. Prog. Neurobiol. 66:285–306 [Google Scholar]
  106. Scherrer G, Tryoen-Tóth P, Filliol D, Matifas A, Laustriat D. 106.  et al. 2006. Knockin mice expressing fluorescent δ-opioid receptors uncover G protein–coupled receptor dynamics in vivo. PNAS 103:9691–96 [Google Scholar]
  107. Scherrer G, Imamachi N, Cao YQ, Contet C, Mennicken F. 107.  et al. 2009. Dissociation of the opioid receptor mechanisms that control mechanical and heat pain. Cell 137:1148–59 [Google Scholar]
  108. Shenoy SK, Lefkowitz RJ. 108.  2011. β-arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol. Sci. 32:521–33 [Google Scholar]
  109. Pradhan AA, Becker JA, Scherrer G, Tryoen-Tóth P, Filliol D. 109.  et al. 2009. In vivo delta opioid receptor internalization controls behavioral effects of agonists. PLOS ONE 4:e5425 [Google Scholar]
  110. Faget L, Erbs E, Le Merrer J, Scherrer G, Matifas A. 110.  et al. 2012. In vivo visualization of delta opioid receptors upon physiological activation uncovers a distinct internalization profile. J. Neurosci. 32:7301–10 [Google Scholar]
  111. Dunkelberger J, Zhou L, Miwa T, Song WC. 111.  2012. C5aR expression in a novel GFP reporter gene knockin mouse: implications for the mechanism of action of C5aR signaling in T cell immunity. J. Immunol. 188:4032–42 [Google Scholar]
  112. Conklin BR, Hsiao EC, Claeysen S, Dumuis A, Srinivasan S. 112.  et al. 2008. Engineering GPCR signaling pathways with RASSLs. Nat. Methods 5:673–78 [Google Scholar]
  113. Coward P, Wada HG, Falk MS, Chan SD, Meng F. 113.  et al. 1998. Controlling signaling with a specifically designed Gi-coupled receptor. PNAS 95:352–57 [Google Scholar]
  114. Redfern CH, Coward P, Degtyarev MY, Lee EK, Kwa AT. 114.  et al. 1999. Conditional expression and signaling of a specifically designed Gi-coupled receptor in transgenic mice. Nat. Biotechnol. 17:165–69 [Google Scholar]
  115. Peng J, Bencsik M, Louie A, Lu W, Millard S. 115.  et al. 2008. Conditional expression of a Gi-coupled receptor in osteoblasts results in trabecular osteopenia. Endocrinology 149:1329–37 [Google Scholar]
  116. Hsiao EC, Boudignon BM, Chang WC, Bencsik M, Peng J. 116.  et al. 2008. Osteoblast expression of an engineered Gs-coupled receptor dramatically increases bone mass. PNAS 105:1209–14 [Google Scholar]
  117. Chang WC, Ng JK, Nguyen T, Pellissier L, Claeysen S. 117.  et al. 2007. Modifying ligand-induced and constitutive signaling of the human 5-HT4 receptor. PLOS ONE 2:e1317 [Google Scholar]
  118. Srinivasan S, Santiago P, Lubrano C, Vaisse C, Conklin BR. 118.  2007. Engineering the melanocortin-4 receptor to control constitutive and ligand-mediated GS signaling in vivo. PLOS ONE 2:e668 [Google Scholar]
  119. Claeysen S, Joubert L, Sebben M, Bockaert J, Dumuis A. 119.  2003. A single mutation in the 5-HT4 receptor (5-HT4-R D100(3.32)A) generates a Gs-coupled receptor activated exclusively by synthetic ligands (RASSL). J. Biol. Chem. 278:699–702 [Google Scholar]
  120. Bruysters M, Jongejan A, Akdemir A, Bakker RA, Leurs R. 120.  2005. A Gq/11-coupled mutant histamine H1 receptor F435A activated solely by synthetic ligands (RASSL). J. Biol. Chem. 280:34741–46 [Google Scholar]
  121. Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL. 121.  2007. Evolving the lock to fit the key to create a family of G protein–coupled receptors potently activated by an inert ligand. PNAS 104:5163–68 [Google Scholar]
  122. Urban DJ, Roth BL. 122.  2015. DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. Annu. Rev. Pharmacol. Toxicol. 55:399–417 [Google Scholar]
  123. Dong S, Rogan SC, Roth BL. 123.  2010. Directed molecular evolution of DREADDs: a generic approach to creating next-generation RASSLs. Nat. Protoc. 5:561–73 [Google Scholar]
  124. Alvarez-Curto E, Prihandoko R, Tautermann CS, Zwier JM, Pediani JD. 124.  et al. 2011. Developing chemical genetic approaches to explore G protein–coupled receptor function: validation of the use of a receptor activated solely by synthetic ligand (RASSL). Mol. Pharmacol. 80:1033–46 [Google Scholar]
  125. Weiner DM, Meltzer HY, Veinbergs I, Donohue EM, Spalding TA. 125.  et al. 2004. The role of M1 muscarinic receptor agonism of N-desmethylclozapine in the unique clinical effects of clozapine. Psychopharmacology 177:207–16 [Google Scholar]
  126. Bender D, Holschbach M, Stocklin G. 126.  1994. Synthesis of n.c.a. carbon-11 labelled clozapine and its major metabolite clozapine-N-oxide and comparison of their biodistribution in mice. Nuclear Med. Biol. 21:921–25 [Google Scholar]
  127. Chang WH, Lin SK, Lane HY, Wei FC, Hu WH. 127.  et al. 1998. Reversible metabolism of clozapine and clozapine N-oxide in schizophrenic patients. Prog. Neuropsychopharmacol. Biol. Psychiatry 22:723–39 [Google Scholar]
  128. Dong S, Allen JA, Farrell M, Roth BL. 128.  2010. A chemical-genetic approach for precise spatio-temporal control of cellular signaling. Mol. Biosyst. 6:1376–80 [Google Scholar]
  129. Guettier JM, Gautam D, Scarselli M, Ruiz de Azua I, Li JH. 129.  et al. 2009. A chemical-genetic approach to study G protein regulation of β cell function in vivo. PNAS 106:19197–202 [Google Scholar]
  130. Jain S, Ruiz de Azua I, Lu H, White MF, Guettier JM, Wess J. 130.  2013. Chronic activation of a designer Gq-coupled receptor improves β cell function. J. Clin. Investig. 123:1750–62 [Google Scholar]
  131. Alexander GM, Rogan SC, Abbas AI, Armbruster BN, Pei Y. 131.  et al. 2009. Remote control of neuronal activity in transgenic mice expressing evolved G protein–coupled receptors. Neuron 63:27–39 [Google Scholar]
  132. Li H, Penzo MA, Taniguchi H, Kopec CD, Huang ZJ, Li B. 132.  2013. Experience-dependent modification of a central amygdala fear circuit. Nat. Neurosci. 16:332–39 [Google Scholar]
  133. Garner AR, Rowland DC, Hwang SY, Baumgaertel K, Roth BL. 133.  et al. 2012. Generation of a synthetic memory trace. Science 335:1513–16 [Google Scholar]
  134. Parnaudeau S, O'Neill PK, Bolkan SS, Ward RD, Abbas AI. 134.  et al. 2013. Inhibition of mediodorsal thalamus disrupts thalamofrontal connectivity and cognition. Neuron 77:1151–62 [Google Scholar]
  135. Kong D, Tong Q, Ye C, Koda S, Fuller PM. 135.  et al. 2012. GABAergic RIP-Cre neurons in the arcuate nucleus selectively regulate energy expenditure. Cell 151:645–57 [Google Scholar]
  136. Hudson BD, Christiansen E, Tikhonova IG, Grundmann M, Kostenis E. 136.  et al. 2012. Chemically engineering ligand selectivity at the free fatty acid receptor 2 based on pharmacological variation between species orthologs. FASEB J. 26:4951–65 [Google Scholar]
  137. Hudson BD, Smith NJ, Milligan G. 137.  2011. Experimental challenges to targeting poorly characterized GPCRs: uncovering the therapeutic potential for free fatty acid receptors. Adv. Pharmacol. 62:175–218 [Google Scholar]
  138. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. 138.  2005. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8:1263–68 [Google Scholar]
  139. Fenno L, Yizhar O, Deisseroth K. 139.  2011. The development and application of optogenetics. Annu. Rev. Neurosci. 34:389–412 [Google Scholar]
  140. Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K. 140.  2011. Optogenetics in neural systems. Neuron 71:9–34 [Google Scholar]
  141. Xie YF, Jackson MF, Macdonald JF. 141.  2013. Optogenetics and synaptic plasticity. Acta Pharmacol. Sinica 34:1381–85 [Google Scholar]
  142. Lin JY, Sann SB, Zhou K, Nabavi S, Proulx CD. 142.  et al. 2013. Optogenetic inhibition of synaptic release with chromophore-assisted light inactivation (CALI). Neuron 79:241–53 [Google Scholar]
  143. Beiert T, Bruegmann T, Sasse P. 143.  2014. Optogenetic activation of Gq signalling modulates pacemaker activity of cardiomyocytes. Cardiovasc. Res. 102:507–16 [Google Scholar]
  144. Deisseroth K. 144.  2011. Optogenetics. Nat. Methods 8:26–29 [Google Scholar]
  145. Airan RD, Thompson KR, Fenno LE, Bernstein H, Deisseroth K. 145.  2009. Temporally precise in vivo control of intracellular signalling. Nature 458:1025–29 [Google Scholar]
  146. Oh E, Maejima T, Liu C, Deneris E, Herlitze S. 146.  2010. Substitution of 5-HT1A receptor signaling by a light-activated G protein–coupled receptor. J. Biol. Chem. 285:30825–36 [Google Scholar]
  147. Conn PJ, Pin JP. 147.  1997. Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol. 37:205–37 [Google Scholar]
  148. Levitz J, Pantoja C, Gaub B, Janovjak H, Reiner A. 148.  et al. 2013. Optical control of metabotropic glutamate receptors. Nat. Neurosci. 16:507–16 [Google Scholar]
  149. Rajagopal S, Rajagopal K, Lefkowitz RJ. 149.  2010. Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat. Rev. Drug Discov. 9:373–86 [Google Scholar]
  150. Reiter E, Lefkowitz RJ. 150.  2006. GRKs and β-arrestins: roles in receptor silencing, trafficking and signaling. Trends Endocrinol. Metab. 17:159–65 [Google Scholar]
  151. Bristow MR. 151.  2000. β-adrenergic receptor blockade in chronic heart failure. Circulation 101:558–69 [Google Scholar]
  152. Violin JD, DeWire SM, Yamashita D, Rominger DH, Nguyen L. 152.  et al. 2010. Selectively engaging β-arrestins at the angiotensin II type 1 receptor reduces blood pressure and increases cardiac performance. J. Pharmacol. Exp. Ther. 335:572–79 [Google Scholar]
  153. Eglen RM. 153.  2006. Muscarinic receptor subtypes in neuronal and non-neuronal cholinergic function. Auton. Autacoid Pharmacol. 26:219–33 [Google Scholar]
  154. Tobin AB, Nahorski SR. 154.  1993. Rapid agonist-mediated phosphorylation of m3-muscarinic receptors revealed by immunoprecipitation. J. Biol. Chem. 268:9817–23 [Google Scholar]
  155. Budd DC, Willars GB, McDonald JE, Tobin AB. 155.  2001. Phosphorylation of the Gq/11-coupled M3-muscarinic receptor is involved in receptor activation of the ERK-1/2 mitogen-activated protein kinase pathway. J. Biol. Chem. 276:4581–87 [Google Scholar]
  156. Kong KC, Butcher AJ, McWilliams P, Jones D, Wess J. 156.  et al. 2010. M3-muscarinic receptor promotes insulin release via receptor phosphorylation/arrestin-dependent activation of protein kinase D1. PNAS 107:21181–86 [Google Scholar]
  157. Poulin B, Butcher A, McWilliams P, Bourgognon JM, Pawlak R. 157.  et al. 2010. The M3-muscarinic receptor regulates learning and memory in a receptor phosphorylation/arrestin-dependent manner. PNAS 107:9440–45 [Google Scholar]
  158. Gautam D, Han SJ, Duttaroy A, Mears D, Hamdan FF. 158.  et al. 2007. Role of the M3 muscarinic acetylcholine receptor in β-cell function and glucose homeostasis. Diabetes Obes. Metab. 9:Suppl. 2158–69 [Google Scholar]
  159. Kong KC, Tobin AB. 159.  2011. The role of M3-muscarinic receptor signaling in insulin secretion. Commun. Integr. Biol. 4:489–91 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error