1932

Abstract

I am deeply honored to be invited to write this scientific autobiography. As a physician-scientist, pediatrician, molecular biologist, and geneticist, I have authored/coauthored more than 600 publications in the fields of clinical medicine, biochemistry, biophysics, pharmacology, drug metabolism, toxicology, molecular biology, cancer, standardized gene nomenclature, developmental toxicology and teratogenesis, mouse genetics, human genetics, and evolutionary genomics. Looking back, I think my career can be divided into four distinct research areas, which I summarize mostly chronologically in this article: () discovery and characterization of the AHR/CYP1 axis, () pharmacogenomics and genetic prediction of response to drugs and other environmental toxicants, () standardized drug-metabolizing gene nomenclature based on evolutionary divergence, and () discovery and characterization of the gene encoding the ZIP8 metal cation influx transporter. Collectively, all four topics embrace gene-environment interactions, hence the title of my autobiography.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-022323-082311
2024-01-23
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/64/1/annurev-pharmtox-022323-082311.html?itemId=/content/journals/10.1146/annurev-pharmtox-022323-082311&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Mason HS. 1957. Mechanisms of oxygen metabolism. Science 125:1185–88
    [Google Scholar]
  2. 2.
    Hayaishi O, Rothberg S, Mehler AH, Saito Y. 1957. Studies on oxygenases: enzymatic formation of kynurenine from tryptophan. J. Biol. Chem. 229:889–96
    [Google Scholar]
  3. 3.
    Nebert DW, Gelboin HV. 1968. Substrate-inducible microsomal aryl hydroxylase in mammalian cell culture. I. Assay and properties of induced enzyme. J. Biol. Chem. 243:6242–49
    [Google Scholar]
  4. 4.
    Nebert DW, Gelboin HV. 1968. Substrate-inducible microsomal aryl hydroxylase in mammalian cell culture. II. Cellular responses during enzyme induction. J. Biol. Chem. 243:6250–61
    [Google Scholar]
  5. 5.
    Nebert DW, Gelboin HV. 1969. The in vivo and in vitro induction of aryl hydrocarbon hydroxylase in mammalian cells of different species, tissues, strains, and developmental and hormonal states. Arch. Biochem. Biophys. 134:76–89
    [Google Scholar]
  6. 6.
    Nebert DW, Winker J, Gelboin HV. 1969. Aryl hydrocarbon hydroxylase activity in human placenta from cigarette smoking and nonsmoking women. Cancer Res. 29:1763–69
    [Google Scholar]
  7. 7.
    Welch RM, Harrison YE, Conney AH, Poppers PJ, Finster M. 1968. Cigarette smoking: stimulatory effect on metabolism of 3,4-benzpyrene by enzymes in human placenta. Science 160:541–42
    [Google Scholar]
  8. 8.
    Nebert DW. 1970. Microsomal cytochromes b5 and P450 during induction of aryl hydrocarbon hydroxylase activity in mammalian cell culture. J. Biol. Chem. 245:519–27
    [Google Scholar]
  9. 9.
    Nelson DR, Koymans L, Kamataki T, Stegeman JJ, Feyereisen R et al. 1996. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 6:1–42
    [Google Scholar]
  10. 10.
    Gielen JE, Goujon FM, Nebert DW. 1972. Genetic regulation of aryl hydrocarbon hydroxylase induction. II. Simple Mendelian expression in mouse tissues in vivo. J. Biol. Chem. 247:1125–37
    [Google Scholar]
  11. 11.
    Poland A, Glover E. 1974. Comparison of 2,3,7,8-tetrachlorodibenzo-p-dioxin, a potent inducer of aryl hydrocarbon hydroxylase, with 3-methylcholanthrene. Mol. Pharmacol. 10:349–59
    [Google Scholar]
  12. 12.
    Poland AP, Glover E, Robinson JR, Nebert DW. 1974. Genetic expression of aryl hydrocarbon hydroxylase activity. Induction of monooxygenase activities and cytochrome P1-450 formation by 2,3,7,8-tetrachlorodibenzo-p-dioxin in mice genetically “nonresponsive” to other aromatic hydrocarbons. J. Biol. Chem. 249:5599–606
    [Google Scholar]
  13. 13.
    Niwa A, Kumaki K, Nebert DW, Poland AP. 1975. Genetic expression of aryl hydrocarbon hydroxylase activity in the mouse: distinction between the “responsive” homozygote and heterozygote at the Ah locus. Arch. Biochem. Biophys. 166:559–64
    [Google Scholar]
  14. 14.
    Poland A, Glover E, Kende AS. 1976. Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol: evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase. J. Biol. Chem. 251:4936–46
    [Google Scholar]
  15. 15.
    Tukey RH, Hannah RR, Negishi M, Nebert DW, Eisen HJ. 1982. The Ah locus: correlation of intranuclear appearance of inducer-receptor complex with induction of cytochrome P1-450 mRNA. Cell 31:275–84
    [Google Scholar]
  16. 16.
    Burbach KM, Poland A, Bradfield CA. 1992. Cloning of the Ah-receptor cDNA reveals a distinctive ligand-activated transcription factor. PNAS 89:8185–89
    [Google Scholar]
  17. 17.
    Le Beau MM, Carver LA, Espinosa R 3rd, Schmidt JV, Bradfield CA. 1994. Chromosomal localization of the human AHR locus encoding the structural gene for the Ah receptor to 7p21→p15. Cytogenet. Cell Genet. 66:172–76
    [Google Scholar]
  18. 18.
    Kewley RJ, Whitelaw ML, Chapman-Smith A. 2004. The mammalian basic helix-loop-helix/PAS family of transcriptional regulators. Int. J. Biochem. Cell Biol. 36:189–204
    [Google Scholar]
  19. 19.
    Hahn ME, Karchner SI, Evans BR, Franks DG, Merson RR, Lapseritis JM. 2006. Unexpected diversity of aryl hydrocarbon receptors in non-mammalian vertebrates: insights from comparative genomics. J. Exp. Zool. A Comp. Exp. Biol. 305:693–706
    [Google Scholar]
  20. 20.
    Nebert DW. 2017. Aryl hydrocarbon receptor (AHR): “pioneer member” of the basic-helix/loop/helix per-Arnt-sim (bHLH/PAS) family of “sensors” of foreign and endogenous signals. Progr. Lipid Res. 67:38–57
    [Google Scholar]
  21. 21.
    Nebert DW, Eisen HJ, Negishi M, Lang MA, Hjelmeland LM, Okey AB. 1981. Genetic mechanisms controlling the induction of polysubstrate monooxygenase (P-450) activities. Annu. Rev. Pharmacol. Toxicol. 21:431–62
    [Google Scholar]
  22. 22.
    Bigelow SW, Collins AC, Nebert DW. 1989. Selective mouse breeding for short ethanol sleep time has led to high levels of hepatic aromatic hydrocarbon (Ah) receptor. Biochem. Pharmacol. 38:3565–72
    [Google Scholar]
  23. 23.
    Nebert DW 1994. Drug metabolism and signal transduction: possible role of Ah receptor and arachidonic acid cascade in protection from ethanol toxicity. Experientia, Vol. 71 Toward a Molecular Basis of Alcohol Use and Abuse B Jansson, H Jörnvall, U Rydberg, L Terenius, BL Vallee 231–40. Basel, Switz: Birkhäuser
    [Google Scholar]
  24. 24.
    Rifkind AB, Muschick H. 1983. Benoxaprofen suppression of polychlorinated biphenyl toxicity without alteration of mixed function oxidase function. Nature 303:524–26
    [Google Scholar]
  25. 25.
    Divanovic S, Dalli J, Jorge-Nebert LF, Flick LM, Galvez-Peralta M et al. 2013. Contributions of the three CYP1 monooxygenases to pro-inflammatory and inflammation-resolution lipid mediator pathways. J. Immunol. 191:3347–57
    [Google Scholar]
  26. 26.
    Kouri RE, Ratrie H, Whitmire CE. 1973. Evidence of a genetic relationship between susceptibility to 3-methylcholanthrene-induced subcutaneous tumors and inducibility of aryl hydrocarbon hydroxylase. J. Natl. Cancer Inst. 51:197–200
    [Google Scholar]
  27. 27.
    Kouri RE, Rude TH, Joglekar R, Dansette PM, Jerina DM et al. 1978. 2,3,7,8-Tetrachlorodibenzo-p-dioxin as co-carcinogen causing 3-methylcholanthrene-initiated subcutaneous tumors in mice genetically “nonresponsive” at Ah locus. Cancer Res. 38:2777–83
    [Google Scholar]
  28. 28.
    Legraverend C, Harrison DE, Ruscetti FW, Nebert DW. 1983. Bone marrow toxicity induced by oral benzo[a]pyrene: Protection resides at the level of the intestine and liver. Toxicol. Appl. Pharmacol. 70:390–401
    [Google Scholar]
  29. 29.
    Lubet RA, Brunda MJ, Taramelli D, Dansie D, Nebert DW, Kouri RE. 1984. Induction of immunotoxicity by polycyclic hydrocarbons: role of the Ah locus. Arch. Toxicol. 56:18–24
    [Google Scholar]
  30. 30.
    Nebert DW, Shum S. 1980. The murine Ah locus: genetic differences in birth defects among individuals in the same uterus. Prog. Clin. Biol. Res. 46:173–96
    [Google Scholar]
  31. 31.
    Felton JS, Nebert DW. 1975. Mutagenesis of certain activated carcinogens in vitro associated with genetically mediated increases in monooxygenase activity and cytochrome P1-450. J. Biol. Chem. 250:6769–78
    [Google Scholar]
  32. 32.
    Nebert DW. 1989. The Ah locus: genetic differences in toxicity, cancer, mutation, and birth defects. Crit. Rev. Toxicol. 20:153–74
    [Google Scholar]
  33. 33.
    Nebert DW, Roe AL, Dieter MZ, Solis WA, Yang Y, Dalton TP. 2000. Role of the aromatic hydrocarbon receptor and [Ah] gene battery in the oxidative stress response, cell cycle control, and apoptosis. Biochem. Pharmacol. 59:65–85
    [Google Scholar]
  34. 34.
    Shum S, Jensen NM, Nebert DW. 1979. The murine Ah locus: in utero toxicity and teratogenesis associated with genetic differences in benzo[a]pyrene metabolism. Teratology 20:365–76
    [Google Scholar]
  35. 35.
    Nebert DW, Levitt RC, Jensen NM, Lambert GH, Felton JS. 1977. Birth defects and aplastic anemia: differences in polycyclic hydrocarbon toxicity associated with the Ah locus. Arch. Toxicol. 39:109–32
    [Google Scholar]
  36. 36.
    Nebert DW. 1981. Genetic differences in susceptibility to chemically induced myelotoxicity and leukemia. Environ. Health Perspect. 39:11–22
    [Google Scholar]
  37. 37.
    Shi Z, Dragin N, Galvez-Peralta M, Jorge-Nebert LF, Miller ML et al. 2010. Organ-specific roles of CYP1A1 during detoxication of dietary benzo[a]pyrene. Mol. Pharmacol. 78:46–57
    [Google Scholar]
  38. 38.
    Nebert DW, Shi Z, Galvez-Peralta M, Uno S, Dragin N. 2013. Oral benzo[a]pyrene: understanding pharmacokinetics, detoxication, and consequences—Cyp1 knockout mouse lines as a paradigm. Mol. Pharmacol. 84:304–13
    [Google Scholar]
  39. 39.
    Ngo AD, Taylor R, Roberts CL, Nguyen TV. 2006. Association between Agent Orange and birth defects: systematic review and meta-analysis. Int. J. Epidemiol. 35:1220–30
    [Google Scholar]
  40. 40.
    Schweikl H, Taylor JA, Kitareewan S, Linko P, Nagorney D, Goldstein JA. 1993. Expression of CYP1A1 and CYP1A2 genes in human liver. Pharmacogenetics 3:239–49
    [Google Scholar]
  41. 41.
    Diliberto JJ, Burgin DE, Birnbaum LS. 1999. Effects of CYP1A2 on disposition of 2,3,7,8-tetrachlorodibenzo-p-dioxin, 2,3,4,7,8-pentachlorodibenzofuran, and 2,2′,4,4′,5,5′-hexachlorobiphenyl in CYP1A2 knockout and parental (C57BL/6N and 129/Sv) strains of mice. Toxicol. Appl. Pharmacol. 159:52–64
    [Google Scholar]
  42. 42.
    Dragin N, Dalton TP, Miller ML, Shertzer HG, Nebert DW. 2006. For dioxin-induced birth defects, mouse or human CYP1A2 in maternal liver protects whereas mouse CYP1A1 and CYP1B1 are inconsequential. J. Biol. Chem. 281:18591–600
    [Google Scholar]
  43. 43.
    McCann J, Ames BN. 1976. Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals: discussion. PNAS 73:950–54
    [Google Scholar]
  44. 44.
    Van den Berg M, Birnbaum L, Bosveld AT, Brunstrom B, Cook P et al. 1998. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ. Health Perspect. 106:775–92
    [Google Scholar]
  45. 45.
    Aylward LL, Kirman CR, Schoeny R, Portier CJ, Hays SM. 2013. Evaluation of biomonitoring data from the CDC National Exposure Report in a risk assessment context: perspectives across chemicals. Environ. Health Perspect. 121:287–94
    [Google Scholar]
  46. 46.
    Schwarz M, Appel KE. 2005. Carcinogenic risks of dioxin: mechanistic considerations. Regul. Toxicol. Pharmacol. 43:19–34
    [Google Scholar]
  47. 47.
    Motto I, Bordogna A, Soshilov AA, Denison MS, Bonati L. 2011. New aryl hydrocarbon receptor homology model targeted to improve docking reliability. J. Chem. Inf. Model. 51:2868–81
    [Google Scholar]
  48. 48.
    Larsson M, van den Berg M, Brenerova P, van Duursen MB, van Ede KI et al. 2015. Consensus toxicity factors for polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls combining in silico models and extensive in vitro screening of AHR-mediated effects in human and rodent cells. Chem. Res. Toxicol. 28:641–50
    [Google Scholar]
  49. 49.
    Shi H, Hardesty JE, Jin J, Head KZ, Falkner KC et al. 2019. Concentration dependence of human and mouse aryl hydrocarbon receptor responsiveness to polychlorinated biphenyl exposures: implications for aroclor mixtures. Xenobiotica 49:1414–22
    [Google Scholar]
  50. 50.
    Gonzalez FJ, Kimura S, Nebert DW. 1985. Comparison of the flanking regions and introns of the mouse 2,3,7,8-tetrachlorodibenzo-p-dioxin-inducible cytochrome P1-450 and P3-450 genes. J. Biol. Chem. 260:5040–49
    [Google Scholar]
  51. 51.
    Jaiswal AK, Gonzalez FJ, Nebert DW. 1985. Human P1-450 gene sequence and correlation of mRNA with genetic differences in benzo[a]pyrene metabolism. Nucleic Acids Res. 13:4503–20
    [Google Scholar]
  52. 52.
    Ikeya K, Jaiswal AK, Owens RA, Jones JE, Nebert DW, Kimura S. 1989. Human CYP1A2: sequence, gene structure, comparison with the mouse and rat orthologous gene, and differences in liver 1A2 mRNA expression. Mol. Endocrinol. 3:1399–408
    [Google Scholar]
  53. 53.
    Fernandez-Salguero P, Pineau T, Hilbert DM, McPhail T, Lee SS et al. 1995. Immune system impairment and hepatic fibrosis in mice lacking the dioxin-binding Ah receptor. Science 268:722–26
    [Google Scholar]
  54. 54.
    Liang HC, Li H, McKinnon RA, Duffy JJ, Potter SS et al. 1996. Cyp1a2(−/−) null mutant mice develop normally but show deficient drug metabolism. PNAS 93:1671–76
    [Google Scholar]
  55. 55.
    Uno S, Dalton TP, Shertzer HG, Genter MB, Warshawsky D et al. 2001. Benzo[a]pyrene-induced toxicity: paradoxical protection in Cyp1a1(−/−) knockout mice having increased hepatic BaP-DNA adduct levels. Biochem. Biophys. Res. Commun. 289:1049–56
    [Google Scholar]
  56. 56.
    Uno S, Wang B, Shertzer HG, Nebert DW, Dalton TP. 2003. Balancer-Cre transgenic mouse germ cells direct the incomplete resolution of a tri-loxP-targeted Cyp1a1 allele, producing a conditional knockout allele. Biochem. Biophys. Res. Commun. 312:494–99
    [Google Scholar]
  57. 57.
    Uno S, Dalton TP, Derkenne S, Curran CP, Miller ML et al. 2004. Oral exposure to benzo[a]pyrene in the mouse: detoxication by inducible cytochrome P450 is more important than metabolic activation. Mol. Pharmacol. 65:1225–37
    [Google Scholar]
  58. 58.
    Uno S, Dalton TP, Dragin N, Curran CP, Derkenne S et al. 2006. Oral benzo[a]pyrene in Cyp1 knockout mouse lines: CYP1A1 important in detoxication, CYP1B1 metabolism required for immune damage independent of total-body burden and clearance rate. Mol. Pharmacol. 69:1103–14
    [Google Scholar]
  59. 59.
    Dragin N, Shi Z, Madan R, Karp CL, Sartor MA et al. 2008. Phenotype of the Cyp1a1/1a2/1b1(−/−) triple-knockout mouse. Mol. Pharmacol. 73:1844–56
    [Google Scholar]
  60. 60.
    Nebert DW, Karp CL. 2008. Endogenous functions of the aryl hydrocarbon receptor (AHR): intersection of cytochrome P450 1 (CYP1)-metabolized eicosanoids and AHR biology. J. Biol. Chem. 283:36061–65
    [Google Scholar]
  61. 61.
    Schiering C, Wincent E, Metidji A, Iseppon A, Li Y et al. 2017. Feedback control of AHR-signalling regulates intestinal immunity. Nature 542:242–45
    [Google Scholar]
  62. 62.
    Stockinger B, Shah K, Wincent E. 2021. AHR in the intestinal microenvironment: safeguarding barrier function. Nat. Rev. Gastroenterol. Hepatol. 18:559–70
    [Google Scholar]
  63. 63.
    Ishihara Y, Kado SY, Bein KJ, He Y, Pouraryan AA et al. 2021. Aryl hydrocarbon receptor-signaling synergizes with TLR/NF-κB-signaling for induction of IL-22 through canonical and non-canonical AHR pathways. Front. Toxicol. 3:787360
    [Google Scholar]
  64. 64.
    Galloway SM, Perry PE, Meneses J, Nebert DW, Pedersen RA. 1980. Cultured mouse embryos metabolize benzo[a]pyrene during early gestation: genetic differences detectable by sister chromatid exchange. PNAS 77:3524–28
    [Google Scholar]
  65. 65.
    Dey A, Nebert DW. 1998. Markedly increased constitutive CYP1A1 mRNA levels in the fertilized ovum of the mouse. Biochem. Biophys. Res. Commun. 251:657–61
    [Google Scholar]
  66. 66.
    Motulsky AG. 1957. Drug reaction enzymes, and biochemical genetics. J. Am. Med. Assoc. 165:835–37
    [Google Scholar]
  67. 67.
    Gonzalez FJ, Nebert DW. 1990. Evolution of the P450 gene superfamily: animal-plant ‘warfare’, molecular drive, and human genetic differences in drug oxidation. Trends Genet. 6:182–86
    [Google Scholar]
  68. 68.
    Nebert DW. 1991. Proposed role of drug-metabolizing enzymes: regulation of steady state levels of the ligands that effect growth, homeostasis, differentiation, and neuroendocrine functions. Mol. Endocrinol. 5:1203–14
    [Google Scholar]
  69. 69.
    Dornburg A, Mallik R, Wang Z, Bernal MA, Thompson B et al. 2022. Placing human gene families into their evolutionary context. Hum. Genom. 16:56
    [Google Scholar]
  70. 70.
    Atlas SA, Nebert DW. 1978. Pharmacogenetics: a possible pragmatic perspective in neoplasm predictability. Semin. Oncol. 5:89–106
    [Google Scholar]
  71. 71.
    Nebert DW. 1999. Pharmacogenetics and pharmacogenomics: Why is this relevant to the clinical geneticist?. Clin. Genet. 56:247–58
    [Google Scholar]
  72. 72.
    Nebert DW, Jorge-Nebert L, Vesell ES 2003. Pharmacogenomics and “individualized drug therapy”: high expectations and disappointing achievements. Am. J. Pharmacogenomics 3:361–70
    [Google Scholar]
  73. 73.
    Nebert DW, Zhang G, Vesell ES. 2008. From human genetics and genomics to pharmacogenetics and pharmacogenomics: past lessons, future directions. Drug Metab. Rev. 40:187–224
    [Google Scholar]
  74. 74.
    Zhang G, Nebert DW. 2017. Personalized medicine: genetic risk prediction of drug response. Pharmacol. Ther. 175:75–90
    [Google Scholar]
  75. 75.
    Nebert DW, Zhang G 2018. Pharmacogenomics. Emery and Rimoin's Principles and Practice of Medical Genetics and Genomics: Clinical Principles and Applications RE Pyeritz, BR Korf, WW Grody 445–86. London: Academic
    [Google Scholar]
  76. 76.
    Nebert DW, Gonzalez FJ. 1987. P450 genes: structure, evolution, and regulation. Annu. Rev. Biochem. 56:945–93
    [Google Scholar]
  77. 77.
    Nebert DW, Adesnik M, Coon MJ, Estabrook RW, Gonzalez FJ et al. 1987. The P450 gene superfamily: recommended nomenclature. DNA 6:1–11
    [Google Scholar]
  78. 78.
    Nebert DW, Nelson DR, Adesnik M, Coon MJ, Estabrook RW et al. 1989. The P450 superfamily: updated listing of all genes and recommended nomenclature for the chromosomal loci. DNA 8:1–13
    [Google Scholar]
  79. 79.
    Nebert DW, Nelson DR, Coon MJ, Estabrook RW, Feyereisen R et al. 1991. The P450 superfamily: update on new sequences, gene mapping, and recommended nomenclature. DNA Cell Biol. 10:1–14
    [Google Scholar]
  80. 80.
    Nelson DR, Kamataki T, Waxman DJ, Guengerich FP, Estabrook RW et al. 1993. The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol. 12:1–51
    [Google Scholar]
  81. 81.
    Taylor BA, Heiniger HJ, Meier H. 1973. Genetic analysis of resistance to cadmium-induced testicular damage in mice. Proc. Soc. Exp. Biol. Med. 143:629–33
    [Google Scholar]
  82. 82.
    Taylor BA. 1976. Linkage of the cadmium resistance locus to loci on mouse chromosome 12. J. Hered. 67:389–90
    [Google Scholar]
  83. 83.
    Dalton TP, Miller ML, Wu X, Menon A, Cianciolo E et al. 2000. Refining the mouse chromosomal location of Cdm, the major locus associated with susceptibility to cadmium-induced testicular necrosis. Pharmacogenetics 10:141–51
    [Google Scholar]
  84. 84.
    Dalton TP, He L, Wang B, Miller ML, Jin L et al. 2005. Identification of mouse SLC39A8 as the transporter responsible for cadmium-induced toxicity in the testis. PNAS 102:3401–6
    [Google Scholar]
  85. 85.
    Wang B, Schneider SN, Dragin N, Girijashanker K, Dalton TP et al. 2007. Enhanced cadmium-induced testicular necrosis and renal proximal tubule damage caused by gene-dose increase in a Slc39a8-transgenic mouse line. Am. J. Physiol. Cell Physiol. 292:C1523–35
    [Google Scholar]
  86. 86.
    He L, Girijashanker K, Dalton TP, Reed J, Li H et al. 2006. ZIP8, member of the solute-carrier-39 (SLC39) metal-transporter family: characterization of transporter properties. Mol. Pharmacol. 70:171–80
    [Google Scholar]
  87. 87.
    Wang CY, Jenkitkasemwong S, Duarte S, Sparkman BK, Shawki A et al. 2012. ZIP8 is an iron and zinc transporter whose cell-surface expression is up-regulated by cellular iron loading. J. Biol. Chem. 287:34032–43
    [Google Scholar]
  88. 88.
    Liu Z, Li H, Soleimani M, Girijashanker K, Reed JM et al. 2008. Cd2+ versus Zn2+ uptake by the ZIP8 (HCO3)-dependent symporter: kinetics, electrogenicity and trafficking. Biochem. Biophys. Res. Commun. 365:814–20
    [Google Scholar]
  89. 89.
    McDermott JR, Geng X, Jiang L, Galvez-Peralta M, Chen F et al. 2016. Zinc- and bicarbonate-dependent ZIP8 transporter mediates selenite uptake. Oncotarget 7:35327–40
    [Google Scholar]
  90. 90.
    Girijashanker K, He L, Soleimani M, Reed JM, Li H et al. 2008. Slc39a14 gene encodes ZIP14, a metal/bicarbonate symporter: similarities to the ZIP8 transporter. Mol. Pharmacol. 73:1413–23
    [Google Scholar]
  91. 91.
    He L, Wang B, Hay EB, Nebert DW. 2009. Discovery of ZIP transporters that participate in cadmium damage to testis and kidney. Toxicol. Appl. Pharmacol. 238:250–57
    [Google Scholar]
  92. 92.
    Harrison SM, Dunwoodie SL, Arkell RM, Lehrach H, Beddington RS. 1995. Isolation of novel tissue-specific genes from cDNA libraries representing the individual tissue constituents of the gastrulating mouse embryo. Development 121:2479–89
    [Google Scholar]
  93. 93.
    Zhu H, Yang H, Owen MR. 2007. Combined microarray analysis uncovers self-renewal related signaling in mouse embryonic stem cells. Syst. Synth. Biol. 1:171–81
    [Google Scholar]
  94. 94.
    Wang B, He L, Dong H, Dalton TP, Nebert DW. 2011. Generation of a Slc39a8 hypomorph mouse: markedly decreased ZIP8 Zn2+/(HCO3)2 transporter expression. Biochem. Biophys. Res. Commun. 410:289–94
    [Google Scholar]
  95. 95.
    Galvez-Peralta M, He L, Jorge-Nebert LF, Wang B, Miller ML et al. 2012. ZIP8 zinc transporter: indispensable role for both multiple-organ organogenesis and hematopoiesis in utero. PLOS ONE 7:e36055
    [Google Scholar]
  96. 96.
    Chen J, Gálvez-Peralta M, Zhang X, Deng J, Liu Z, Nebert DW. 2018. In utero gene expression in the Slc39a8(neo/neo) knockdown mouse. Sci. Rep. 8:10703
    [Google Scholar]
  97. 97.
    Begum NA, Kobayashi M, Moriwaki Y, Matsumoto M, Toyoshima K, Seya T. 2002. Mycobacterium bovis BCG cell wall and lipopolysaccharide induce a novel gene, BIGM103, encoding a 7-TM protein: identification of a new protein family having Zn-transporter and Zn-metalloprotease signatures. Genomics 80:630–45
    [Google Scholar]
  98. 98.
    Besecker B, Bao S, Bohacova B, Papp A, Sadee W, Knoell DL. 2008. The human zinc transporter SLC39A8 (ZIP8) is critical in zinc-mediated cytoprotection in lung epithelia. Am. J. Physiol. Lung Cell. Mol. Physiol. 294:L1127–36
    [Google Scholar]
  99. 99.
    Pyle CJ, Akhter S, Bao S, Dodd CE, Schlesinger LS, Knoell DL. 2017. Zinc modulates endotoxin-induced human macrophage inflammation through ZIP8 induction and C/EBPβ inhibition. PLOS ONE 12:e0169531
    [Google Scholar]
  100. 100.
    Pyle CJ, Azad AK, Papp AC, Sadee W, Knoell DL, Schlesinger LS. 2017. Elemental ingredients in the macrophage cocktail: role of ZIP8 in host response to Mycobacterium tuberculosis. Int. J. Mol. Sci. 18:2375
    [Google Scholar]
  101. 101.
    Liu MJ, Bao S, Galvez-Peralta M, Pyle CJ, Rudawsky AC et al. 2013. ZIP8 regulates host defense through zinc-mediated inhibition of NF-κB. Cell Rep. 3:386–400
    [Google Scholar]
  102. 102.
    Waterworth DM, Ricketts SL, Song K, Chen L, Zhao JH et al. 2010. Genetic variants influencing circulating lipid levels and risk of coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 30:226476
    [Google Scholar]
  103. 103.
    Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD et al. 2011. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478:103–9
    [Google Scholar]
  104. 104.
    Ehret GB, Ferreira T, Chasman DI, Jackson AU, Schmidt EM et al. 2016. The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nat. Genet. 48:117184
    [Google Scholar]
  105. 105.
    Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM et al. 2010. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466:707–13
    [Google Scholar]
  106. 106.
    Johansson Å, Eriksson N, Lindholm D, Varenhorst C, James S et al. 2016. Genome-wide association and Mendelian randomization study of NT-proBNP in patients with acute coronary syndrome. Hum. Mol. Genet. 25:1447–56
    [Google Scholar]
  107. 107.
    Verdugo RA, Zeller T, Rotival M, Wild PS, Munzel T et al. 2013. Graphical modeling of gene expression in monocytes suggests molecular mechanisms explaining increased atherosclerosis in smokers. PLOS ONE 8:e50888
    [Google Scholar]
  108. 108.
    Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S et al. 2013. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45:1274–83
    [Google Scholar]
  109. 109.
    Carrera N, Arrojo M, Sanjuan J, Ramos-Rios R, Paz E et al. 2012. Association study of nonsynonymous single nucleotide polymorphisms in schizophrenia. Biol. Psychiatry 71:169–77
    [Google Scholar]
  110. 110.
    Ripke S, Neale BM, Corvin A, Walters JTR, Farh K-H et al. 2014. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511:421–27
    [Google Scholar]
  111. 111.
    Song J, Kim D, Lee CH, Lee MS, Chun CH, Jin EJ. 2013. MicroRNA-488 regulates zinc transporter SLC39A8/ZIP8 during pathogenesis of osteoarthritis. J. Biomed. Sci. 20:31
    [Google Scholar]
  112. 112.
    Kim JH, Jeon J, Shin M, Won Y, Lee M et al. 2014. Regulation of the catabolic cascade in osteoarthritis by the zinc-ZIP8-MTF1 axis. Cell 156:730–43
    [Google Scholar]
  113. 113.
    Li D, Achkar JP, Haritunians T, Jacobs JP, Hui KY et al. 2016. A pleiotropic missense variant in SLC39A8 is associated with Crohn's disease and human gut microbiome composition. Gastroenterology 151:724–32
    [Google Scholar]
  114. 114.
    Baumann B, Sterling J, Song Y, Song D, Fruttiger M et al. 2017. Conditional Müller cell ablation leads to retinal iron accumulation. Investig. Ophthalmol. Vis. Sci. 58:4223–34
    [Google Scholar]
  115. 115.
    Boycott KM, Beaulieu CL, Kernohan KD, Gebril OH, Mhanni A et al. 2015. Autosomal-recessive intellectual disability with cerebellar atrophy syndrome caused by mutation of the manganese and zinc transporter gene SLC39A8. Am. J. Hum. Genet. 97:886–93
    [Google Scholar]
  116. 116.
    Park JH, Hogrebe M, Gruneberg M, DuChesne I, von der Heiden AL et al. 2015. SLC39A8 deficiency: a disorder of manganese transport and glycosylation. Am. J. Hum. Genet. 97:894–903
    [Google Scholar]
  117. 117.
    Riley LG, Cowley MJ, Gayevskiy V, Roscioli T, Thorburn DR et al. 2017. A SLC39A8 variant causes manganese deficiency, and glycosylation and mitochondrial disorders. J. Inherit. Metab. Dis. 40:26169
    [Google Scholar]
  118. 118.
    Nebert DW, Liu Z. 2019. SLC39A8 gene encoding a metal ion transporter: discovery and bench to bedside. Hum. Genom. 13:51
    [Google Scholar]
  119. 119.
    Samuelson DR, Haq S, Knoell DL. 2022. Divalent metal uptake and the role of ZIP8 in host defense against pathogens. Front. Cell Dev. Biol. 10:924820
    [Google Scholar]
  120. 120.
    Torkamani A, Wineinger NE, Topol EJ. 2018. The personal and clinical utility of polygenic risk scores. Nat. Rev. Genet. 19:581–90
    [Google Scholar]
  121. 121.
    Kullo IJ, Lewis CM, Inouye M, Martin AR, Ripatti S, Chatterjee N. 2022. Polygenic scores in biomedical research. Nat. Rev. Genet. 23:524–32
    [Google Scholar]
  122. 122.
    Makrygianni D, Koufaki MI, Patrinos GP, Vasileiou KZ. 2023. Pharmacy students' attitudes and intentions of pursuing postgraduate studies and training in pharmacogenomics and personalised medicine. Hum. Genom. 17:27
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-022323-082311
Loading
/content/journals/10.1146/annurev-pharmtox-022323-082311
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error