1932

Abstract

Synthetic cannabinoids (SCs) are a chemically diverse group of new psychoactive substances (NPSs) that target the endocannabinoid system, triggering a plethora of actions (e.g., elevated mood sensation, relaxation, appetite stimulation) that resemble, but are more intense than, those induced by cannabis. Although some of these effects have been explored for therapeutic applications, anticipated stronger psychoactive effects than cannabis and reduced risk perception have increased the recreational use of SCs, which have dominated the NPS market in the United States and Europe over the past decade. However, rising SC-related intoxications and deaths represent a major public health concern and embody a major challenge for policy makers.

Here, we review the pharmacology and toxicology of SCs. A thorough characterization of SCs’ pharmacodynamics and toxicodynamics is important to better understand the main mechanisms underlying acute and chronic effects of SCs, interpret the clinical/pathological findings related to SC use, and improve SC risk awareness.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-031122-113758
2023-01-20
2024-09-17
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/63/1/annurev-pharmtox-031122-113758.html?itemId=/content/journals/10.1146/annurev-pharmtox-031122-113758&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Kemp AM, Clark MS, Dobbs T, Galli R, Sherman J, Cox R. 2016. Top 10 facts you need to know about synthetic cannabinoids: not so nice Spice. Am. J. Med. 129:240–44.e1
    [Google Scholar]
  2. 2.
    Liu L, Wheeler SE, Venkataramanan R, Rymer JA, Pizon AF et al. 2018. Newly emerging drugs of abuse and their detection methods: an ACLPS critical review. Am. J. Clin. Pathol. 149:105–16
    [Google Scholar]
  3. 3.
    Eur. Monit. Cent. Drugs Drug Addict( EMCDDA). 2017. Perspectives on drugs: synthetic cannabinoids in Europe Rep. EMCDDA, Publ. Off. Eur. Union Lisbon:
    [Google Scholar]
  4. 4.
    Gaoni Y, Mechoulam R. 1964. Isolation, structure, and partial synthesis of an active constituent of hashish. J. Am. Chem. Soc. 86:1646–47
    [Google Scholar]
  5. 5.
    Devane WA, Dysarz FA 3rd, Johnson MR, Melvin LS, Howlett AC. 1988. Determination and characterization of a cannabinoid receptor in rat brain. Mol. Pharmacol. 34:605–13
    [Google Scholar]
  6. 6.
    Deng H, Verrico CD, Kosten TR, Nielsen DA. 2018. Psychosis and synthetic cannabinoids. Psychiatry Res. 268:400–12
    [Google Scholar]
  7. 7.
    United Nations Off. Drugs Crime (UNODC) 2021. World drug report 2021 Rep. UNODC, United Nations Publ. Vienna, Austria:
    [Google Scholar]
  8. 8.
    Eur. Monit. Cent. Drugs Drug Addict. (EMCDDA) 2021. European drug report 2021: trends and developments Rep. EMCDDA, Publ. Off. Eur. Union Lisbon:
    [Google Scholar]
  9. 9.
    Eur. Monit. Cent. Drugs Drug Addict. (EMCDDA) 2018. Fentanils and synthetic cannabinoids: driving greater complexity into the drug situation. An update from the EU Early Warning System Rep. EMCDDA, Publ. Off. Eur Union, Lisbon:
    [Google Scholar]
  10. 10.
    Mills B, Yepes A, Nugent K. 2015. Synthetic cannabinoids. Am. J. Med. Sci. 350:59–62
    [Google Scholar]
  11. 11.
    Lafaye G, Karila L, Blecha L, Benyamina A. 2017. Cannabis, cannabinoids, and health. Dialogues Clin. Neurosci. 19:309–16
    [Google Scholar]
  12. 12.
    Eur. Monit. Cent. Drugs Drug Addict. (EMCDDA) 2020. New psychoactive substances: global markets, glocal threats and the COVID-19 pandemic. An update from the EU Early Warning System Rep. EMCDDA, Publ. Off. Eur Union, Lisbon:
    [Google Scholar]
  13. 13.
    Solimini R, Busardò FP, Rotolo MC, Ricci S, Mastrobattista L et al. 2017. Hepatotoxicity associated to synthetic cannabinoids use. Eur. Rev. Med. Pharmacol. Sci. 21:Suppl. 11–6
    [Google Scholar]
  14. 14.
    Eur. Monit. Cent. Drugs Drug Addict. (EMCDDA) 2021. Synthetic cannabinoids in Europe: a review Rep. EMCDDA, Publ. Off. Eur. Union Lisbon:
    [Google Scholar]
  15. 15.
    Tettey JNA, Crean C, Rodrigues J, Angeline Yap TW, Lee Wendy Lim J et al. 2021. United Nations Office on Drugs and Crime: recommended methods for the identification and analysis of synthetic cannabinoid receptor agonists in seized materials. Forensic Sci. Int. Synerg. 3:100129
    [Google Scholar]
  16. 16.
    Alves VL, Goncalves JL, Aguiar J, Teixeira HM, Camara JS. 2020. The synthetic cannabinoids phenomenon: from structure to toxicological properties. A review. Crit. Rev. Toxicol. 50:359–82
    [Google Scholar]
  17. 17.
    Liu CM, Jia W, Meng X, Hua ZD. 2021. Identification and quantification of 10 indole/indazole carboxamide synthetic cannabinoids in 36 herbal blends by gas chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy. J. Forensic Sci. 66:2156–66
    [Google Scholar]
  18. 18.
    Mercieca G, Odoardi S, Mestria S, Cassar M, Strano-Rossi S. 2020. Application of ultrasound-assisted liquid-liquid microextraction coupled with gas chromatography and mass spectrometry for the rapid determination of synthetic cannabinoids and metabolites in biological samples. J. Sep. Sci. 43:2858–68
    [Google Scholar]
  19. 19.
    Hehet P, Koke N, Zahn D, Fromel T, Rossler T et al. 2021. Synthetic cannabinoid receptor agonists and their human metabolites in sewage water: stability assessment and identification of transformation products. Drug Test. Anal. 13:1758–67
    [Google Scholar]
  20. 20.
    Giorgetti A, Mogler L, Haschimi B, Halter S, Franz F et al. 2020. Detection and phase I metabolism of the 7-azaindole-derived synthetic cannabinoid 5F-AB-P7AICA including a preliminary pharmacokinetic evaluation. Drug Test. Anal. 12:78–91
    [Google Scholar]
  21. 21.
    Haschimi B, Grafinger KE, Pulver B, Psychou E, Halter S et al. 2021. New synthetic cannabinoids carrying a cyclobutyl methyl side chain: human phase I metabolism and data on human cannabinoid receptor 1 binding and activation of Cumyl-CBMICA and Cumyl-CBMINACA. Drug Test. Anal. 13:1499–515
    [Google Scholar]
  22. 22.
    Mogler L, Wilde M, Huppertz LM, Weinfurtner G, Franz F, Auwarter V. 2018. Phase I metabolism of the recently emerged synthetic cannabinoid CUMYL-PEGACLONE and detection in human urine samples. Drug Test. Anal. 10:886–91
    [Google Scholar]
  23. 23.
    Banister SD, Moir M, Stuart J, Kevin RC, Wood KE et al. 2015. Pharmacology of indole and indazole synthetic cannabinoid designer drugs AB-FUBINACA, ADB-FUBINACA, AB-PINACA, ADB-PINACA, 5F-AB-PINACA, 5F-ADB-PINACA, ADBICA, and 5F-ADBICA. ACS Chem. Neurosci. 6:1546–59
    [Google Scholar]
  24. 24.
    Banister SD, Longworth M, Kevin R, Sachdev S, Santiago M et al. 2016. Pharmacology of valinate and tert-leucinate synthetic cannabinoids 5F-AMBICA, 5F-AMB, 5F-ADB, AMB-FUBINACA, MDMB-FUBINACA, MDMB-CHMICA, and their analogues. ACS Chem. Neurosci. 7:1241–54
    [Google Scholar]
  25. 25.
    Banister SD, Adams A, Kevin RC, Macdonald C, Glass M et al. 2019. Synthesis and pharmacology of new psychoactive substance 5F-CUMYL-P7AICA, a scaffold- hopping analog of synthetic cannabinoid receptor agonists 5F-CUMYL-PICA and 5F-CUMYL-PINACA. Drug Test. Anal. 11:279–91
    [Google Scholar]
  26. 26.
    Patel M, Manning JJ, Finlay DB, Javitch JA, Banister SD et al. 2020. Signalling profiles of a structurally diverse panel of synthetic cannabinoid receptor agonists. Biochem. Pharmacol. 175:113871
    [Google Scholar]
  27. 27.
    Walsh KB, Andersen HK. 2020. Molecular pharmacology of synthetic cannabinoids: delineating CB1 receptor-mediated cell signaling. Int. J. Mol. Sci. 21:6115
    [Google Scholar]
  28. 28.
    Ibsen MS, Connor M, Glass M. 2017. Cannabinoid CB1 and CB2 receptor signaling and bias. Cannabis Cannabinoid Res 2:48–60
    [Google Scholar]
  29. 29.
    Atwood BK, Mackie K. 2010. CB2: a cannabinoid receptor with an identity crisis. Br. J. Pharmacol. 160:467–79
    [Google Scholar]
  30. 30.
    Uchiyama N, Kikura-Hanajiri R, Goda Y. 2011. Identification of a novel cannabimimetic phenylacetylindole, cannabipiperidiethanone, as a designer drug in a herbal product and its affinity for cannabinoid CB1 and CB2 receptors. Chem. Pharm. Bull. 59:1203–5
    [Google Scholar]
  31. 31.
    Wouters E, Walraed J, Robertson MJ, Meyrath M, Szpakowska M et al. 2020. Assessment of biased agonism among distinct synthetic cannabinoid receptor agonist scaffolds. ACS Pharmacol. Transl. Sci. 3:285–95
    [Google Scholar]
  32. 32.
    Leo LM, Abood ME. 2021. CB1 cannabinoid receptor signaling and biased signaling. Molecules 26:5413
    [Google Scholar]
  33. 33.
    Krishna Kumar K, Shalev-Benami M, Robertson MJ, Hu H, Banister SD et al. 2019. Structure of a signaling cannabinoid receptor 1-G protein complex. Cell 176:448–58.e12
    [Google Scholar]
  34. 34.
    Zagzoog A, Brandt AL, Black T, Kim ED, Burkart R et al. 2021. Assessment of select synthetic cannabinoid receptor agonist bias and selectivity between the type 1 and type 2 cannabinoid receptor. Sci. Rep. 11:106–11
    [Google Scholar]
  35. 35.
    Muller C, Morales P, Reggio PH. 2019. Cannabinoid ligands targeting TRP channels. Front. Mol. Neurosci. 11:487
    [Google Scholar]
  36. 36.
    Ruparel NB, Patwardhan AM, Akopian AN, Hargreaves KM. 2011. Desensitization of transient receptor potential ankyrin 1 (TRPA1) by the TRP vanilloid 1-selective cannabinoid arachidonoyl-2 chloroethanolamine. Mol. Pharmacol. 80:117–23
    [Google Scholar]
  37. 37.
    Andersen HK, Walsh KB. 2021. Molecular signaling of synthetic cannabinoids: comparison of CB1 receptor and TRPV1 channel activation. Eur. J. Pharmacol. 907:174301
    [Google Scholar]
  38. 38.
    O'Sullivan SE. 2016. An update on PPAR activation by cannabinoids. Br. J. Pharmacol. 173:1899–910
    [Google Scholar]
  39. 39.
    Fakhfouri G, Ahmadiani A, Rahimian R, Grolla AA, Moradi F, Haeri A. 2012. WIN55212-2 attenuates amyloid-beta-induced neuroinflammation in rats through activation of cannabinoid receptors and PPAR-γ pathway. Neuropharmacology 63:653–66
    [Google Scholar]
  40. 40.
    Payandemehr B, Ebrahimi A, Gholizadeh R, Rahimian R, Varastehmoradi B et al. 2015. Involvement of PPAR receptors in the anticonvulsant effects of a cannabinoid agonist, WIN 55,212-2. Prog. Neuropsychopharmacol. Biol. Psychiatry 57:140–45
    [Google Scholar]
  41. 41.
    Vara D, Morell C, Rodríguez-Henche N, Diaz-Laviada I. 2013. Involvement of PPARγ in the antitumoral action of cannabinoids on hepatocellular carcinoma. Cell Death Dis. 4:e618
    [Google Scholar]
  42. 42.
    Morales P, Jagerovic N. 2016. Advances towards the discovery of GPR55 ligands. Curr. Med. Chem. 23:2087–100
    [Google Scholar]
  43. 43.
    Guerrero-Alba R, Barragán-Iglesias P, González-Hernández A, Valdez-Moráles EE, Granados-Soto V et al. 2019. Some prospective alternatives for treating pain: the endocannabinoid system and its putative receptors GPR18 and GPR55. Front. Pharmacol. 9:1496
    [Google Scholar]
  44. 44.
    Lauckner J, Jensen J, Chen H, Lu H, Hille B, Mackie K. 2008. GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. PNAS 105:2699–704
    [Google Scholar]
  45. 45.
    Schuelert N, McDougall JJ. 2011. The abnormal cannabidiol analogue O-1602 reduces nociception in a rat model of acute arthritis via the putative cannabinoid receptor GPR55. Neurosci. Lett. 500:72–76
    [Google Scholar]
  46. 46.
    Console-Bram L, Brailoiu E, Brailoiu GC, Sharir H, Abood ME. 2014. Activation of GPR18 by cannabinoid compounds: a tale of biased agonism. Br. J. Pharmacol. 171:3908–17
    [Google Scholar]
  47. 47.
    Ossato A, Uccelli L, Bilel S, Canazza I, Di Domenico G et al. 2017. Psychostimulant effect of the synthetic cannabinoid JWH-018 and AKB48: behavioral, neurochemical, and dopamine transporter scan imaging studies in mice. Front. Psychiatry 8:130
    [Google Scholar]
  48. 48.
    Oleson EB, Cheer JF. 2012. A brain on cannabinoids: the role of dopamine release in reward seeking. Cold Spring Harb. . Perspect. Med. 2:a012229
    [Google Scholar]
  49. 49.
    Ma Z, Gao F, Larsen B, Gao M, Luo Z et al. 2019. Mechanisms of cannabinoid CB2 receptor-mediated reduction of dopamine neuronal excitability in mouse ventral tegmental area. eBioMedicine 42:225–37
    [Google Scholar]
  50. 50.
    Brown TM, Brotchie JM, Fitzjohn SM. 2003. Cannabinoids decrease corticostriatal synaptic transmission via an effect on glutamate uptake. J. Neurosci. 23:11073–77
    [Google Scholar]
  51. 51.
    Irie T, Kikura-Hanajiri R, Usami M, Uchiyama N, Goda Y, Sekino Y. 2015. MAM-2201, a synthetic cannabinoid drug of abuse, suppresses the synaptic input to cerebellar Purkinje cells via activation of presynaptic CB1 receptors. Neuropharmacology 95:479–91
    [Google Scholar]
  52. 52.
    Cohen K, Weizman A, Weinstein A. 2019. Modulatory effects of cannabinoids on brain neurotransmission. Eur. J. Neurosci. 50:2322–45
    [Google Scholar]
  53. 53.
    Sánchez-Zavaleta R, Cortés H, Avalos-Fuentes JA, García U, Segovia Vila J et al. 2018. Presynaptic cannabinoid CB2 receptors modulate [3H]-glutamate release at subthalamo-nigral terminals of the rat. Synapse 72:e22061
    [Google Scholar]
  54. 54.
    Yano H, Adhikari P, Naing S, Hoffman AF, Baumann MH et al. 2020. Positive allosteric modulation of the 5-HT1A receptor by indole-based synthetic cannabinoids abused by humans. ACS Chem. Neurosci. 11:1400–5
    [Google Scholar]
  55. 55.
    Bambico FR, Katz N, Debonnel G, Gobbi G. 2007. Cannabinoids elicit antidepressant-like behavior and activate serotonergic neurons through the medial prefrontal cortex. J. Neurosci. 27:11700–11
    [Google Scholar]
  56. 56.
    Franklin JM, Carrasco GA. 2012. Cannabinoid-induced enhanced interaction and protein levels of serotonin 5-HT2A and dopamine D2 receptors in rat prefrontal cortex. J. Psychopharmacol. 26:1333–47
    [Google Scholar]
  57. 57.
    Adamowicz P, Gieron J, Gil D, Lechowicz W, Skulska A, Tokarczyk B. 2016. The prevalence of new psychoactive substances in biological material—a three-year review of casework in Poland. Drug Test. Anal. 8:63–70
    [Google Scholar]
  58. 58.
    Lobato-Freitas C, Brito-da-Costa AM, Dinis-Oliveira RJ, Carmo H, Carvalho F et al. 2021. Overview of synthetic cannabinoids ADB-FUBINACA and AMB-FUBINACA: clinical, analytical, and forensic implications. Pharmaceuticals 14:3186
    [Google Scholar]
  59. 59.
    Brandon AM, Antonides LH, Riley J, Epemolu O, McKeown DA et al. 2021. A systematic study of the in vitro pharmacokinetics and estimated human in vivo clearance of indole and indazole-3-carboxamide synthetic cannabinoid receptor agonists detected on the illicit drug market. Molecules 26:1396
    [Google Scholar]
  60. 60.
    Schaefer N, Wojtyniak JG, Kettner M, Schlote J, Laschke MW et al. 2016. Pharmacokinetics of (synthetic) cannabinoids in pigs and their relevance for clinical and forensic toxicology. Toxicol. Lett. 253:7–16
    [Google Scholar]
  61. 61.
    Schaefer N, Kroll AK, Korbel C, Laschke MW, Menger MD et al. 2019. Distribution of the (synthetic) cannabinoids JWH-210, RCS-4, as well as Δ9-tetrahydrocannabinol following pulmonary administration to pigs. Arch. Toxicol. 93:2211–18
    [Google Scholar]
  62. 62.
    Franz F, Jechle H, Wilde M, Angerer V, Huppertz LM et al. 2019. Structure-metabolism relationships of valine and tert-leucine-derived synthetic cannabinoid receptor agonists: a systematic comparison of the in vitro phase I metabolism using pooled human liver microsomes and high-resolution mass spectrometry. Forensic Toxicol. 37:316–29
    [Google Scholar]
  63. 63.
    Walle N, Nordmeier F, Doerr AA, Peters B, Laschke MW et al. 2021. Comparison of in vitro and in vivo models for the elucidation of metabolic patterns of 7-azaindole-derived synthetic cannabinoids exemplified using cumyl-5F-P7AICA. Drug Test. Anal. 13:74–90
    [Google Scholar]
  64. 64.
    Takayama T, Suzuki M, Todoroki K, Inoue K, Min JZ et al. 2014. UPLC/ESI-MS/MS-based determination of metabolism of several new illicit drugs, ADB-FUBINACA, AB-FUBINACA, AB-PINACA, QUPIC, 5F-QUPIC and α-PVT, by human liver microsome. Biomed. Chromatogr. 28:831–38
    [Google Scholar]
  65. 65.
    Jang M, Shin I, Yang W, Chang H, Yoo HH et al. 2014. Determination of major metabolites of MAM-2201 and JWH-122 in in vitro and in vivo studies to distinguish their intake. Forensic Sci. Int. 244:85–91
    [Google Scholar]
  66. 66.
    Diao XX, Wohlfarth A, Pang SK, Scheidweiler KB, Huestis MA. 2016. High-resolution mass spectrometry for characterizing the metabolism of synthetic cannabinoid THJ-018 and its 5-fluoro analog THJ-2201 after incubation in human hepatocytes. Clin. Chem. 62:157–69
    [Google Scholar]
  67. 67.
    Morales-Noe A, Esteve-Turrillas FA, Armenta S 2022. Metabolism of third generation synthetic cannabinoids using zebrafish larvae. Drug Test. Anal. 14:3594603
    [Google Scholar]
  68. 68.
    Franz F, Haschimi B, King LA, Auwarter V. 2020. Extraordinary long detection window of a synthetic cannabinoid metabolite in human urine: potential impact on therapeutic decisions. Drug Test. Anal. 12:391–96
    [Google Scholar]
  69. 69.
    Gamage TF, Farquhar CE, McKinnie RJ, Kevin RC, McGregor IS et al. 2019. Synthetic cannabinoid hydroxypentyl metabolites retain efficacy at human cannabinoid receptors. J. Pharmacol. Exp. Ther. 368:414–22
    [Google Scholar]
  70. 70.
    Behonick G, Shanks KG, Firchau DJ, Mathur G, Lynch CF et al. 2014. Four postmortem case reports with quantitative detection of the synthetic cannabinoid, 5F-PB-22. J. Anal. Toxicol. 38:559–62
    [Google Scholar]
  71. 71.
    Eur. Monit. Cent. Drugs Drug Addict. (EMCDDA) 2019. European drug report 2019: trends and developments Rep. EMCDDA, Publ. Off. Eur. Union Lisbon:
    [Google Scholar]
  72. 72.
    Le Boisselier R, Alexandre J, Lelong-Boulouard V, Debruyne D 2017. Focus on cannabinoids and synthetic cannabinoids. Clin. Pharmacol. Ther. 101:220–29
    [Google Scholar]
  73. 73.
    Martinotti G, Santacroce R, Papanti D, Elgharably Y, Prilutskaya M, Corazza O. 2017. Synthetic cannabinoids: psychopharmacology, clinical aspects, psychotic onset. CNS Neurol. Disord. Drug Targets 16:567–75
    [Google Scholar]
  74. 74.
    Fattore L. 2016. Synthetic cannabinoids—further evidence supporting the relationship between cannabinoids and psychosis. Biol. Psychiatry 79:539–48
    [Google Scholar]
  75. 75.
    Spaderna M, Addy PH, D'Souza DC 2013. Spicing things up: synthetic cannabinoids. Psychopharmacology 228:525–40
    [Google Scholar]
  76. 76.
    Basavarajappa BS, Subbanna S. 2019. Potential mechanisms underlying the deleterious effects of synthetic cannabinoids found in Spice/K2 products. Brain Sci 9:14
    [Google Scholar]
  77. 77.
    Gurney SMR, Scott KS, Kacinko SL, Presley BC, Logan BK. 2014. Pharmacology, toxicology, and adverse effects of synthetic cannabinoid drugs. Forensic Sci. Rev. 26:53–78
    [Google Scholar]
  78. 78.
    Cohen K, Weinstein AM. 2018. Synthetic and non-synthetic cannabinoid drugs and their adverse effects—a review from public health prospective. Front. Public Health 6:162
    [Google Scholar]
  79. 79.
    Canazza I, Ossato A, Vincenzi F, Gregori A, Di Rosa F et al. 2017. Pharmaco-toxicological effects of the novel third-generation fluorinate synthetic cannabinoids, 5F-ADBINACA, AB-FUBINACA, and STS-135 in mice. In vitro and in vivo studies. Hum. Psychopharmacol. 32:e2601
    [Google Scholar]
  80. 80.
    Boland DM, Reidy LJ, Seither JM, Radtke JM, Lew EO. 2020. Forty-three fatalities involving the synthetic cannabinoid, 5-fluoro-ADB: forensic pathology and toxicology implications. J. Forensic Sci. 65:170–82
    [Google Scholar]
  81. 81.
    Kronstrand R, Guerrieri D, Vikingsson S, Wohlfarth A, Green H. 2018. Fatal poisonings associated with new psychoactive substances. Handb. Exp. Pharmacol. 252:495–541
    [Google Scholar]
  82. 82.
    Riederer A, Campleman S, Carlson R, Boyer E, Manini A et al. 2016. Acute poisonings from synthetic cannabinoids—50 U.S. Toxicology Investigators Consortium registry sites, 2010–2015. MMWR Morb. Mortal. Wkly. Rep 65:692–95
    [Google Scholar]
  83. 83.
    Bhanushali GK, Jain G, Fatima H, Leisch LJ, Thornley-Brown D. 2013. AKI associated with synthetic cannabinoids: a case series. Clin. J. Am. Soc. Nephrol. 8:523–26
    [Google Scholar]
  84. 84.
    CDC (Cent. Dis. Control Prev.) 2013. Acute kidney injury associated with synthetic cannabinoid use—multiple states, 2012. MMWR Morb. Mortal. Wkly. Rep. 62:93–98
    [Google Scholar]
  85. 85.
    Tatusov M, Mazer-Amirshahi M, Abbasi A, Goyal M. 2019. Clinical effects of reported synthetic cannabinoid exposure in patients admitted to the intensive care unit. Am. J. Emerg. Med. 37:1060–64
    [Google Scholar]
  86. 86.
    Hopkins CY, Gilchrist BL. 2013. A case of cannabinoid hyperemesis syndrome caused by synthetic cannabinoids. J. Emerg. Med. 45:544–46
    [Google Scholar]
  87. 87.
    Seely K, Lapoint J, Moran J, Fattore L. 2012. Spice drugs are more than harmless herbal blends: a review of the pharmacology and toxicology of synthetic cannabinoids. Prog. Neuropsychopharmacol. Biol. Psychiatry 39:234–43
    [Google Scholar]
  88. 88.
    Cooper ZD. 2016. Adverse effects of synthetic cannabinoids: management of acute toxicity and withdrawal. Curr. Psychiatry Rep. 18:52
    [Google Scholar]
  89. 89.
    United Nations Off. Drugs Crime (UNODC) 2017. Global synthetic drugs assessment Rep. UNODC, United Nations Publ. Vienna, Austria:
    [Google Scholar]
  90. 90.
    Darke S, Duflou J, Farrell M, Peacock A, Lappin J. 2020. Characteristics and circumstances of synthetic cannabinoid-related death. Clin. Toxicol. 58:368–74
    [Google Scholar]
  91. 91.
    Adamowicz P. 2016. Fatal intoxication with synthetic cannabinoid MDMB-CHMICA. Forensic Sci. Int. 261:e5–10
    [Google Scholar]
  92. 92.
    Labay LM, Caruso JL, Gilson TP, Phipps RJ, Knight LD et al. 2016. Synthetic cannabinoid drug use as a cause or contributory cause of death. Forensic Sci. Int. 260:31–39
    [Google Scholar]
  93. 93.
    Tait RJ, Caldicott D, Mountain D, Hill SL, Lenton S. 2016. A systematic review of adverse events arising from the use of synthetic cannabinoids and their associated treatment. Clin. Toxicol. 54:1–13
    [Google Scholar]
  94. 94.
    Armenian P, Darracq M, Gevorkyan J, Clark S, Kaye B, Brandehoff NP 2018. Intoxication from the novel synthetic cannabinoids AB-PINACA and ADB-PINACA: a case series and review of the literature. Neuropharmacology 134:82–91
    [Google Scholar]
  95. 95.
    Muller HH, Kornhuber J, Sperling W. 2016. The behavioral profile of Spice and synthetic cannabinoids in humans. Brain Res. Bull. 126:3–7
    [Google Scholar]
  96. 96.
    Tsatsakis A, Docea AO, Calina D, Tsarouhas K, Zamfira LM et al. 2019. A mechanistic and pathophysiological approach for stroke associated with drugs of abuse. J. Clin. Med. 8:1295
    [Google Scholar]
  97. 97.
    Aksel G, Guneysel O, Tasyurek T, Kozan E, Cevik SE. 2015. Intravenous lipid emulsion therapy for acute synthetic cannabinoid intoxication: clinical experience in four cases. Case Rep. . Emerg. Med. 2015:180921
    [Google Scholar]
  98. 98.
    Tomiyama K, Funada M. 2014. Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB1 receptors and apoptotic cell death. Toxicol. Appl. Pharmacol. 274:17–23
    [Google Scholar]
  99. 99.
    Coccini T, De Simone U, Lonati D, Scaravaggi G, Marti M, Locatelli CA. 2021. MAM-2201, one of the most potent-naphthoyl indole derivative-synthetic cannabinoids, exerts toxic effects on human cell-based models of neurons and astrocytes. Neurotox. Res. 39:1251–73
    [Google Scholar]
  100. 100.
    Oztas E, Abudayyak M, Celiksoz M, Ozhan G. 2019. Inflammation and oxidative stress are key mediators in AKB48-induced neurotoxicity in vitro. Toxicol. Vitro 55:101–7
    [Google Scholar]
  101. 101.
    Sezer Y, Jannuzzi AT, Huestis MA, Alpertunga B. 2020. In vitro assessment of the cytotoxic, genotoxic and oxidative stress effects of the synthetic cannabinoid JWH-018 in human SH-SY5Y neuronal cells. Toxicol Res 9:734–40
    [Google Scholar]
  102. 102.
    Alexandre J, Malheiro R, Dias da Silva D, Carmo H, Carvalho F, Silva JP. 2020. The synthetic cannabinoids THJ-2201 and 5F-PB22 enhance in vitro CB1 receptor-mediated neuronal differentiation at biologically relevant concentrations. Int. J. Mol. Sci. 21:6277
    [Google Scholar]
  103. 103.
    Hebert-Chatelain E, Desprez T, Serrat R, Bellocchio L, Soria-Gomez E et al. 2016. A cannabinoid link between mitochondria and memory. Nature 539:555–59
    [Google Scholar]
  104. 104.
    Silva JP, Araújo AM, Carmo H, Guedes de Pinho P, Carvalho F 2019. Synthetic cannabinoids JWH-122 and THJ-2201 disrupt endocannabinoid-regulated mitochondrial function and activate apoptotic pathways as a primary mechanism of in vitro nephrotoxicity at in vivo relevant concentrations. Toxicol. Sci. 169:422–35
    [Google Scholar]
  105. 105.
    Silva JP, Carmo H, Carvalho F. 2018. The synthetic cannabinoid XLR-11 induces in vitro nephrotoxicity by impairment of endocannabinoid-mediated regulation of mitochondrial function homeostasis and triggering of apoptosis. Toxicol. Lett. 287:59–69
    [Google Scholar]
  106. 106.
    Koller VJ, Auwarter V, Grummt T, Moosmann B, Misik M, Knasmuller S. 2014. Investigation of the in vitro toxicological properties of the synthetic cannabimimetic drug CP-47,497-C8. Toxicol. Appl. Pharmacol. 277:164–71
    [Google Scholar]
  107. 107.
    Gampfer TM, Wagmann L, Belkacemi A, Flockerzi V, Meyer MR. 2021. Cytotoxicity, metabolism, and isozyme mapping of the synthetic cannabinoids JWH-200, A-796260, and 5F-EMB-PINACA studied by means of in vitro systems. Arch. Toxicol. 95:3539–57
    [Google Scholar]
  108. 108.
    Tomiyama KI, Funada M. 2021. Synthetic cannabinoid CP-55,940 induces apoptosis in a human skeletal muscle model via regulation of CB1 receptors and L-type Ca2+ channels. Arch. Toxicol. 95:617–30
    [Google Scholar]
  109. 109.
    Almada M, Alves P, Fonseca BM, Carvalho F, Queiros CR et al. 2020. Synthetic cannabinoids JWH-018, JWH-122, UR-144 and the phytocannabinoid THC activate apoptosis in placental cells. Toxicol. Lett. 319:129–37
    [Google Scholar]
  110. 110.
    El Marroun H, Brown QL, Lund IO, Coleman-Cowger VH, Loree AM et al. 2018. An epidemiological, developmental and clinical overview of cannabis use during pregnancy. Prev. Med. 116:1–5
    [Google Scholar]
  111. 111.
    Cristino L, Bisogno T, Di Marzo V. 2020. Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat. Rev. Neurol. 16:9–29
    [Google Scholar]
  112. 112.
    Dong C, Chen J, Harrington A, Vinod KY, Hegde ML, Hegde VL. 2019. Cannabinoid exposure during pregnancy and its impact on immune function. Cell. Mol. Life Sci. 76:729–43
    [Google Scholar]
  113. 113.
    Mereu G, Fa M, Ferraro L, Cagiano R, Antonelli T et al. 2003. Prenatal exposure to a cannabinoid agonist produces memory deficits linked to dysfunction in hippocampal long-term potentiation and glutamate release. PNAS 100:4915–20
    [Google Scholar]
  114. 114.
    Pinky PD, Majrashi M, Fujihashi A, Bloemer J, Govindarajulu M et al. 2021. Effects of prenatal synthetic cannabinoid exposure on the cerebellum of adolescent rat offspring. Heliyon 7:e06730
    [Google Scholar]
  115. 115.
    Alexandre J, Carmo H, Carvalho F, Silva JP. 2019. Synthetic cannabinoids and their impact on neurodevelopmental processes. Addict. Biol. 25:e12824
    [Google Scholar]
  116. 116.
    Oudin MJ, Gajendra S, Williams G, Hobbs C, Lalli G, Doherty P. 2011. Endocannabinoids regulate the migration of subventricular zone-derived neuroblasts in the postnatal brain. J. Neurosci. 31:4000–11
    [Google Scholar]
  117. 117.
    Kim D, Thayer SA. 2001. Cannabinoids inhibit the formation of new synapses between hippocampal neurons in culture. J. Neurosci. 21:RC146
    [Google Scholar]
  118. 118.
    Jordan JD, He JC, Eungdamrong NJ, Gomes I, Ali W et al. 2005. Cannabinoid receptor-induced neurite outgrowth is mediated by Rap1 activation through Gαo/i-triggered proteasomal degradation of Rap1GAPII. J. Biol. Chem. 280:11413–21
    [Google Scholar]
  119. 119.
    Jiang W, Zhang Y, Xiao L, Van Cleemput J, Ji SP et al. 2005. Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects. J. Clin. Investig. 115:3104–16
    [Google Scholar]
  120. 120.
    Palazuelos J, Ortega Z, Díaz-Alonso J, Guzmán M, Galve-Roperh I. 2012. CB2 cannabinoid receptors promote neural progenitor cell proliferation via mTORC1 signaling. J. Biol. Chem. 287:1198–209
    [Google Scholar]
  121. 121.
    Miranda CC, Barata T, Vaz SH, Ferreira C, Quintas A, Bekman EP. 2020. hiPSC-based model of prenatal exposure to cannabinoids: effect on neuronal differentiation. Front. Mol. Neurosci. 13:119
    [Google Scholar]
  122. 122.
    Miranda M, Morici JF, Zanoni MB, Bekinschtein P. 2019. Brain-derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain. Front. Cell Neurosci. 13:363
    [Google Scholar]
  123. 123.
    Ferreira FF, Ribeiro FF, Rodrigues RS, Sebastião AM, Xapelli S. 2018. Brain-derived neurotrophic factor (BDNF) role in cannabinoid-mediated neurogenesis. Front. Cell Neurosci. 12:441
    [Google Scholar]
  124. 124.
    Li RS, Fukumori R, Takeda T, Song Y, Morimoto S et al. 2019. Elevation of endocannabinoids in the brain by synthetic cannabinoid JWH-018: mechanism and effect on learning and memory. Sci. Rep. 9:9621
    [Google Scholar]
  125. 125.
    Scheyer AF, Melis M, Trezza V, Manzoni OJJ. 2019. Consequences of perinatal cannabis exposure. Trends Neurosci. 42:871–84
    [Google Scholar]
  126. 126.
    Wu CS, Jew CP, Lu HC. 2011. Lasting impacts of prenatal cannabis exposure and the role of endogenous cannabinoids in the developing brain. Fut. Neurol. 6:459–80
    [Google Scholar]
  127. 127.
    Berry-Cabán Slack L-A, Huffman C, Whitecar P, Haley C 2013. Synthetic cannabinoid and synthetic cocaine use during pregnancy in a soldier. J. Subst. Abuse Alcohol. 1:1002
    [Google Scholar]
  128. 128.
    Szutorisz H, Hurd YL. 2018. High times for cannabis: epigenetic imprint and its legacy on brain and behavior. Neurosci. Biobehav. Rev. 85:93–101
    [Google Scholar]
  129. 129.
    Gomes TM, Dias da Silva D, Carmo H, Carvalho F, Silva JP. 2020. Epigenetics and the endocannabinoid system signaling: an intricate interplay modulating neurodevelopment. Pharmacol. Res. 162:105237
    [Google Scholar]
  130. 130.
    Ibn Lahmar Andaloussi Z, Taghzouti K, Abboussi O. 2019. Behavioural and epigenetic effects of paternal exposure to cannabinoids during adolescence on offspring vulnerability to stress. Int. J. Dev. Neurosci. 72:48–54
    [Google Scholar]
  131. 131.
    Scherma M, Qvist JS, Asok A, Huang S-sC, Masia P et al. 2020. Cannabinoid exposure in rat adolescence reprograms the initial behavioral, molecular, and epigenetic response to cocaine. PNAS 117:9991–10002
    [Google Scholar]
  132. 132.
    Aguado T, Carracedo A, Julien B, Velasco G, Milman G et al. 2007. Cannabinoids induce glioma stem-like cell differentiation and inhibit gliomagenesis. J. Biol. Chem. 282:6854–62
    [Google Scholar]
  133. 133.
    Tomas-Roig J, Benito E, Agis-Balboa R, Piscitelli F, Hoyer-Fender S et al. 2017. Chronic exposure to cannabinoids during adolescence causes long-lasting behavioral deficits in adult mice. Addict. Biol. 22:1778–89
    [Google Scholar]
  134. 134.
    Hollins SL, Zavitsanou K, Walker FR, Cairns MJ. 2014. Alteration of imprinted Dlk1-Dio3 miRNA cluster expression in the entorhinal cortex induced by maternal immune activation and adolescent cannabinoid exposure. Transl. Psychiatry 4:e452
    [Google Scholar]
  135. 135.
    Whiting PF, Wolff RF, Deshpande S, Di Nisio M, Duffy S et al. 2015. Cannabinoids for medical use: a systematic review and meta-analysis. JAMA 313:2456–73
    [Google Scholar]
  136. 136.
    de Vries M, van Rijckevorsel DCM, Wilder-Smith OHG, van Goor H. 2014. Dronabinol and chronic pain: importance of mechanistic considerations. Expert Opin. Pharmacother. 15:1525–34
    [Google Scholar]
  137. 137.
    Sheng WS, Hu S, Min X, Cabral GA, Lokensgard JR, Peterson PK. 2005. Synthetic cannabinoid WIN55,212-2 inhibits generation of inflammatory mediators by IL-1β-stimulated human astrocytes. Glia 49:211–19
    [Google Scholar]
  138. 138.
    Aguirre-Rueda D, Guerra-Ojeda S, Aldasoro M, Iradi A, Obrador E et al. 2015. WIN 55,212-2, agonist of cannabinoid receptors, prevents amyloid β1–42 effects on astrocytes in primary culture. PLOS ONE 10:e0122843
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-031122-113758
Loading
/content/journals/10.1146/annurev-pharmtox-031122-113758
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error