1932

Abstract

Metabotropic glutamate receptor 5 (mGluR5) is ubiquitously expressed in brain regions responsible for memory and learning. It plays a key role in modulating rapid changes in synaptic transmission and plasticity. mGluR5 supports long-term changes in synaptic strength by regulating the transcription and translation of essential synaptic proteins. β-Amyloid 42 (Aβ42) oligomers interact with a mGluR5/cellular prion protein (PrPC) complex to disrupt physiological mGluR5 signal transduction. Aberrant mGluR5 signaling and associated synaptic failure are considered an emerging pathophysiological mechanism of Alzheimer's disease (AD). Therefore, mGluR5 represents an attractive therapeutic target for AD, and recent studies continue to validate the efficacy of various mGluR5 allosteric modulators in improving memory deficits and mitigating disease pathology. However, sex-specific differences in the pharmacology of mGluR5 and activation of noncanonical signaling downstream of the receptor suggest that its utility as a therapeutic target in female AD patients needs to be reconsidered.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-021821-091747
2022-01-06
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/62/1/annurev-pharmtox-021821-091747.html?itemId=/content/journals/10.1146/annurev-pharmtox-021821-091747&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Conn PJ, Pin J-P. 1997. Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol. 37:205–37
    [Google Scholar]
  2. 2. 
    Pin J-P, Galvez T, Prézeau L. 2003. Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol. Ther. 98:3325–54
    [Google Scholar]
  3. 3. 
    Niswender CM, Conn PJ. 2010. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu. Rev. Pharmacol. Toxicol. 50:295–322
    [Google Scholar]
  4. 4. 
    Dhami GK, Ferguson SSG. 2006. Regulation of metabotropic glutamate receptor signaling, desensitization and endocytosis. Pharmacol. Ther. 111:1260–71
    [Google Scholar]
  5. 5. 
    Ferguson SSG. 2007. Phosphorylation-independent attenuation of GPCR signalling. Trends Pharmacol. Sci. 28:4173–79
    [Google Scholar]
  6. 6. 
    Ferguson SS. 2001. Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol. Rev. 53:11–24
    [Google Scholar]
  7. 7. 
    Koehl A, Hu H, Feng D, Sun B, Zhang Y et al. 2019. Structural insights into the activation of metabotropic glutamate receptors. Nature 566:774279–84
    [Google Scholar]
  8. 8. 
    Ibrahim KS, Abd-Elrahman KS, El Mestikawy S, Ferguson SSG. 2020. Targeting vesicular glutamate transporter machinery: implications on metabotropic glutamate receptor 5 signaling and behavior. Mol. Pharmacol. 98:4314–27
    [Google Scholar]
  9. 9. 
    Kew JNC. 2004. Positive and negative allosteric modulation of metabotropic glutamate receptors: emerging therapeutic potential. Pharmacol. Ther. 104:3233–44
    [Google Scholar]
  10. 10. 
    Shigemoto R, Nomura S, Ohishi H, Sugihara H, Nakanishi S, Mizuno N. 1993. Immunohistochemical localization of a metabotropic glutamate receptor, mGluR5, in the rat brain. Neurosci. Lett. 163:153–57
    [Google Scholar]
  11. 11. 
    Romano C, Sesma MA, McDonald CT, O'Malley K, van den Pol AN, Olney JW 1995. Distribution of metabotropic glutamate receptor mGluR5 immunoreactivity in rat brain. J. Comp. Neurol. 355:3455–69
    [Google Scholar]
  12. 12. 
    Jong YJI, Kumar V, Kingston AE, Romano C, O'Malley KL. 2005. Functional metabotropic glutamate receptors on nuclei from brain and primary cultured striatal neurons: role of transporters in delivering ligand. J. Biol. Chem. 280:3430469–80
    [Google Scholar]
  13. 13. 
    Ribeiro FM, Vieira LB, Pires RGW, Olmo RP, Ferguson SSG. 2017. Metabotropic glutamate receptors and neurodegenerative diseases. Pharmacol. Res. 115:179–91
    [Google Scholar]
  14. 14. 
    Ribeiro FM, Paquet M, Cregan SP, Ferguson SSG. 2010. Group I metabotropic glutamate receptor signalling and its implication in neurological disease. CNS Neurol. Disord. Drug Targets 9:5574–95
    [Google Scholar]
  15. 15. 
    Gereau RW IV, Heinemann SF 1998. Role of protein kinase C phosphorylation in rapid desensitization of metabotropic glutamate receptor 5. Neuron 20:1143–51
    [Google Scholar]
  16. 16. 
    Schnabel R, Kilpatrick IC, Collingridge GL. 1999. An investigation into signal transduction mechanisms involved in DHPG-induced LTD in the CA1 region of the hippocampus. Neuropharmacology 38:101585–96
    [Google Scholar]
  17. 17. 
    Banko JL, Hou L, Poulin F, Sonenberg N, Klann E. 2006. Regulation of eukaryotic initiation factor 4E by converging signaling pathways during metabotropic glutamate receptor-dependent long-term depression. J. Neurosci. 26:82167–73
    [Google Scholar]
  18. 18. 
    Stoppel LJ, Auerbach BD, Senter RK, Preza AR, Lefkowitz RJ, Bear MF. 2017. β-Arrestin2 couples metabotropic glutamate receptor 5 to neuronal protein synthesis and is a potential target to treat fragile X. Cell Rep 18:122807–14
    [Google Scholar]
  19. 19. 
    Ibrahim KS, McLaren CJ, Abd-Elrahman KS, Ferguson SSG 2021. Optineurin deletion disrupts metabotropic glutamate receptor 5-mediated regulation of ERK1/2, GSK3β/ZBTB16, mTOR/ULK1 signaling in autophagy. Biochem. Pharmacol. 185:114427
    [Google Scholar]
  20. 20. 
    Fitzjohn SM, Palmer MJ, May JER, Neeson A, Morris SAC, Collingridge GL. 2001. A characterisation of long-term depression induced by metabotropic glutamate receptor activation in the rat hippocampus in vitro. J. Physiol. 537:2421–30
    [Google Scholar]
  21. 21. 
    Huber KM, Roder JC, Bear MF. 2001. Chemical induction of mGluR5- and protein synthesis–dependent long-term depression in hippocampal area CA1. J. Neurophysiol. 86:1321–25
    [Google Scholar]
  22. 22. 
    Eng AG, Kelver DA, Hedrick TP, Swanson GT. 2016. Transduction of group I mGluR-mediated synaptic plasticity by β-arrestin2 signalling. Nat. Commun. 7:113571
    [Google Scholar]
  23. 23. 
    Lefkowitz RJ, Shenoy SK. 2005. Transduction of receptor signals by β-arrestins. Science 308:5721512–17
    [Google Scholar]
  24. 24. 
    Guhan N, Lu B. 2004. Homer-PIKE complex: a novel link between mGluRI and PI 3-kinase. Trends Neurosci 27:11645–48
    [Google Scholar]
  25. 25. 
    Tu JC, Xiao B, Naisbitt S, Yuan JP, Petralia RS et al. 1999. Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron 23:3583–92
    [Google Scholar]
  26. 26. 
    Mao L, Yang L, Tang Q, Samdani S, Zhang G, Wang JQ. 2005. The scaffold protein Homer1b/c links metabotropic glutamate receptor 5 to extracellular signal-regulated protein kinase cascades in neurons. J. Neurosci. 25:102741–52
    [Google Scholar]
  27. 27. 
    Ronesi JA, Collins KA, Hays SA, Tsai N-P, Guo W et al. 2012. Disrupted Homer scaffolds mediate abnormal mGluR5 function in a mouse model of fragile X syndrome. Nat. Neurosci. 15:3431–40
    [Google Scholar]
  28. 28. 
    Hou L, Klann E. 2004. Activation of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin signaling pathway is required for metabotropic glutamate receptor-dependent long-term depression. J. Neurosci. 24:286352–61
    [Google Scholar]
  29. 29. 
    Hullinger R, O'Riordan K, Burger C. 2015. Environmental enrichment improves learning and memory and long-term potentiation in young adult rats through a mechanism requiring mGluR5 signaling and sustained activation of p70s6k. Neurobiol. Learn. Mem. 125:126–34
    [Google Scholar]
  30. 30. 
    Ronesi JA, Huber KM. 2008. Homer interactions are necessary for metabotropic glutamate receptor-induced long-term depression and translational activation. J. Neurosci. 28:2543–47
    [Google Scholar]
  31. 31. 
    Rong R, Ahn J-Y, Huang H, Nagata E, Kalman D et al. 2003. PI3 kinase enhancer-Homer complex couples mGluRI to PI3 kinase, preventing neuronal apoptosis. Nat. Neurosci. 6:111153–61
    [Google Scholar]
  32. 32. 
    Porta C, Paglino C, Mosca A. 2014. Targeting PI3K/Akt/mTOR signaling in cancer. Front. Oncol. 4:64
    [Google Scholar]
  33. 33. 
    Abd-Elrahman KS, Ferguson SSG 2019. Modulation of mTOR and CREB pathways following mGluR5 blockade contribute to improved Huntington's pathology in zQ175 mice. Mol. Brain 12:135
    [Google Scholar]
  34. 34. 
    Bhakar AL, Dölen G, Bear MF. 2012. The pathophysiology of fragile X (and what it teaches us about synapses). Annu. Rev. Neurosci. 35:417–43
    [Google Scholar]
  35. 35. 
    Nazio F, Cecconi F. 2017. Autophagy up and down by outsmarting the incredible ULK. Autophagy 13:5967–68
    [Google Scholar]
  36. 36. 
    Zachari M, Ganley IG. 2017. The mammalian ULK1 complex and autophagy initiation. Essays Biochem 61:6585–96
    [Google Scholar]
  37. 37. 
    Ganley IG, Lam DH, Wang J, Ding X, Chen S, Jiang X 2009. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem. 284:1812297–305
    [Google Scholar]
  38. 38. 
    Kim J, Kundu M, Viollet B, Guan K-L. 2011. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13:2132–41
    [Google Scholar]
  39. 39. 
    Russell RC, Tian Y, Yuan H, Park HW, Chang Y-Y et al. 2013. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol. 15:7741–50
    [Google Scholar]
  40. 40. 
    Abd-Elrahman KS, Hamilton A, Hutchinson SR, Liu F, Russell RC, Ferguson SSG. 2017. mGluR5 antagonism increases autophagy and prevents disease progression in the zQ175 mouse model of Huntington's disease. Sci. Signal. 10:510eaan6387
    [Google Scholar]
  41. 41. 
    Abd-Elrahman KS, Hamilton A, Vasefi M, Ferguson SSG. 2018. Autophagy is increased following either pharmacological or genetic silencing of mGluR5 signaling in Alzheimer's disease mouse models. Mol. Brain 11:119
    [Google Scholar]
  42. 42. 
    Abd-Elrahman KS, Hamilton A, Albaker A, Ferguson SSG. 2020. mGluR5 contribution to neuropathology in Alzheimer mice is disease stage-dependent. ACS Pharmacol. Transl. Sci. 3:2334–44
    [Google Scholar]
  43. 43. 
    Zhang T, Dong K, Liang W, Xu D, Xia H et al. 2015. G-protein-coupled receptors regulate autophagy by ZBTB16-mediated ubiquitination and proteasomal degradation of Atg14L. eLife 4:e06734
    [Google Scholar]
  44. 44. 
    Beurel E, Grieco SF, Jope RS. 2015. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol. Ther. 148:114–31
    [Google Scholar]
  45. 45. 
    Beaulieu JM, Gainetdinov RR, Caron MG. 2009. Akt/GSK3 signaling in the action of psychotropic drugs. Annu. Rev. Pharmacol. Toxicol. 19:327–47
    [Google Scholar]
  46. 46. 
    Beaulieu JM, Sotnikova TD, Marion S, Lefkowitz RJ, Gainetdinov RR, Caron MG. 2005. An Akt/β-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 122:2261–73
    [Google Scholar]
  47. 47. 
    Salter MW. 1998. Src, N-methyl-d-aspartate (NMDA) receptors, and synaptic plasticity. Biochem. Pharmacol. 56:7789–98
    [Google Scholar]
  48. 48. 
    Harvey J, Collingridge GL. 1993. Signal transduction pathways involved in the acute potentiation of NMDA responses by 1S,3R-ACPD in rat hippocampal slices. Br. J. Pharmacol. 109:41085–90
    [Google Scholar]
  49. 49. 
    Bleakman D, Rusin KI, Chard PS, Glaum SR, Miller RJ. 1992. Metabotropic glutamate receptors potentiate ionotropic glutamate responses in the rat dorsal horn. Mol. Pharmacol. 42:2192–96
    [Google Scholar]
  50. 50. 
    Doherty AJ, Palmer MJ, Bortolotto ZA, Hargreaves A, Kingston AE et al. 2000. A novel, competitive mGlu(5) receptor antagonist (LY344545) blocks DHPG-induced potentiation of NMDA responses but not the induction of LTP in rat hippocampal slices. Br. J. Pharmacol. 131:2239–44
    [Google Scholar]
  51. 51. 
    Awad H, Hubert GW, Smith Y, Levey AI, Conn PJ. 2000. Activation of metabotropic glutamate receptor 5 has direct excitatory effects and potentiates NMDA receptor currents in neurons of the subthalamic nucleus. J. Neurosci. 20:217871–79
    [Google Scholar]
  52. 52. 
    Lu WY, Xiong ZG, Lei S, Orser BA, Dudek E et al. 1999. G-protein-coupled receptors act via protein kinase C and Src to regulate NMDA receptors. Nat. Neurosci. 2:4331–38
    [Google Scholar]
  53. 53. 
    Nicodemo AA, Pampillo M, Ferreira LT, Dale LB, Cregan T et al. 2010. Pyk2 uncouples metabotropic glutamate receptor G protein signaling but facilitates ERK1/2 activation. Mol. Brain 3:14
    [Google Scholar]
  54. 54. 
    Bartos JA, Ulrich JD, Li H, Beazely MA, Chen Y et al. 2010. Postsynaptic clustering and activation of Pyk2 by PSD-95. J. Neurosci. 30:2449–63
    [Google Scholar]
  55. 55. 
    Huang YQ, Lu WY, Ali DW, Pelkey KA, Pitcher GM et al. 2001. CAKβ/Pyk2 kinase is a signaling link for induction of long-term potentiation in CA1 hippocampus. Neuron 29:2485–96
    [Google Scholar]
  56. 56. 
    Um JW, Kaufman AC, Kostylev M, Heiss JK, Stagi M et al. 2013. Metabotropic glutamate receptor 5 is a coreceptor for Alzheimer Aβ oligomer bound to cellular prion protein. Neuron 79:5887–902
    [Google Scholar]
  57. 57. 
    Um JW, Strittmatter SM. 2013. Amyloid-β induced signaling by cellular prion protein and Fyn kinase in Alzheimer disease. Prion 7:137–41
    [Google Scholar]
  58. 58. 
    Raka F, Di Sebastiano AR, Kulhawy SC, Ribeiro FM, Godin CM et al. 2015. Ca2+/calmodulin-dependent protein kinase II interacts with group I metabotropic glutamate and facilitates receptor endocytosis and ERK1/2 signaling: role of β-amyloid. Mol. Brain 8:121
    [Google Scholar]
  59. 59. 
    Jin DZ, Guo ML, Xue B, Mao LM, Wang JQ. 2013. Differential regulation of CaMKIIα interactions with mGluR5 and NMDA receptors by Ca2+ in neurons. J. Neurochem. 127:5620–31
    [Google Scholar]
  60. 60. 
    Alagarsamy S, Saugstad J, Warren L, Mansuy IM, Gereau RW, Conn PJ. 2005. NMDA-induced potentiation of mGluR5 is mediated by activation of protein phosphatase 2B/calcineurin. Neuropharmacology 49:Suppl. 1135–45
    [Google Scholar]
  61. 61. 
    Wang H, Zhuo M. 2012. Group I metabotropic glutamate receptor-mediated gene transcription and implications for synaptic plasticity and diseases. Front. Pharmacol. 3:189
    [Google Scholar]
  62. 62. 
    De Souza JM, Abd-Elrahman KS, Ribeiro FM, Ferguson SSG. 2020. mGluR5 regulates REST/NRSF signaling through N-cadherin/β-catenin complex in Huntington's disease. Mol. Brain. 13:1118
    [Google Scholar]
  63. 63. 
    Kandel ER. 2012. The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol. Brain 5:114
    [Google Scholar]
  64. 64. 
    Shepherd JD, Bear MF. 2011. New views of Arc, a master regulator of synaptic plasticity. Nat. Neurosci. 14:3279–84
    [Google Scholar]
  65. 65. 
    Finkbeiner S, Tavazoie SF, Maloratsky A, Jacobs KM, Harris KM, Greenberg ME. 1997. CREB: a major mediator of neuronal neurotrophin responses. Neuron 19:51031–47
    [Google Scholar]
  66. 66. 
    Bramham CR, Messaoudi E. 2005. BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog. Neurobiol. 76:299–125
    [Google Scholar]
  67. 67. 
    Jones MW, Errington ML, French PJ, Fine A, Bliss TVP et al. 2001. A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories. Nat. Neurosci. 4:3289–96
    [Google Scholar]
  68. 68. 
    Wang H, Wu L-J, Zhang F, Zhuo M. 2008. Roles of calcium-stimulated adenylyl cyclase and calmodulin-dependent protein kinase IV in the regulation of FMRP by group I metabotropic glutamate receptors. J. Neurosci. 28:174385–97
    [Google Scholar]
  69. 69. 
    Wayman GA, Lee Y-S, Tokumitsu H, Silva AJ, Silva A, Soderling TR. 2008. Calmodulin-kinases: modulators of neuronal development and plasticity. Neuron 59:6914–31
    [Google Scholar]
  70. 70. 
    Jong YJI, Kumar V, O'Malley KL. 2009. Intracellular metabotropic glutamate receptor 5 (mGluR5) activates signaling cascades distinct from cell surface counterparts. J. Biol. Chem. 284:5135827–38
    [Google Scholar]
  71. 71. 
    Mao L, Wang JQ. 2003. Phosphorylation of cAMP response element-binding protein in cultured striatal neurons by metabotropic glutamate receptor subtype 5. J. Neurochem. 84:2233–43
    [Google Scholar]
  72. 72. 
    Kumar V, Fahey PG, Jong Y-JI, Ramanan N, O'Malley KL. 2012. Activation of intracellular metabotropic glutamate receptor 5 in striatal neurons leads to up-regulation of genes associated with sustained synaptic transmission including Arc/Arg3.1 protein. J. Biol. Chem. 287:85412–25
    [Google Scholar]
  73. 73. 
    Mincheva-Tasheva S, Soler RM 2013. NF-κB signaling pathways: role in nervous system physiology and pathology. Neuroscientist 19:2172–94
    [Google Scholar]
  74. 74. 
    Boersma MCH, Dresselhaus EC, de Biase LM, Mihalas AB, Bergles DE, Meffert MK. 2011. A requirement for nuclear factor-κB in developmental and plasticity-associated synaptogenesis. J. Neurosci. 31:145414–25
    [Google Scholar]
  75. 75. 
    O'Riordan KJ, Huang I-C, Pizzi M, Spano P, Boroni F et al. 2006. Regulation of nuclear factor κB in the hippocampus by group I metabotropic glutamate receptors. J. Neurosci. 26:184870–79
    [Google Scholar]
  76. 76. 
    Sitcheran R, Comb WC, Cogswell PC, Baldwin AS. 2008. Essential role for epidermal growth factor receptor in glutamate receptor signaling to NF-κB. Mol. Cell. Biol. 28:165061–70
    [Google Scholar]
  77. 77. 
    Ye RD. 2001. Regulation of nuclear factor κB activation by G-protein-coupled receptors. J. Leukoc. Biol. 70:6839–48
    [Google Scholar]
  78. 78. 
    Snow WM, Stoesz BM, Kelly DM, Albensi BC. 2014. Roles for NF-κB and gene targets of NF-κB in synaptic plasticity, memory, and navigation. Mol. Neurobiol. 49:2757–70
    [Google Scholar]
  79. 79. 
    Costello DA, Herron CE. 2004. The role of c-Jun N-terminal kinase in the Aβ-mediated impairment of LTP and regulation of synaptic transmission in the hippocampus. Neuropharmacology 46:5655–62
    [Google Scholar]
  80. 80. 
    Yang L, Mao L, Chen H, Catavsan M, Kozinn J et al. 2006. A signaling mechanism from Gαq-protein-coupled metabotropic glutamate receptors to gene expression: role of the c-Jun N-terminal kinase pathway. J. Neurosci. 26:3971–80
    [Google Scholar]
  81. 81. 
    Kim MJ, Futai K, Jo J, Hayashi Y, Cho K, Sheng M 2007. Synaptic accumulation of PSD-95 and synaptic function regulated by phosphorylation of serine-295 of PSD-95. Neuron 56:3488–502
    [Google Scholar]
  82. 82. 
    Epperly T, Dunay MA, Boice JL. 2017. Alzheimer disease: pharmacologic and nonpharmacologic therapies for cognitive and functional symptoms. Am. Fam. Physician. 95:12771–78
    [Google Scholar]
  83. 83. 
    dos Santos Picanco LC, Ozela PF, de Fatima de Brito M, Pinheiro AA, Padilha EC et al. 2016. Alzheimer's disease: a review from the pathophysiology to diagnosis, new perspectives for pharmacological treatment. Curr. Med. Chem. 25:263141–59
    [Google Scholar]
  84. 84. 
    Piers TM, Kim DH, Kim BC, Regan P, Whitcomb DJ, Cho K. 2012. Translational concepts of mGluR5 in synaptic diseases of the brain. Front. Pharmacol. 3:199
    [Google Scholar]
  85. 85. 
    Kumar A, Dhull DK, Mishra PS. 2015. Therapeutic potential of mGluR5 targeting in Alzheimer's disease. Front. Neurosci. 9:215
    [Google Scholar]
  86. 86. 
    Hamilton A, Zamponi GW, Ferguson SSG. 2015. Glutamate receptors function as scaffolds for the regulation of β-amyloid and cellular prion protein signaling complexes. Mol. Brain 8:118
    [Google Scholar]
  87. 87. 
    Müller Herde A, Schibli R, Weber M, Ametamey SM. 2019. Metabotropic glutamate receptor subtype 5 is altered in LPS-induced murine neuroinflammation model and in the brains of AD and ALS patients. Eur. J. Nucl. Med. Mol. Imaging 46:2407–20
    [Google Scholar]
  88. 88. 
    Varlow C, Murrell E, Holland JP, Kassenbrock A, Shannon W et al. 2020. Revisiting the radiosynthesis of [18F]FPEB and preliminary PET imaging in a mouse model of Alzheimer's disease. Molecules 25:4982
    [Google Scholar]
  89. 89. 
    Mecca AP, McDonald JW, Michalak HR, Godek TA, Harris JE et al. 2020. PET imaging of mGluR5 in Alzheimer's disease. Alzheimer's Res. Ther. 12:115
    [Google Scholar]
  90. 90. 
    Fang XT, Eriksson J, Antoni G, Yngve U, Cato L et al. 2017. Brain mGluR5 in mice with amyloid beta pathology studied with in vivo [11C]ABP688 PET imaging and ex vivo immunoblotting. Neuropharmacology 113:Pt. A293–300
    [Google Scholar]
  91. 91. 
    Lee M, Lee HJ, Jeong YJ, Oh SJ, Kang KJ et al. 2019. Age dependency of mGluR5 availability in 5xFAD mice measured by PET. Neurobiol. Aging 84:208–16
    [Google Scholar]
  92. 92. 
    Hamilton A, Esseltine JL, DeVries RA, Cregan SP, Ferguson SSG. 2014. Metabotropic glutamate receptor 5 knockout reduces cognitive impairment and pathogenesis in a mouse model of Alzheimer's disease. Mol. Brain 7:140
    [Google Scholar]
  93. 93. 
    Bishop GM, Robinson SR. 2004. Physiological roles of amyloid-β and implications for its removal in Alzheimer's disease. Drugs Aging 21:10621–30
    [Google Scholar]
  94. 94. 
    Kamenetz F, Tomita T, Hsieh H, Seabrook G, Borchelt D et al. 2003. APP processing and synaptic function. Neuron 37:6925–37
    [Google Scholar]
  95. 95. 
    Morley J, Farr S, Nguyen A, Xu F. 2019. What is the physiological function of amyloid-beta protein?. J. Nutr. Health Aging 23:3225–26
    [Google Scholar]
  96. 96. 
    Panza F, Lozupone M, Logroscino G, Imbimbo BP. 2019. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat. Rev. Neurol. 15:273–88
    [Google Scholar]
  97. 97. 
    Sengupta U, Nilson AN, Kayed R 2016. The role of amyloid-β oligomers in toxicity, propagation, and immunotherapy. EBioMedicine 6:42–49
    [Google Scholar]
  98. 98. 
    Brody AH, Strittmatter SM. 2018. Synaptotoxic signaling by amyloid beta oligomers in Alzheimer's disease through prion protein and mGluR5. Adv. Pharmacol 82:293–323
    [Google Scholar]
  99. 99. 
    Venkatramani A, Panda D. 2019. Regulation of neuronal microtubule dynamics by tau: implications for tauopathies. Int. J. Biol. Macromol. 133:473–83
    [Google Scholar]
  100. 100. 
    Wang Y, Mandelkow E. 2016. Tau in physiology and pathology. Nat. Rev. Neurosci. 17:15–21
    [Google Scholar]
  101. 101. 
    Polanco JC, Li C, Bodea L-G, Martinez-Marmol R, Meunier FA, Götz J. 2017. Amyloid-β and tau complexity—towards improved biomarkers and targeted therapies. Nat. Rev. Neurol. 14:122–39
    [Google Scholar]
  102. 102. 
    Renner M, Lacor PN, Velasco PT, Xu J, Contractor A et al. 2010. Deleterious effects of amyloid beta oligomers acting as an extracellular scaffold for mGluR5. Neuron 66:5739–54
    [Google Scholar]
  103. 103. 
    Doherty AJ, Palmer MJ, Henley JM, Collingridge GL, Jane DE 1997. (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) activates mGlu5, but not mGlu1, receptors expressed in CHO cells and potentiates NMDA responses in the hippocampus. Neuropharmacology 36:2265–67
    [Google Scholar]
  104. 104. 
    Rammes G, Hasenjäger A, Sroka-Saidi K, Deussing JM, Parsons CG. 2011. Therapeutic significance of NR2B-containing NMDA receptors and mGluR5 metabotropic glutamate receptors in mediating the synaptotoxic effects of β-amyloid oligomers on long-term potentiation (LTP) in murine hippocampal slices. Neuropharmacology 60:6982–90
    [Google Scholar]
  105. 105. 
    Lv MM, Cheng YC, Xiao ZB, Sun MY, Ren PC, Sun XD. 2014. Down-regulation of Homer1b/c attenuates group I metabotropic glutamate receptors dependent Ca2+ signaling through regulating endoplasmic reticulum Ca2+ release in PC12 cells. Biochem. Biophys. Res. Commun. 450:41568–74
    [Google Scholar]
  106. 106. 
    Zhang H, Wu L, Pchitskaya E, Zakharova O, Saito T et al. 2015. Neuronal store-operated calcium entry and mushroom spine loss in amyloid precursor protein knock-in mouse model of Alzheimer's disease. J. Neurosci. 35:3913275–86
    [Google Scholar]
  107. 107. 
    Laurén J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM. 2009. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-β oligomers. Nature 457:72331128–32
    [Google Scholar]
  108. 108. 
    Larson M, Sherman MA, Amar F, Nuvolone M, Schneider JA et al. 2012. The complex PrPC-Fyn couples human oligomeric Aβ with pathological tau changes in Alzheimer's disease. J. Neurosci. 32:4716857–71
    [Google Scholar]
  109. 109. 
    Um JW, Nygaard HB, Heiss JK, Kostylev MA, Stagi M et al. 2012. Alzheimer amyloid-β oligomer bound to postsynaptic prion protein activates Fyn to impair neurons. Nat. Neurosci. 15:91227–35
    [Google Scholar]
  110. 110. 
    Hu N-W, Nicoll AJ, Zhang D, Mably AJ, O'Malley T et al. 2014. mGlu5 receptors and cellular prion protein mediate amyloid-β-facilitated synaptic long-term depression in vivo. Nat. Commun. 5:3374
    [Google Scholar]
  111. 111. 
    Smith LM, Kostylev MA, Lee S, Strittmatter SM. 2019. Systematic and standardized comparison of reported amyloid- receptors for sufficiency, affinity, and Alzheimer's disease relevance. J. Biol. Chem. 294:156042–53
    [Google Scholar]
  112. 112. 
    Haas LT, Strittmatter SM. 2016. Oligomers of amyloid prevent physiological activation of the cellular prion protein-metabotropic glutamate receptor 5 complex by glutamate in Alzheimer disease. J. Biol. Chem. 291:3317112–21
    [Google Scholar]
  113. 113. 
    Bhaskar K, Hobbs GA, Yen S-H, Lee G 2010. Tyrosine phosphorylation of tau accompanies disease progression in transgenic mouse models of tauopathy. Neuropathol. Appl. Neurobiol. 36:6462–77
    [Google Scholar]
  114. 114. 
    Kaufman AC, Salazar SV, Haas LT, Yang J, Kostylev MA et al. 2015. Fyn inhibition rescues established memory and synapse loss in Alzheimer mice. Ann. Neurol. 77:6953–71
    [Google Scholar]
  115. 115. 
    Bhat RV, Shanley J, Correll MP, Fieles WE, Keith RA et al. 2000. Regulation and localization of tyrosine216 phosphorylation of glycogen synthase kinase-3β in cellular and animal models of neuronal degeneration. PNAS 97:2011074–79
    [Google Scholar]
  116. 116. 
    Hartigan JA, Xiong WC, Johnson GVW. 2001. Glycogen synthase kinase 3β is tyrosine phosphorylated by PYK2. Biochem. Biophys. Res. Commun. 284:2485–89
    [Google Scholar]
  117. 117. 
    Roche KW, Standley S, McCallum J, Ly CD, Ehlers MD, Wenthold RJ. 2001. Molecular determinants of NMDA receptor internalization. Nat. Neurosci. 4:8794–802
    [Google Scholar]
  118. 118. 
    Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A et al. 2010. Dendritic function of tau mediates amyloid-β toxicity in Alzheimer's disease mouse models. Cell 142:3387–97
    [Google Scholar]
  119. 119. 
    Song MS, Rauw G, Baker GB, Kar S. 2008. Memantine protects rat cortical cultured neurons against β-amyloid-induced toxicity by attenuating tau phosphorylation. Eur. J. Neurosci. 28:101989–2002
    [Google Scholar]
  120. 120. 
    Wang Q, Walsh DM, Rowan MJ, Selkoe DJ, Anwyl R. 2004. Block of long-term potentiation by naturally secreted and synthetic amyloid β-peptide in hippocampal slices is mediated via activation of the kinases c-Jun N-terminal kinase, cyclin-dependent kinase 5, and p38 mitogen-activated protein kinase as well as metabotropic glutamate receptor type 5. J. Neurosci. 24:133370–78
    [Google Scholar]
  121. 121. 
    Buggia-Prevot V, Sevalle J, Rossner S, Checler FR. 2008. NFκB-dependent control of BACE1 promoter transactivation by Aβ42. J. Biol. Chem. 283:1510037–47
    [Google Scholar]
  122. 122. 
    Valerio A, Boroni F, Benarese M, Sarnico I, Ghisi V et al. 2006. NF-κB pathway: a target for preventing β-amyloid (Aβ)-induced neuronal damage and Aβ42 production. Eur. J. Neurosci. 23:71711–20
    [Google Scholar]
  123. 123. 
    Park S, Park JM, Kim S, Kim JA, Shepherd JD et al. 2008. Elongation factor 2 and fragile X mental retardation protein control the dynamic translation of Arc/Arg3.1 essential for mGluR-LTD. Neuron 59:170–83
    [Google Scholar]
  124. 124. 
    Ma T, Chen Y, Vingtdeux V, Zhao H, Viollet B et al. 2014. Inhibition of AMP-activated protein kinase signaling alleviates impairments in hippocampal synaptic plasticity induced by amyloid β. J. Neurosci. 34:3612230–38
    [Google Scholar]
  125. 125. 
    Haas LT, Salazar SV, Kostylev MA, Um JW, Kaufman AC, Strittmatter SM. 2016. Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer's disease. Brain 139:Pt. 2526–46
    [Google Scholar]
  126. 126. 
    Ma T, Klann E. 2014. PERK: a novel therapeutic target for neurodegenerative diseases?. Alzheimer's Res. Ther. 6:330
    [Google Scholar]
  127. 127. 
    Yang W, Zhou X, Zimmermann HR, Cavener DR, Klann E, Ma T. 2016. Repression of the eIF2α kinase PERK alleviates mGluR-LTD impairments in a mouse model of Alzheimer's disease. Neurobiol. Aging 41:19–24
    [Google Scholar]
  128. 128. 
    Ma T, Trinh MA, Wexler AJ, Bourbon C, Gatti E et al. 2013. Suppression of eIF2α kinases alleviates Alzheimer's disease-related plasticity and memory deficits. Nat. Neurosci. 16:91299–305
    [Google Scholar]
  129. 129. 
    Hamilton A, Vasefi M, Vander Tuin C, McQuaid RJ, Anisman H, Ferguson SSG. 2016. Chronic pharmacological mGluR5 inhibition prevents cognitive impairment and reduces pathogenesis in an Alzheimer disease mouse model. Cell Rep 15:91859–65
    [Google Scholar]
  130. 130. 
    Abd-Elrahman KS, Albaker A, de Souza JM, Ribeiro FM, Schlossmacher MG et al. 2020. Aβ oligomers induce pathophysiological mGluR5 signaling in Alzheimer's disease model mice in a sex-selective manner. Sci. Signal. 13:662eabd2494
    [Google Scholar]
  131. 131. 
    Hermida MA, Dinesh Kumar J, Leslie NR 2017. GSK3 and its interactions with the PI3K/AKT/mTOR signalling network. Adv. Biol. Regul. 65:5–15
    [Google Scholar]
  132. 132. 
    Busche MA, Wegmann S, Dujardin S, Commins C, Schiantarelli J et al. 2019. Tau impairs neural circuits, dominating amyloid-β effects, in Alzheimer models in vivo. Nat. Neurosci. 22:157–64
    [Google Scholar]
  133. 133. 
    Katsinelos T, Zeitler M, Dimou E, Karakatsani A, Müller HM et al. 2018. Unconventional secretion mediates the trans-cellular spreading of Tau. Cell Rep. 23:72039–55
    [Google Scholar]
  134. 134. 
    Ondrejcak T, Klyubin I, Corbett GT, Fraser G, Hong W et al. 2018. Cellular prion protein mediates the disruption of hippocampal synaptic plasticity by soluble tau in vivo. J. Neurosci. 38:5010595–606
    [Google Scholar]
  135. 135. 
    Arif M, Kazim SF, Grundke-Iqbal I, Garruto RM, Iqbal K 2014. Tau pathology involves protein phosphatase 2A in Parkinsonism-dementia of Guam. PNAS 111:31144–49
    [Google Scholar]
  136. 136. 
    Lesort M, Jope RS, Johnson GVW. 1999. Insulin transiently increases tau phosphorylation: involvement of glycogen synthase kinase-3β and Fyn tyrosine kinase. J. Neurochem. 72:2576–84
    [Google Scholar]
  137. 137. 
    Yoshida H, Hastie CJ, McLauchlan H, Cohen P, Goedert M. 2004. Phosphorylation of microtubule-associated protein tau by isoforms of c-Jun N-terminal kinase (JNK). J. Neurochem. 90:2352–58
    [Google Scholar]
  138. 138. 
    Casey DA, Antimisiaris D, O'Brien J. 2010. Drugs for Alzheimer's disease: Are they effective?. Pharm. Ther. 35:4208–11
    [Google Scholar]
  139. 139. 
    Ghezzi L, Scarpini E, Galimberti D. 2013. Disease-modifying drugs in Alzheimer's disease. Drug Des. Devel. Ther. 7:1471–79
    [Google Scholar]
  140. 140. 
    Ritzen A, Mathiesen JM, Thomsen C. 2005. Molecular pharmacology and therapeutic prospects of metabotropic glutamate receptor allosteric modulators. Basic Clin. Pharmacol. Toxicol. 97:4202–13
    [Google Scholar]
  141. 141. 
    Gregory KJ, Dong EN, Meiler J, Conn PJ. 2011. Allosteric modulation of metabotropic glutamate receptors: structural insights and therapeutic potential. Neuropharmacology 60:166–81
    [Google Scholar]
  142. 142. 
    Haas LT, Salazar SV, Smith LM, Zhao HR, Cox TO et al. 2017. Silent allosteric modulation of mGluR5 maintains glutamate signaling while rescuing Alzheimer's mouse phenotypes. Cell Rep 20:176–88
    [Google Scholar]
  143. 143. 
    Quaglio Bellozi PM, Gomes GF, Machado da Silva MC, de Assis Lima IV, Álvarez Batista CR et al. 2019. A positive allosteric modulator of mGluR5 promotes neuroprotective effects in mouse models of Alzheimer's disease. Neuropharmacology 160:107785
    [Google Scholar]
  144. 144. 
    Quiroz JA, Tamburri P, Deptula D, Banken L, Beyer U et al. 2016. Efficacy and safety of basimglurant as adjunctive therapy for major depression. JAMA Psychiatry 73:7675
    [Google Scholar]
  145. 145. 
    Youssef EA, Berry-Kravis E, Czech C, Hagerman RJ, Hessl D et al. 2018. Effect of the mGluR5-NAM basimglurant on behavior in adolescents and adults with fragile X syndrome in a randomized, double-blind, placebo-controlled trial: FragXis phase 2 results. Neuropsychopharmacology 43:3503–12
    [Google Scholar]
  146. 146. 
    Emmitte KA. 2017. mGlu5 negative allosteric modulators: a patent review (2013–2016). Expert Opin. Ther. Pat. 27:6691–706
    [Google Scholar]
  147. 147. 
    Tison F, Keywood C, Wakefield M, Durif F, Corvol J-C et al. 2016. A phase 2A trial of the novel mGluR5-negative allosteric modulator dipraglurant for levodopa-induced dyskinesia in Parkinson's disease. Mov. Disord. 31:91373–80
    [Google Scholar]
  148. 148. 
    Arsova A, Møller TC, Vedel L, Hansen JL, Foster SR et al. 2020. Detailed in vitro pharmacological characterization of clinically tested negative allosteric modulators of the metabotropic glutamate receptor 5. Mol. Pharmacol. 98:149–60
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-021821-091747
Loading
/content/journals/10.1146/annurev-pharmtox-021821-091747
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error