1932

Abstract

Particles and crystals constitute a unique class of toxic agents that humans are constantly exposed to both endogenously and from the environment. Deposition of particulates in the body is associated with a range of diseases and toxicity. The mechanism by which particulates cause disease remains poorly understood due to the lack of mechanistic insights into particle-biological interactions. Recent research has revealed that many particles and crystals activate the NLRP3 inflammasome, an intracellular pattern-recognition receptor. Activated NLRP3 forms a supramolecular complex with an adaptor protein to activate caspase 1, which in turn activates IL-1β and IL-18 to instigate inflammation. Genetic ablation and pharmacological inhibition of the NLRP3 inflammasome dampen inflammatory responses to particulates. Nonetheless, how particulates activate NLRP3 remains a challenging question. From this perspective, we discuss our current understanding of and progress on revealing the function and mode of action of the NLRP3 inflammasome in mediating adaptive and pathologic responses to particulates in health and disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-031023-125300
2024-01-23
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/64/1/annurev-pharmtox-031023-125300.html?itemId=/content/journals/10.1146/annurev-pharmtox-031023-125300&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Chiti F, Dobson CM. 2006. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75:333–66
    [Google Scholar]
  2. 2.
    Martinon F. 2010. Mechanisms of uric acid crystal-mediated autoinflammation. Immunol. Rev. 233:218–32
    [Google Scholar]
  3. 3.
    Baumer Y, Mehta NN, Dey AK, Powell-Wiley TM, Boisvert WA. 2020. Cholesterol crystals and atherosclerosis. Eur. Heart J. 41:2236–39
    [Google Scholar]
  4. 4.
    Franklin BS, Mangan MS, Latz E. 2016. Crystal formation in inflammation. Annu. Rev. Immunol. 34:173–202
    [Google Scholar]
  5. 5.
    Morgan WKC, Seaton A. 1995. Occupational Lung Diseases Philadelphia, PA: Saunders
  6. 6.
    Shu F, Shi Y. 2018. Systematic overview of solid particles and their host responses. Front. Immunol. 9:1157
    [Google Scholar]
  7. 7.
    Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G et al. 2010. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464:1357–61
    [Google Scholar]
  8. 8.
    Bloom GS. 2014. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 71:505–8
    [Google Scholar]
  9. 9.
    Menšíková K, Matěj R, Colosimo C, Rosales R, Tučková L et al. 2022. Lewy body disease or diseases with Lewy bodies?. NPJ Parkinson's Dis. 8:3
    [Google Scholar]
  10. 10.
    Usman N, Annamaraju P. 2022. Type III hypersensitivity reaction. StatPearls Treasure Island, FL: StatPearls
    [Google Scholar]
  11. 11.
    Donaldson K, Seaton A. 2012. A short history of the toxicology of inhaled particles. Part. Fibre Toxicol. 9:13
    [Google Scholar]
  12. 12.
    Castranova V, Vallyathan V. 2000. Silicosis and coal workers' pneumoconiosis. Environ. Health Perspect. 108:Suppl. 4675–84
    [Google Scholar]
  13. 13.
    Ma Q. 2020. Polarization of immune cells in the pathologic response to inhaled particulates. Front. Immunol. 11:1060
    [Google Scholar]
  14. 14.
    Blackley DJ, Crum JB, Halldin CN, Storey E, Laney AS. 2016. Resurgence of progressive massive fibrosis in coal miners—eastern Kentucky, 2016. Morb. Mortal. Wkly. Rep. 65:1385–89
    [Google Scholar]
  15. 15.
    Cullinan P, Muñoz X, Suojalehto H, Agius R, Jindal S et al. 2017. Occupational lung diseases: from old and novel exposures to effective preventive strategies. Lancet Respir. Med. 5:445–55
    [Google Scholar]
  16. 16.
    Cohen AJ, Cantor KP. 2014. Pollution of air, water, and soil. World Cancer Report 2014 BW Stewart, CP Wild 151–60. Lyon, France: Int. Agency Res. Cancer
    [Google Scholar]
  17. 17.
    Valavanidis A, Vlachogianni T, Fiotakis K. 2009. Tobacco smoke: involvement of reactive oxygen species and stable free radicals in mechanisms of oxidative damage, carcinogenesis and synergistic effects with other respirable particles. Int. J. Environ. Res. Public Health 6:445–62
    [Google Scholar]
  18. 18.
    Hoek G, Krishnan RM, Beelen R, Peters A, Ostro B et al. 2013. Long-term air pollution exposure and cardio-respiratory mortality: a review. Environ. Health 12:43
    [Google Scholar]
  19. 19.
    McDuffie EE, Martin RV, Spadaro JV, Burnett R, Smith SJ et al. 2021. Source sector and fuel contributions to ambient PM2.5 and attributable mortality across multiple spatial scales. Nat. Commun. 12:3594
    [Google Scholar]
  20. 20.
    Hill W, Lim EL, Weeden CE, Lee C, Augustine M et al. 2023. Lung adenocarcinoma promotion by air pollutants. Nature 616:159–67
    [Google Scholar]
  21. 21.
    Lindblad EB. 2004. Aluminium compounds for use in vaccines. Immunol. Cell Biol. 82:497–505
    [Google Scholar]
  22. 22.
    Moghimi SM, Hunter AC, Murray JC. 2005. Nanomedicine: current status and future prospects. FASEB J. 19:311–30
    [Google Scholar]
  23. 23.
    Dong J, Ma Q. 2019. Integration of inflammation, fibrosis, and cancer induced by carbon nanotubes. Nanotoxicology 13:1244–74
    [Google Scholar]
  24. 24.
    NIOSH (Natl. Inst. Occup. Saf. Health) 2013. Current intelligence bulletin 65: occupational exposure to carbon nanotubes and nanofibers. Rep. 2013-145, NIOSH Cent. Dis. Control Prev. Atlanta, GA:
  25. 25.
    Schroder K, Tschopp J. 2010. The inflammasomes. Cell 140:821–32
    [Google Scholar]
  26. 26.
    Swanson KV, Deng M, Ting JP. 2019. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 19:477–89
    [Google Scholar]
  27. 27.
    Ma Q. 2023. Pharmacological inhibition of the NLRP3 inflammasome: structure, molecular activation, and inhibitor-NLRP3 interaction. Pharmacol. Rev. 75:487–520
    [Google Scholar]
  28. 28.
    Tschopp J, Martinon F, Burns K. 2003. NALPs: a novel protein family involved in inflammation. Nat. Rev. Mol. Cell Biol. 4:95–104
    [Google Scholar]
  29. 29.
    Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J. 2004. NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20:319–25
    [Google Scholar]
  30. 30.
    Janeway CA Jr. 1989. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54:Pt. 11–13
    [Google Scholar]
  31. 31.
    Janeway CA Jr., Medzhitov R. 2002. Innate immune recognition. Annu. Rev. Immunol. 20:197–216
    [Google Scholar]
  32. 32.
    Takeda K, Kaisho T, Akira S. 2003. Toll-like receptors. Annu. Rev. Immunol. 21:335–76
    [Google Scholar]
  33. 33.
    Martinon F, Burns K, Tschopp J. 2002. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 10:417–26
    [Google Scholar]
  34. 34.
    Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG et al. 2016. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535:153–58
    [Google Scholar]
  35. 35.
    Lamkanfi M, Kanneganti TD, Van Damme P, Vanden Berghe T, Vanoverberghe I et al. 2008. Targeted peptidecentric proteomics reveals caspase-7 as a substrate of the caspase-1 inflammasomes. Mol. Cell. Proteom. 7:2350–63
    [Google Scholar]
  36. 36.
    Malireddi RK, Ippagunta S, Lamkanfi M, Kanneganti TD. 2010. Cutting edge: proteolytic inactivation of poly(ADP-ribose) polymerase 1 by the Nlrp3 and Nlrc4 inflammasomes. J. Immunol. 185:3127–30
    [Google Scholar]
  37. 37.
    Malireddi RKS, Tweedell RE, Kanneganti TD. 2020. PANoptosis components, regulation, and implications. Aging 12:11163–64
    [Google Scholar]
  38. 38.
    Leipe DD, Koonin EV, Aravind L. 2004. STAND, a class of P-Loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. J. Mol. Biol. 343:1–28
    [Google Scholar]
  39. 39.
    McKee CM, Coll RC. 2020. NLRP3 inflammasome priming: a riddle wrapped in a mystery inside an enigma. J. Leukoc. Biol. 108:937–52
    [Google Scholar]
  40. 40.
    Pourcet B, Zecchin M, Perri L, Beauchamp J, Sitaula S et al. 2018. Nuclear receptor subfamily 1 group D member 1 regulates circadian activity of NLRP3 inflammasome to reduce the severity of fulminant hepatitis in mice. Gastroenterology 154:1449–64
    [Google Scholar]
  41. 41.
    Wang S, Lin Y, Yuan X, Li F, Guo L et al. 2018. REV-ERBα integrates colon clock with experimental colitis through regulation of NF-κB/NLRP3 axis. Nat. Commun. 9:4246
    [Google Scholar]
  42. 42.
    Stutz A, Kolbe CC, Stahl R, Horvath GL, Franklin BS et al. 2017. NLRP3 inflammasome assembly is regulated by phosphorylation of the pyrin domain. J. Exp. Med. 214:1725–36
    [Google Scholar]
  43. 43.
    Juliana C, Fernandes-Alnemri T, Kang S, Farias A, Qin F, Alnemri ES. 2012. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J. Biol. Chem. 287:36617–22
    [Google Scholar]
  44. 44.
    Sharif H, Wang L, Wang WL, Magupalli VG, Andreeva L et al. 2019. Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Nature 570:338–43
    [Google Scholar]
  45. 45.
    Perregaux D, Gabel CA. 1994. Interleukin-1β maturation and release in response to ATP and nigericin: evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J. Biol. Chem. 269:15195–203
    [Google Scholar]
  46. 46.
    Munoz-Planillo R, Kuffa P, Martinez-Colon G, Smith BL, Rajendiran TM, Nunez G. 2013. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38:1142–53
    [Google Scholar]
  47. 47.
    Di A, Xiong S, Ye Z, Malireddi RKS, Kometani S et al. 2018. The TWIK2 potassium efflux channel in macrophages mediates NLRP3 inflammasome-induced inflammation. Immunity 49:56–65.e4
    [Google Scholar]
  48. 48.
    Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H et al. 2008. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9:847–56
    [Google Scholar]
  49. 49.
    Katsnelson MA, Lozada-Soto KM, Russo HM, Miller BA, Dubyak GR. 2016. NLRP3 inflammasome signaling is activated by low-level lysosome disruption but inhibited by extensive lysosome disruption: roles for K+ efflux and Ca2+ influx. Am. J. Physiol. Cell Physiol. 311:C83–100
    [Google Scholar]
  50. 50.
    Schroder K, Zhou R, Tschopp J. 2010. The NLRP3 inflammasome: a sensor for metabolic danger?. Science 327:296–300
    [Google Scholar]
  51. 51.
    Ma Q. 2010. Transcriptional responses to oxidative stress: pathological and toxicological implications. Pharmacol. Ther. 125:376–93
    [Google Scholar]
  52. 52.
    Ma Q. 2013. Role of Nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 53:401–26
    [Google Scholar]
  53. 53.
    Zhou R, Yazdi AS, Menu P, Tschopp J. 2011. A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221–25
    [Google Scholar]
  54. 54.
    Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. 2010. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol. 11:136–40
    [Google Scholar]
  55. 55.
    Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T et al. 2010. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464:104–7
    [Google Scholar]
  56. 56.
    Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N et al. 2012. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36:401–14
    [Google Scholar]
  57. 57.
    Iyer SS, He Q, Janczy JR, Elliott EI, Zhong Z et al. 2013. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity 39:311–23
    [Google Scholar]
  58. 58.
    Ichinohe T, Yamazaki T, Koshiba T, Yanagi Y. 2013. Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection. PNAS 110:17963–68
    [Google Scholar]
  59. 59.
    Chen J, Chen ZJ. 2018. PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation. Nature 564:71–76
    [Google Scholar]
  60. 60.
    Guo C, Chi Z, Jiang D, Xu T, Yu W et al. 2018. Cholesterol homeostatic regulator SCAP-SREBP2 integrates NLRP3 inflammasome activation and cholesterol biosynthetic signaling in macrophages. Immunity 49:842–56.e7
    [Google Scholar]
  61. 61.
    Andreeva L, David L, Rawson S, Shen C, Pasricha T et al. 2021. NLRP3 cages revealed by full-length mouse NLRP3 structure control pathway activation. Cell 184:6299–312.e22
    [Google Scholar]
  62. 62.
    Shi J, Zhao Y, Wang Y, Gao W, Ding J et al. 2014. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514:187–92
    [Google Scholar]
  63. 63.
    Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S et al. 2011. Non-canonical inflammasome activation targets caspase-11. Nature 479:117–21
    [Google Scholar]
  64. 64.
    Chan AH, Schroder K. 2020. Inflammasome signaling and regulation of interleukin-1 family cytokines. J. Exp. Med. 217:e20190314
    [Google Scholar]
  65. 65.
    He Y, Franchi L, Núñez G. 2013. TLR agonists stimulate Nlrp3-dependent IL-1β production independently of the purinergic P2X7 receptor in dendritic cells and in vivo. J. Immunol. 190:334–39
    [Google Scholar]
  66. 66.
    Hochheiser IV, Pilsl M, Hagelueken G, Moecking J, Marleaux M et al. 2022. Structure of the NLRP3 decamer bound to the cytokine release inhibitor CRID3. Nature 604:184–89
    [Google Scholar]
  67. 67.
    Ohto U, Kamitsukasa Y, Ishida H, Zhang Z, Murakami K et al. 2022. Structural basis for the oligomerization-mediated regulation of NLRP3 inflammasome activation. PNAS 119:e2121353119
    [Google Scholar]
  68. 68.
    Schroder K, Coll RC. 2021. Caging NLRP3 tames inflammasome activity. Cell 184:6224–26
    [Google Scholar]
  69. 69.
    Hochheiser IV, Behrmann H, Hagelueken G, Rodriguez-Alcazar JF, Kopp A et al. 2022. Directionality of PYD filament growth determined by the transition of NLRP3 nucleation seeds to ASC elongation. Sci. Adv. 8:eabn7583
    [Google Scholar]
  70. 70.
    Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. 2006. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237–41
    [Google Scholar]
  71. 71.
    Cassel SL, Eisenbarth SC, Iyer SS, Sadler JJ, Colegio OR et al. 2008. The Nalp3 inflammasome is essential for the development of silicosis. PNAS 105:9035–40
    [Google Scholar]
  72. 72.
    Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J. 2008. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674–77
    [Google Scholar]
  73. 73.
    Palomaki J, Valimaki E, Sund J, Vippola M, Clausen PA et al. 2011. Long, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism. ACS Nano 5:6861–70
    [Google Scholar]
  74. 74.
    Eisenbarth SC, Colegio OR, O'Connor W, Sutterwala FS, Flavell RA. 2008. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453:1122–26
    [Google Scholar]
  75. 75.
    Codolo G, Plotegher N, Pozzobon T, Brucale M, Tessari I et al. 2013. Triggering of inflammasome by aggregated α-synuclein, an inflammatory response in synucleinopathies. PLOS ONE 8:e55375
    [Google Scholar]
  76. 76.
    Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG et al. 2008. The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat. Immunol. 9:857–65
    [Google Scholar]
  77. 77.
    Rajamaki K, Lappalainen J, Oorni K, Valimaki E, Matikainen S et al. 2010. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLOS ONE 5:e11765
    [Google Scholar]
  78. 78.
    Karasawa T, Takahashi M. 2017. The crystal-induced activation of NLRP3 inflammasomes in atherosclerosis. Inflamm. Regen. 37:18
    [Google Scholar]
  79. 79.
    van der Heijden T, Kritikou E, Venema W, van Duijn J, van Santbrink PJ et al. 2017. NLRP3 inflammasome inhibition by MCC950 reduces atherosclerotic lesion development in apolipoprotein E-deficient mice-brief report. Arterioscler. Thromb. Vasc. Biol. 37:1457–61
    [Google Scholar]
  80. 80.
    Faires J, Mccarty D. 1962. Acute arthritis in man and dog after intrasynovial injection of sodium. Lancet 280:682–85
    [Google Scholar]
  81. 81.
    Shi Y, Evans JE, Rock KL. 2003. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425:516–21
    [Google Scholar]
  82. 82.
    Gasse P, Riteau N, Charron S, Girre S, Fick L et al. 2009. Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis. Am. J. Respir. Crit. Care Med. 179:903–13
    [Google Scholar]
  83. 83.
    Chen CJ, Shi Y, Hearn A, Fitzgerald K, Golenbock D et al. 2006. MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J. Clin. Investig. 116:2262–71
    [Google Scholar]
  84. 84.
    Mayor A, Martinon F, De Smedt T, Petrilli V, Tschopp J. 2007. A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses. Nat. Immunol. 8:497–503
    [Google Scholar]
  85. 85.
    Masters SL, Simon A, Aksentijevich I, Kastner DL. 2009. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease. Annu. Rev. Immunol. 27:621–68
    [Google Scholar]
  86. 86.
    Galon J, Aksentijevich I, McDermott MF, O'Shea JJ, Kastner DL 2000. TNFRSF1A mutations and autoinflammatory syndromes. Curr. Opin. Immunol. 12:479–86
    [Google Scholar]
  87. 87.
    Heneka MT, McManus RM, Latz E. 2018. Inflammasome signalling in brain function and neurodegenerative disease. Nat. Rev. Neurosci. 19:610–21
    [Google Scholar]
  88. 88.
    Ising C, Venegas C, Zhang S, Scheiblich H, Schmidt SV et al. 2019. NLRP3 inflammasome activation drives tau pathology. Nature 575:669–73
    [Google Scholar]
  89. 89.
    Friker LL, Scheiblich H, Hochheiser IV, Brinkschulte R, Riedel D et al. 2020. β-Amyloid clustering around ASC fibrils boosts its toxicity in microglia. Cell Rep. 30:3743–54.e6
    [Google Scholar]
  90. 90.
    Meissner F, Molawi K, Zychlinsky A. 2010. Mutant superoxide dismutase 1-induced IL-1β accelerates ALS pathogenesis. PNAS 107:13046–50
    [Google Scholar]
  91. 91.
    Italiani P, Carlesi C, Giungato P, Puxeddu I, Borroni B et al. 2014. Evaluating the levels of interleukin-1 family cytokines in sporadic amyotrophic lateral sclerosis. J. Neuroinflammation 11:94
    [Google Scholar]
  92. 92.
    Liu HD, Li W, Chen ZR, Hu YC, Zhang DD et al. 2013. Expression of the NLRP3 inflammasome in cerebral cortex after traumatic brain injury in a rat model. Neurochem. Res. 38:2072–83
    [Google Scholar]
  93. 93.
    Yazdi AS, Guarda G, Riteau N, Drexler SK, Tardivel A et al. 2010. Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1α and IL-1β. PNAS 107:19449–54
    [Google Scholar]
  94. 94.
    Hindman B, Ma Q. 2019. Carbon nanotubes and crystalline silica stimulate robust ROS production, inflammasome activation, and IL-1β secretion in macrophages to induce myofibroblast transformation. Arch. Toxicol. 93:887–907
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-031023-125300
Loading
/content/journals/10.1146/annurev-pharmtox-031023-125300
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error