1932

Abstract

The actions of estrogens and related estrogenic molecules are complex and multifaceted in both sexes. A wide array of natural, synthetic, and therapeutic molecules target pathways that produce and respond to estrogens. Multiple receptors promulgate these responses, including the classical estrogen receptors of the nuclear hormone receptor family (estrogen receptors α and β), which function largely as ligand-activated transcription factors, and the 7-transmembrane G protein–coupled estrogen receptor, GPER, which activates a diverse array of signaling pathways. The pharmacology and functional roles of GPER in physiology and disease reveal important roles in responses to both natural and synthetic estrogenic compounds in numerous physiological systems. These functions have implications in the treatment of myriad disease states, including cancer, cardiovascular diseases, and metabolic disorders. This review focuses on the complex pharmacology of GPER and summarizes major physiological functions of GPER and the therapeutic implications and ongoing applications of GPER-targeted compounds.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-031122-121944
2023-01-20
2024-04-14
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/63/1/annurev-pharmtox-031122-121944.html?itemId=/content/journals/10.1146/annurev-pharmtox-031122-121944&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Santoro N, Epperson CN, Mathews SB. 2015. Menopausal symptoms and their management. Endocrinol. Metab. Clin. North Am. 44:497–515
    [Google Scholar]
  2. 2.
    Mehta J, Kling JM, Manson JE. 2021. Risks, benefits, and treatment modalities of menopausal hormone therapy: current concepts. Front. Endocrinol. 12:564781
    [Google Scholar]
  3. 3.
    North Am. Menopause Soc. Hormone Ther. Position Statement Advis. Panel 2018. The 2017 hormone therapy position statement of The North American Menopause Society. Menopause 25:1362–87
    [Google Scholar]
  4. 4.
    McDonnell DP, Wardell SE, Chang CY, Norris JD. 2021. Next-generation endocrine therapies for breast cancer. J. Clin. Oncol. 39:1383–88
    [Google Scholar]
  5. 5.
    Haines CN, Wardell SE, McDonnell DP. 2021. Current and emerging estrogen receptor-targeted therapies for the treatment of breast cancer. Essays Biochem 65:985–1001
    [Google Scholar]
  6. 6.
    Dahlman-Wright K, Cavailles V, Fuqua SA, Jordan VC, Katzenellenbogen JA et al. 2006. International Union of Pharmacology. LXIV. Estrogen receptors. Pharmacol. Rev. 58:773–81
    [Google Scholar]
  7. 7.
    Prossnitz ER, Arterburn JB. 2015. International Union of Basic and Clinical Pharmacology. XCVII. G protein-coupled estrogen receptor and its pharmacologic modulators. Pharmacol. Rev. 67:505–40
    [Google Scholar]
  8. 8.
    Fruzzetti F, Fidecicchi T, Montt Guevara MM, Simoncini T 2021. Estetrol: a new choice for contraception. J. Clin. Med. 10:5625
    [Google Scholar]
  9. 9.
    Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS et al. 2009. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr. Rev. 30:293–342
    [Google Scholar]
  10. 10.
    Lorand T, Vigh E, Garai J. 2010. Hormonal action of plant derived and anthropogenic non-steroidal estrogenic compounds: phytoestrogens and xenoestrogens. Curr. Med. Chem. 17:3542–74
    [Google Scholar]
  11. 11.
    Frye CA, Bo E, Calamandrei G, Calza L, Dessi-Fulgheri F et al. 2012. Endocrine disrupters: a review of some sources, effects, and mechanisms of actions on behaviour and neuroendocrine systems. J. Neuroendocrinol. 24:144–59
    [Google Scholar]
  12. 12.
    Song S, Guo Y, Yang Y, Fu D 2022. Advances in pathogenesis and therapeutic strategies for osteoporosis. Pharmacol. Ther. 237:108168
    [Google Scholar]
  13. 13.
    Yang F, Li N, Gaman MA, Wang N 2021. Raloxifene has favorable effects on the lipid profile in women explaining its beneficial effect on cardiovascular risk: a meta-analysis of randomized controlled trials. Pharmacol. Res. 166:105512
    [Google Scholar]
  14. 14.
    Nabieva N, Fasching PA. 2021. Endocrine treatment for breast cancer patients revisited—history, standard of care, and possibilities of improvement. Cancers 13:5643
    [Google Scholar]
  15. 15.
    Wehling M. 1994. Nongenomic actions of steroid hormones. Trends Endocrinol. Metab. 5:347–53
    [Google Scholar]
  16. 16.
    Mosselman S, Polman J, Dijkema R. 1996. ERβ: identification and characterization of a novel human estrogen receptor. FEBS Lett. 392:49–53
    [Google Scholar]
  17. 17.
    Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA. 1996. Cloning of a novel receptor expressed in rat prostate and ovary. PNAS 93:5925–30
    [Google Scholar]
  18. 18.
    Barton M, Filardo EJ, Lolait SJ, Thomas P, Maggiolini M, Prossnitz ER. 2018. Twenty years of the G protein-coupled estrogen receptor GPER: historical and personal perspectives. J. Steroid Biochem. Mol. Biol. 176:4–15
    [Google Scholar]
  19. 19.
    Filardo EJ, Quinn JA, Bland KI, Frackelton AR Jr. 2000. Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol. Endocrinol. 14:1649–60
    [Google Scholar]
  20. 20.
    Thomas P, Pang Y, Filardo EJ, Dong J. 2005. Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology 146:624–32
    [Google Scholar]
  21. 21.
    Revankar CM, Cimino DF, Sklar LA, Arterburn JB, Prossnitz ER. 2005. A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science 307:1625–30
    [Google Scholar]
  22. 22.
    Alexander SPH, Mathie A, Peters JA. 2008. Guide to Receptors and Channels (GRAC), 3rd edition. Br. J. Pharmacol. 153:Suppl. 2S1–209
    [Google Scholar]
  23. 23.
    Gaudet HM, Cheng SB, Christensen EM, Filardo EJ. 2015. The G-protein coupled estrogen receptor, GPER: the inside and inside-out story. Mol. Cell. Endocrinol. 418:Part 3207–19
    [Google Scholar]
  24. 24.
    Giorgi EP, Stein WD. 1981. The transport of steroids into animal cells in culture. Endocrinology 108:688–97
    [Google Scholar]
  25. 25.
    Muller RE, Johnston TC, Traish AM, Wotiz HH. 1979. Studies on the mechanism of estradiol uptake by rat uterine cells and on estradiol binding to uterine plasma membranes. Adv. Exp. Med. Biol. 117:401–21
    [Google Scholar]
  26. 26.
    Maruvada P, Baumann CT, Hager GL, Yen PM. 2003. Dynamic shuttling and intranuclear mobility of nuclear hormone receptors. J. Biol. Chem. 278:12425–32
    [Google Scholar]
  27. 27.
    Revankar CM, Mitchell HD, Field AS, Burai R, Corona C et al. 2007. Synthetic estrogen derivatives demonstrate the functionality of intracellular GPR30. ACS Chem. Biol. 2:536–44
    [Google Scholar]
  28. 28.
    Filardo EJ, Quinn JA, Frackelton AR Jr., Bland KI. 2002. Estrogen action via the G protein-coupled receptor, GPR30: stimulation of adenylyl cyclase and cAMP-mediated attenuation of the epidermal growth factor receptor-to-MAPK signaling axis. Mol. Endocrinol. 16:70–84
    [Google Scholar]
  29. 29.
    Kilpatrick LE, Hill SJ. 2021. Transactivation of G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs): recent insights using luminescence and fluorescence technologies. Curr. Opin. Endocr. Metab. Res. 16:102–12
    [Google Scholar]
  30. 30.
    Vivacqua A, De Marco P, Santolla MF, Cirillo F, Pellegrino M et al. 2015. Estrogenic GPER signaling regulates miR144 expression in cancer cells and cancer-associated fibroblasts (CAFs). Oncotarget 6:16573–87
    [Google Scholar]
  31. 31.
    Fredette NC, Meyer MR, Prossnitz ER. 2018. Role of GPER in estrogen-dependent nitric oxide formation and vasodilation. J. Steroid Biochem. Mol. Biol. 176:65–72
    [Google Scholar]
  32. 32.
    Zekas E, Prossnitz ER. 2015. Estrogen-mediated inactivation of FOXO3a by the G protein-coupled estrogen receptor GPER. BMC Cancer 15:702
    [Google Scholar]
  33. 33.
    Zhang H, Lu S, Xu R, Tang Y, Liu J et al. 2020. Mechanisms of estradiol-induced EGF-like factor expression and oocyte maturation via G protein-coupled estrogen receptor. Endocrinology 161:bqaa190
    [Google Scholar]
  34. 34.
    Yu T, Yang G, Hou Y, Tang X, Wu C et al. 2017. Cytoplasmic GPER translocation in cancer-associated fibroblasts mediates cAMP/PKA/CREB/glycolytic axis to confer tumor cells with multidrug resistance. Oncogene 36:2131–45
    [Google Scholar]
  35. 35.
    Lagarde F, Beausoleil C, Belcher SM, Belzunces LP, Emond C et al. 2015. Non-monotonic dose-response relationships and endocrine disruptors: a qualitative method of assessment. Environ. Health 14:13
    [Google Scholar]
  36. 36.
    Dinh QN, Vinh A, Kim HA, Saini N, Broughton BRS et al. 2021. Aldosterone-induced hypertension is sex-dependent, mediated by T cells and sensitive to GPER activation. Cardiovasc. Res. 117:960–70
    [Google Scholar]
  37. 37.
    Evans PD. 2019. Rapid signalling responses via the G protein-coupled estrogen receptor, GPER, in a hippocampal cell line. Steroids 152:108487
    [Google Scholar]
  38. 38.
    Cheng SB, Dong J, Pang Y, LaRocca J, Hixon M et al. 2014. Anatomical location and redistribution of G protein-coupled estrogen receptor-1 during the estrus cycle in mouse kidney and specific binding to estrogens but not aldosterone. Mol. Cell. Endocrinol. 382:950–59
    [Google Scholar]
  39. 39.
    Chourasia TK, Pang Y, Thomas P. 2015. The catecholestrogen, 2-hydroxyestradiol-17beta, acts as a G protein–coupled estrogen receptor 1 (GPER/GPR30) antagonist to promote the resumption of meiosis in zebrafish oocytes. Biol. Reprod. 92:69
    [Google Scholar]
  40. 40.
    Koganti S, Snyder R, Gumaste U, Karamyan VT, Thekkumkara T. 2014. 2-Methoxyestradiol binding of GPR30 down-regulates angiotensin AT1 receptor. Eur. J. Pharmacol. 723:131–40
    [Google Scholar]
  41. 41.
    Thekkumkara T, Snyder R, Karamyan VT. 2016. Competitive binding assay for the G-protein-coupled receptor 30 (GPR30) or G-protein-coupled estrogen receptor (GPER). Methods Mol. Biol. 1366:11–17
    [Google Scholar]
  42. 42.
    Ogola B, Zhang Y, Iyer L, Thekkumkara T. 2018. 2-Methoxyestradiol causes matrix metalloproteinase 9-mediated transactivation of epidermal growth factor receptor and angiotensin type 1 receptor downregulation in rat aortic smooth muscle cells. Am. J. Physiol. Cell Physiol. 314:C554–68
    [Google Scholar]
  43. 43.
    Singh P, Song CY, Dutta SR, Gonzalez FJ, Malik KU. 2020. Central CYP1B1 (Cytochrome P450 1B1)-estradiol metabolite 2-methoxyestradiol protects from hypertension and neuroinflammation in female mice. Hypertension 75:1054–62
    [Google Scholar]
  44. 44.
    Pingili AK, Davidge KN, Thirunavukkarasu S, Khan NS, Katsurada A et al. 2017. 2-Methoxyestradiol reduces angiotensin II-induced hypertension and renal dysfunction in ovariectomized female and intact male mice. Hypertension 69:1104–12
    [Google Scholar]
  45. 45.
    Avena P, Casaburi I, Zavaglia L, Nocito MC, La Padula D et al. 2022. 27-Hydroxycholesterol binds GPER and induces progression of estrogen receptor-negative breast cancer. Cancers 14:1521
    [Google Scholar]
  46. 46.
    Zucchetti AE, Barosso IR, Boaglio AC, Basiglio CL, Miszczuk G et al. 2014. G-protein-coupled receptor 30/adenylyl cyclase/protein kinase A pathway is involved in estradiol 17β-d-glucuronide-induced cholestasis. Hepatology 59:1016–29
    [Google Scholar]
  47. 47.
    Li L, Wang H, Yao Y, Cao J, Jiang Z et al. 2021. The sex steroid precursor dehydroepiandrosterone prevents nonalcoholic steatohepatitis by activating the AMPK pathway mediated by GPR30. Redox Biol 48:102187
    [Google Scholar]
  48. 48.
    Ramesh C, Bryant B, Nayak T, Revankar CM, Anderson T et al. 2006. Linkage effects on binding affinity and activation of GPR30 and estrogen receptors ERα/β with tridentate pyridin-2-yl hydrazine tricarbonyl-Re/99mTc(I) chelates. J. Am. Chem. Soc. 128:14476–77
    [Google Scholar]
  49. 49.
    Wang C, Zhang Y, Wang J, Xing D 2022. VHL-based PROTACs as potential therapeutic agents: recent progress and perspectives. Eur. J. Med. Chem. 227:113906
    [Google Scholar]
  50. 50.
    Flanagan JJ, Neklesa TK. 2019. Targeting nuclear receptors with PROTAC degraders. Mol. Cell. Endocrinol. 493:110452
    [Google Scholar]
  51. 51.
    Bargagna-Mohan P, Baek SH, Lee H, Kim K, Mohan R 2005. Use of PROTACs as molecular probes of angiogenesis. Bioorg. Med. Chem. Lett. 15:2724–27
    [Google Scholar]
  52. 52.
    Lu AS, Rouhimoghadam M, Arnatt CK, Filardo EJ, Salem AK. 2021. Proteolytic targeting chimeras with specificity for plasma membrane and intracellular estrogen receptors. Mol. Pharmacol. 18:1455–69
    [Google Scholar]
  53. 53.
    Bustamante-Barrientos FA, Mendez-Ruette M, Ortloff A, Luz-Crawford P, Rivera FJ et al. 2021. The impact of estrogen and estrogen-like molecules in neurogenesis and neurodegeneration: beneficial or harmful?. Front. Cell. Neurosci. 15:636176
    [Google Scholar]
  54. 54.
    Molina L, Bustamante FA, Bhoola KD, Figueroa CD, Ehrenfeld P. 2018. Possible role of phytoestrogens in breast cancer via GPER-1/GPR30 signaling. Clin. Sci. 132:2583–98
    [Google Scholar]
  55. 55.
    Lacouture A, Lafront C, Peillex C, Pelletier M, Audet-Walsh E. 2022. Impacts of endocrine-disrupting chemicals on prostate function and cancer. Environ. Res. 204:112085
    [Google Scholar]
  56. 56.
    Qiu YA, Xiong J, Yu T 2021. Role of G protein-coupled estrogen receptor in digestive system carcinomas: a minireview. OncoTargets Ther. 14:2611–22
    [Google Scholar]
  57. 57.
    Khan SU, Ahemad N, Chuah LH, Naidu R, Htar TT. 2022. Natural bioactive compounds as a new source of promising G protein-coupled estrogen receptor (GPER) modulators: comprehensive in silico approach. J. Biomol. Struct. Dyn. 40:1617–28
    [Google Scholar]
  58. 58.
    Mesmar F, Dai B, Ibrahim A, Hases L, Jafferali MH et al. 2019. Clinical candidate and genistein analogue AXP107-11 has chemoenhancing functions in pancreatic adenocarcinoma through G protein-coupled estrogen receptor signaling. Cancer Med 8:7705–19
    [Google Scholar]
  59. 59.
    Du ZR, Gu Y, Xie XM, Zhang M, Jiang GY, Chen WF. 2021. GPER and IGF-1R mediate the anti-inflammatory effect of genistein against lipopolysaccharide (LPS)-induced nigrostriatal injury in rats. J. Steroid Biochem. Mol. Biol. 214:105989
    [Google Scholar]
  60. 60.
    Surico D, Ercoli A, Farruggio S, Raina G, Filippini D et al. 2017. Modulation of oxidative stress by 17 β-estradiol and genistein in human hepatic cell lines in vitro. Cell. Physiol. Biochem. 42:1051–62
    [Google Scholar]
  61. 61.
    Vasquez-Reyes S, Vargas-Castillo A, Noriega LG, Velazquez-Villegas LA, Perez B et al. 2022. Genistein stimulation of white adipose tissue thermogenesis is partially dependent on GPR30 in mice. Mol. Nutr. Food Res. 66:e2100838
    [Google Scholar]
  62. 62.
    Harada K, Sada S, Sakaguchi H, Takizawa M, Ishida R, Tsuboi T. 2018. Bacterial metabolite S-equol modulates glucagon-like peptide-1 secretion from enteroendocrine L cell line GLUTag cells via actin polymerization. Biochem. Biophys. Res. Commun. 501:1009–15
    [Google Scholar]
  63. 63.
    Wu H, Nie P, Zhou Z, Hu J, Li G et al. 2020. S-(−)-equol alleviates stenosis of the injured carotid artery in Sprague Dawley rats by preventing the vascular smooth muscle cell phenotypic switch via inhibition of the MAPKp38-NFkBp65 signaling. Mater. Express 10:1237–48
    [Google Scholar]
  64. 64.
    Moriyama M, Hashimoto A, Satoh H, Kawabe K, Ogawa M et al. 2018. S-Equol, a major isoflavone from soybean, inhibits nitric oxide production in lipopolysaccharide-stimulated rat astrocytes partially via the GPR30-mediated pathway. Int. J. Inflam. 2018:8496973
    [Google Scholar]
  65. 65.
    Ariyani W, Miyazaki W, Koibuchi N. 2019. A novel mechanism of S-equol action in neurons and astrocytes: the possible involvement of GPR30/GPER1. Int. J. Mol. Sci. 20:5178
    [Google Scholar]
  66. 66.
    Shang D, Li Z, Zhu Z, Chen H, Zhao L et al. 2015. Baicalein suppresses 17-β-estradiol-induced migration, adhesion and invasion of breast cancer cells via the G protein-coupled receptor 30 signaling pathway. Oncol. Rep. 33:2077–85
    [Google Scholar]
  67. 67.
    Chen Y, Hong DY, Wang J, Ling-Hu J, Zhang YY et al. 2017. Baicalein, unlike 4-hydroxytamoxifen but similar to G15, suppresses 17β-estradiol-induced cell invasion, and matrix metalloproteinase-9 expression and activation in MCF-7 human breast cancer cells. Oncol. Lett. 14:1823–30
    [Google Scholar]
  68. 68.
    Moreno-Ulloa A, Mendez-Luna D, Beltran-Partida E, Castillo C, Guevara G et al. 2015. The effects of (−)-epicatechin on endothelial cells involve the G protein-coupled estrogen receptor (GPER). Pharmacol. Res. 100:309–20
    [Google Scholar]
  69. 69.
    Moreno-Ulloa A, Miranda-Cervantes A, Licea-Navarro A, Mansour C, Beltran-Partida E et al. 2018. (−)-Epicatechin stimulates mitochondrial biogenesis and cell growth in C2C12 myotubes via the G-protein coupled estrogen receptor. Eur. J. Pharmacol. 822:95–107
    [Google Scholar]
  70. 70.
    Sarmiento V, Ramirez-Sanchez I, Moreno-Ulloa A, Romero-Perez D, Chavez D et al. 2018. Synthesis of novel (−)-epicatechin derivatives as potential endothelial GPER agonists: evaluation of biological effects. Bioorg. Med. Chem. Lett. 28:658–63
    [Google Scholar]
  71. 71.
    Calfio C, Donoso F, Huidobro-Toro JP. 2021. Anthocyanins activate membrane estrogen receptors with nanomolar potencies to elicit a nongenomic vascular response via NO production. J. Am. Heart Assoc. 10:e020498
    [Google Scholar]
  72. 72.
    He J, Zhang J, Wang Y, Liu W, Gou K et al. 2018. MiR-7 mediates the zearalenone signaling pathway regulating FSH synthesis and secretion by targeting FOS in female pigs. Endocrinology 159:2993–3006
    [Google Scholar]
  73. 73.
    He J, Wei C, Li Y, Liu Y, Wang Y et al. 2018. Zearalenone and alpha-zearalenol inhibit the synthesis and secretion of pig follicle stimulating hormone via the non-classical estrogen membrane receptor GPR30. Mol. Cell. Endocrinol. 461:43–54
    [Google Scholar]
  74. 74.
    Lo EKK, Lee JC, Turner PC, El-Nezami H. 2021. Low dose of zearalenone elevated colon cancer cell growth through G protein-coupled estrogenic receptor. Sci. Rep. 11:7403
    [Google Scholar]
  75. 75.
    Perian S, Cerutti C, Forcet C, Tribollet V, Vanacker JM. 2020. A cell-based method to detect agonist and antagonist activities of endocrine-disrupting chemicals on GPER. Front. Endocrinol. 11:547
    [Google Scholar]
  76. 76.
    Herz C, Tran HTT, Schlotz N, Michels K, Lamy E. 2017. Low-dose levels of bisphenol A inhibit telomerase via ER/GPR30-ERK signalling, impair DNA integrity and reduce cell proliferation in primary PBMC. Sci. Rep. 7:16631
    [Google Scholar]
  77. 77.
    Nadal A, Fuentes E, Ripoll C, Villar-Pazos S, Castellano-Munoz M et al. 2018. Extranuclear-initiated estrogenic actions of endocrine disrupting chemicals: Is there toxicology beyond paracelsus?. J. Steroid Biochem. Mol. Biol. 176:16–22
    [Google Scholar]
  78. 78.
    Cao LY, Ren XM, Li CH, Zhang J, Qin WP et al. 2017. Bisphenol AF and bisphenol B exert higher estrogenic effects than bisphenol A via G protein–coupled estrogen receptor pathway. Environ. Sci. Technol. 51:11423–30
    [Google Scholar]
  79. 79.
    Thomas P, Dong J. 2006. Binding and activation of the seven-transmembrane estrogen receptor GPR30 by environmental estrogens: a potential novel mechanism of endocrine disruption. J. Steroid Biochem. Mol. Biol. 102:175–79
    [Google Scholar]
  80. 80.
    Bologa CG, Revankar CM, Young SM, Edwards BS, Arterburn JB et al. 2006. Virtual and biomolecular screening converge on a selective agonist for GPR30. Nat. Chem. Biol. 2:207–12
    [Google Scholar]
  81. 81.
    Dennis MK, Burai R, Ramesh C, Petrie WK, Alcon SN et al. 2009. In vivo effects of a GPR30 antagonist. Nat. Chem. Biol. 5:421–27
    [Google Scholar]
  82. 82.
    Dennis MK, Field AS, Burai R, Ramesh C, Petrie WK et al. 2011. Identification of a GPER/GPR30 antagonist with improved estrogen receptor counterselectivity. J. Steroid Biochem. Mol. Biol. 127:358–66
    [Google Scholar]
  83. 83.
    Petrie WK, Dennis MK, Hu C, Dai D, Arterburn JB et al. 2013. G protein-coupled estrogen receptor-selective ligands modulate endometrial tumor growth. Obstet. Gynecol. Int. 2013:472720
    [Google Scholar]
  84. 84.
    Scaling AL, Prossnitz ER, Hathaway HJ. 2014. GPER mediates estrogen-induced signaling and proliferation in human breast epithelial cells and normal and malignant breast. Horm. Cancer 5:146–60
    [Google Scholar]
  85. 85.
    Prossnitz ER, Hathaway HJ. 2015. What have we learned about GPER function in physiology and disease from knockout mice?. J. Steroid Biochem. Mol. Biol. 153:114–26
    [Google Scholar]
  86. 86.
    Gui Y, Shi Z, Wang Z, Li JJ, Xu C et al. 2015. The GPER agonist G-1 induces mitotic arrest and apoptosis in human vascular smooth muscle cells independent of GPER. J. Cell. Physiol. 230:885–95
    [Google Scholar]
  87. 87.
    Holm A, Grande PO, Luduena RF, Olde B, Prasad V et al. 2012. The G protein-coupled oestrogen receptor 1 agonist G-1 disrupts endothelial cell microtubule structure in a receptor-independent manner. Mol. Cell. Biochem. 366:239–49
    [Google Scholar]
  88. 88.
    Natale CA, Garyantes T. 2021. IND-enabling characterization of the selective GPER agonist, LNS8801. Cancer Res. 81:Suppl. 131282
    [Google Scholar]
  89. 89.
    Revankar CM, Bologa CG, Pepermans RA, Sharma G, Petrie WK et al. 2019. A selective ligand for estrogen receptor proteins discriminates rapid and genomic signaling. Cell Chem. Biol. 26:1692–702.e5
    [Google Scholar]
  90. 90.
    Pepermans RA, Prossnitz ER. 2019. ERα-targeted endocrine therapy, resistance and the role of GPER. Steroids 152:108493
    [Google Scholar]
  91. 91.
    Evans PD. 2019. Aldosterone, STX and amyloid-β1–42 peptides modulate GPER (GPR30) signalling in an embryonic mouse hippocampal cell line (mHippoE-18). Mol. Cell. Endocrinol. 496:110537
    [Google Scholar]
  92. 92.
    Lappano R, Rosano C, Santolla MF, Pupo M, De Francesco EM et al. 2012. Two novel GPER agonists induce gene expression changes and growth effects in cancer cells. Curr. Cancer Drug Targets 12:531–42
    [Google Scholar]
  93. 93.
    Arnatt CK, Zhang Y. 2013. G protein-coupled estrogen receptor (GPER) agonist dual binding mode analyses toward understanding of its activation mechanism: a comparative homology modeling approach. Mol. Inform. 32:647–58
    [Google Scholar]
  94. 94.
    Mendez-Luna D, Morelos-Garnica LA, Garcia-Vazquez JB, Bello M, Padilla M II et al. 2021. Modifications on the tetrahydroquinoline scaffold targeting a phenylalanine cluster on GPER as antiproliferative compounds against renal, liver and pancreatic cancer cells. Pharmaceuticals 14:49
    [Google Scholar]
  95. 95.
    Rosano C, Ponassi M, Santolla MF, Pisano A, Felli L et al. 2016. Macromolecular modelling and docking simulations for the discovery of selective GPER ligands. AAPS J. 18:41–46
    [Google Scholar]
  96. 96.
    Bruno A, Aiello F, Costantino G, Radi M. 2016. Homology modeling, validation and dynamics of the G protein-coupled estrogen receptor 1 (GPER-1). Mol. Inform. 35:333–39
    [Google Scholar]
  97. 97.
    Martinez-Munoz A, Prestegui-Martel B, Mendez-Luna D, Fragoso-Vazquez MJ, Garcia-Sanchez JR et al. 2018. Selection of a GPER1 ligand via ligand-based virtual screening coupled to molecular dynamics simulations and its anti-proliferative effects on breast cancer cells. Anticancer Agents Med. Chem. 18:1629–38
    [Google Scholar]
  98. 98.
    Khan SU, Ahemad N, Chuah L-H, Naidu R, Htar TT. 2019. Sequential ligand- and structure-based virtual screening approach for the identification of potential G protein-coupled estrogen receptor-1 (GPER-1) modulators. RSC Adv. 9:2525–38
    [Google Scholar]
  99. 99.
    Grande F, Occhiuzzi MA, Lappano R, Cirillo F, Guzzi R et al. 2020. Computational approaches for the discovery of GPER targeting compounds. Front. Endocrinol. 11:517
    [Google Scholar]
  100. 100.
    Khan SU, Ahemad N, Chuah LH, Naidu R, Htar TT. 2020. G protein-coupled estrogen receptor-1: homology modeling approaches and application in screening new GPER-1 modulators. J. Biomol. Struct. Dyn. 40:3325–35
    [Google Scholar]
  101. 101.
    D'Arrigo G, Gianquinto E, Rossetti G, Cruciani G, Lorenzetti S, Spyrakis F. 2021. Binding of androgen- and estrogen-like flavonoids to their cognate (non)nuclear receptors: a comparison by computational prediction. Molecules 26:1613
    [Google Scholar]
  102. 102.
    Burai R, Ramesh C, Shorty M, Curpan R, Bologa C et al. 2010. Highly efficient synthesis and characterization of the GPR30-selective agonist G-1 and related tetrahydroquinoline analogs. Org. Biomol. Chem. 8:2252–59
    [Google Scholar]
  103. 103.
    Cerra B, Mostarda S, Custodi C, Macchiarulo A, Gioiello A. 2016. Integrating multicomponent flow synthesis and computational approaches for the generation of a tetrahydroquinoline compound based library. MedChemComm 7:439–46
    [Google Scholar]
  104. 104.
    Zacarias-Lara OJ, Mendez-Luna D, Martinez-Ruiz G, Garcia-Sanchez JR, Fragoso-Vazquez MJ et al. 2019. Synthesis and in vitro evaluation of tetrahydroquinoline derivatives as antiproliferative compounds of breast cancer via targeting the GPER. Anticancer Agents Med. Chem. 19:760–71
    [Google Scholar]
  105. 105.
    Papalia T, Lappano R, Barattucci A, Pisano A, Bruno G et al. 2015. A Bodipy as a luminescent probe for detection of the G protein estrogen receptor (GPER). Org. Biomol. Chem. 13:10437–41
    [Google Scholar]
  106. 106.
    O'Dea A, Sondergard C, Sweeney P, Arnatt CK. 2018. A series of indole-thiazole derivatives act as GPER agonists and inhibit breast cancer cell growth. ACS Med. Chem. Lett. 9:901–6
    [Google Scholar]
  107. 107.
    Maggiolini M, Santolla MF, Avino S, Aiello F, Rosano C et al. 2015. Identification of two benzo-pyrroloxazines acting as selective GPER antagonists in breast cancer cells and cancer-associated fibroblasts. Future Med. Chem. 7:437–48
    [Google Scholar]
  108. 108.
    Aiello F, Carullo G, Giordano F, Spina E, Nigro A et al. 2017. Identification of breast cancer inhibitors specific for G protein-coupled estrogen receptor (GPER)-expressing cells. ChemMedChem 12:1279–85
    [Google Scholar]
  109. 109.
    Perri M, Aiello F, Cione E, Carullo G, Amendola L et al. 2019. Investigation of TNBC in vitro antiproliferative effects of versatile pirrolo[1,2-a]quinoxaline compounds. Front. Mol. Biosci. 6:12
    [Google Scholar]
  110. 110.
    DeLeon C, Wang HH, Gunn J, Wilhelm M, Cole A et al. 2020. A novel GPER antagonist protects against the formation of estrogen-induced cholesterol gallstones in female mice. J. Lipid Res. 61:767–77
    [Google Scholar]
  111. 111.
    Pelekanou V, Kampa M, Gallo D, Notas G, Troullinaki M et al. 2011. The estrogen receptor alpha-derived peptide ERα17p (P295-T311) exerts pro-apoptotic actions in breast cancer cells in vitro and in vivo, independently from their ERα status. Mol. Oncol. 5:36–47
    [Google Scholar]
  112. 112.
    Lappano R, Mallet C, Rizzuti B, Grande F, Galli GR et al. 2019. The peptide ERα17p is a GPER inverse agonist that exerts antiproliferative effects in breast cancer cells. Cells 8:590
    [Google Scholar]
  113. 113.
    Pepermans RA, Sharma G, Prossnitz ER. 2021. G protein-coupled estrogen receptor in cancer and stromal cells: functions and novel therapeutic perspectives. Cells 10:672
    [Google Scholar]
  114. 114.
    Vivacqua A, Bonofiglio D, Recchia AG, Musti AM, Picard D et al. 2006. The G protein-coupled receptor GPR30 mediates the proliferative effects induced by 17β-estradiol and hydroxytamoxifen in endometrial cancer cells. Mol. Endocrinol. 20:631–46
    [Google Scholar]
  115. 115.
    Vivacqua A, Bonofiglio D, Albanito L, Madeo A, Rago V et al. 2006. 17β-Estradiol, genistein, and 4-hydroxytamoxifen induce the proliferation of thyroid cancer cells through the G protein-coupled receptor GPR30. Mol. Pharmacol. 70:1414–23
    [Google Scholar]
  116. 116.
    Albanito L, Madeo A, Lappano R, Vivacqua A, Rago V et al. 2007. G protein-coupled receptor 30 (GPR30) mediates gene expression changes and growth response to 17β-estradiol and selective GPR30 ligand G-1 in ovarian cancer cells. Cancer Res 67:1859–66
    [Google Scholar]
  117. 117.
    Ariazi EA, Brailoiu E, Yerrum S, Shupp HA, Slifker MJ et al. 2010. The G protein-coupled receptor GPR30 inhibits proliferation of estrogen receptor-positive breast cancer cells. Cancer Res 70:1184–94
    [Google Scholar]
  118. 118.
    Natale CA, Li J, Zhang J, Dahal A, Dentchev T et al. 2018. Activation of G protein-coupled estrogen receptor signaling inhibits melanoma and improves response to immune checkpoint blockade. eLife 7:e31770
    [Google Scholar]
  119. 119.
    Chan QK, Lam HM, Ng CF, Lee AY, Chan ES et al. 2010. Activation of GPR30 inhibits the growth of prostate cancer cells through sustained activation of Erk1/2, c-jun/c-fos-dependent upregulation of p21, and induction of G2 cell-cycle arrest. Cell Death Differ. 17:1511–23
    [Google Scholar]
  120. 120.
    Lam HM, Ouyang B, Chen J, Ying J, Wang J et al. 2014. Targeting GPR30 with G-1: a new therapeutic target for castration-resistant prostate cancer. Endocr. Relat. Cancer 21:903–14
    [Google Scholar]
  121. 121.
    Natale CA, Li J, Pitarresi JR, Norgard RJ, Dentchev T et al. 2020. Pharmacologic activation of the G protein-coupled estrogen receptor inhibits pancreatic ductal adenocarcinoma. Cell Mol. Gastroenterol. Hepatol. 10:4868–80.e1
    [Google Scholar]
  122. 122.
    Filardo EJ, Graeber CT, Quinn JA, Resnick MB, Giri D et al. 2006. Distribution of GPR30, a seven membrane-spanning estrogen receptor, in primary breast cancer and its association with clinicopathologic determinants of tumor progression. Clin. Cancer Res. 12:6359–66
    [Google Scholar]
  123. 123.
    Ignatov T, Treeck O, Kalinski T, Ortmann O, Ignatov A. 2020. GPER-1 expression is associated with a decreased response rate to primary tamoxifen therapy of breast cancer patients. Arch. Gynecol. Obstet. 301:565–71
    [Google Scholar]
  124. 124.
    Ignatov T, Claus M, Nass N, Haybaeck J, Seifert B et al. 2019. G-protein-coupled estrogen receptor GPER-1 expression in hormone receptor-positive breast cancer is associated with poor benefit of tamoxifen. Breast Cancer Res. Treat. 174:121–27
    [Google Scholar]
  125. 125.
    Smith HO, Leslie KK, Singh M, Qualls CR, Revankar CM et al. 2007. GPR30: a novel indicator of poor survival for endometrial carcinoma. Am. J. Obstet. Gynecol. 196:386.e1–9
    [Google Scholar]
  126. 126.
    Smith HO, Arias-Pulido H, Kuo DY, Howard T, Qualls CR et al. 2009. GPR30 predicts poor survival for ovarian cancer. Gynecol. Oncol. 114:465–71
    [Google Scholar]
  127. 127.
    Mo Z, Liu M, Yang F, Luo H, Li Z et al. 2013. GPR30 as an initiator of tamoxifen resistance in hormone-dependent breast cancer. Breast Cancer Res 15:R114
    [Google Scholar]
  128. 128.
    Ignatov A, Ignatov T, Weissenborn C, Eggemann H, Bischoff J et al. 2011. G-protein-coupled estrogen receptor GPR30 and tamoxifen resistance in breast cancer. Breast Cancer Res. Treat. 128:457–66
    [Google Scholar]
  129. 129.
    Marjon NA, Hu C, Hathaway HJ, Prossnitz ER. 2014. G protein-coupled estrogen receptor regulates mammary tumorigenesis and metastasis. Mol. Cancer Res. 12:1644–54
    [Google Scholar]
  130. 130.
    Ignatov A, Ignatov T, Roessner A, Costa SD, Kalinski T. 2010. Role of GPR30 in the mechanisms of tamoxifen resistance in breast cancer MCF-7 cells. Breast Cancer Res. Treat. 123:87–96
    [Google Scholar]
  131. 131.
    Li Y, Chen Y, Zhu ZX, Liu XH, Yang L et al. 2013. 4-Hydroxytamoxifen-stimulated processing of cyclin E is mediated via G protein-coupled receptor 30 (GPR30) and accompanied by enhanced migration in MCF-7 breast cancer cells. Toxicology 309:61–65
    [Google Scholar]
  132. 132.
    Catalano S, Giordano C, Panza S, Chemi F, Bonofiglio D et al. 2014. Tamoxifen through GPER upregulates aromatase expression: a novel mechanism sustaining tamoxifen-resistant breast cancer cell growth. Breast Cancer Res. Treat. 146:273–85
    [Google Scholar]
  133. 133.
    Liu Y, Du FY, Chen W, Fu PF, Yao MY, Zheng SS. 2015. G15 sensitizes epithelial breast cancer cells to doxorubicin by preventing epithelial-mesenchymal transition through inhibition of GPR30. Am. J. Transl. Res. 7:967–75
    [Google Scholar]
  134. 134.
    Wolfson B, Padget MR, Schlom J, Hodge JW. 2021. Exploiting off-target effects of estrogen deprivation to sensitize estrogen receptor negative breast cancer to immune killing. J. Immunother. Cancer 9:e002258
    [Google Scholar]
  135. 135.
    Wei T, Chen W, Wen L, Zhang J, Zhang Q et al. 2016. G protein-coupled estrogen receptor deficiency accelerates liver tumorigenesis by enhancing inflammation and fibrosis. Cancer Lett. 382:195–202
    [Google Scholar]
  136. 136.
    Luo H, Yang G, Yu T, Luo S, Wu C et al. 2014. GPER-mediated proliferation and estradiol production in breast cancer-associated fibroblasts. Endocr. Relat. Cancer 21:355–69
    [Google Scholar]
  137. 137.
    Yang K, Yao Y. 2019. Mechanism of GPER promoting proliferation, migration and invasion of triple-negative breast cancer cells through CAF. Am. J. Transl. Res. 11:5858–68
    [Google Scholar]
  138. 138.
    Madeo A, Maggiolini M. 2010. Nuclear alternate estrogen receptor GPR30 mediates 17β-estradiol-induced gene expression and migration in breast cancer-associated fibroblasts. Cancer Res 70:6036–46
    [Google Scholar]
  139. 139.
    Ren J, Guo H, Wu H, Tian T, Dong D et al. 2015. GPER in CAFs regulates hypoxia-driven breast cancer invasion in a CTGF-dependent manner. Oncol. Rep. 33:1929–37
    [Google Scholar]
  140. 140.
    Santolla MF, Vivacqua A, Lappano R, Rigiracciolo DC, Cirillo F et al. 2019. GPER mediates a feedforward FGF2/FGFR1 paracrine activation coupling CAFs to cancer cells toward breast tumor progression. Cells 8:223
    [Google Scholar]
  141. 141.
    De Marco P, Lappano R, De Francesco EM, Cirillo F, Pupo M et al. 2016. GPER signalling in both cancer-associated fibroblasts and breast cancer cells mediates a feedforward IL1β/IL1R1 response. Sci. Rep. 6:24354
    [Google Scholar]
  142. 142.
    Bussard KM, Mutkus L, Stumpf K, Gomez-Manzano C, Marini FC. 2016. Tumor-associated stromal cells as key contributors to the tumor microenvironment. Breast Cancer Res 18:84
    [Google Scholar]
  143. 143.
    Divella R, De Luca R, Abbate I, Naglieri E, Daniele A 2016. Obesity and cancer: the role of adipose tissue and adipo-cytokines-induced chronic inflammation. J. Cancer 7:2346–59
    [Google Scholar]
  144. 144.
    Sharma G, Hu C, Staquicini DI, Brigman JL, Liu M et al. 2020. Preclinical efficacy of the GPER-selective agonist G-1 in mouse models of obesity and diabetes. Sci. Transl. Med. 12:aau5956
    [Google Scholar]
  145. 145.
    Notas G, Kampa M, Castanas E. 2020. G protein-coupled estrogen receptor in immune cells and its role in immune-related diseases. Front. Endocrinol. 11:579420
    [Google Scholar]
  146. 146.
    De Francesco EM, Rocca C, Scavello F, Amelio D, Pasqua T et al. 2017. Protective role of GPER agonist G-1 on cardiotoxicity induced by doxorubicin. J. Cell. Physiol. 232:1640–49
    [Google Scholar]
  147. 147.
    Liu C, Liao Y, Fan S, Fu X, Xiong J et al. 2019. G-protein-coupled estrogen receptor antagonist G15 decreases estrogen-induced development of non-small cell lung cancer. Oncol. Res. 27:283–92
    [Google Scholar]
  148. 148.
    Shen Y, Li C, Zhou L, Huang JA. 2021. G protein-coupled oestrogen receptor promotes cell growth of non-small cell lung cancer cells via YAP1/QKI/circNOTCH1/m6A methylated NOTCH1 signalling. J. Cell Mol. Med. 25:284–96
    [Google Scholar]
  149. 149.
    Ribeiro MPC, Santos AE, Custodio JBA. 2017. The activation of the G protein-coupled estrogen receptor (GPER) inhibits the proliferation of mouse melanoma K1735-M2 cells. Chem. Biol. Interact. 277:176–84
    [Google Scholar]
  150. 150.
    Barton M, Meyer MR. 2020. Heart failure with preserved ejection fraction in women: new clues to causes and treatment. JACC Basic Transl. Sci. 5:296–99
    [Google Scholar]
  151. 151.
    Meyer MR, Barton M. 2016. Estrogens and coronary artery disease: new clinical perspectives. Adv. Pharmacol. 77:307–60
    [Google Scholar]
  152. 152.
    Feldman RD, Limbird LE. 2017. GPER (GPR30): a nongenomic receptor (GPCR) for steroid hormones with implications for cardiovascular disease and cancer. Annu. Rev. Pharmacol. Toxicol. 57:567–84
    [Google Scholar]
  153. 153.
    Haas E, Bhattacharya I, Brailoiu E, Damjanovic M, Brailoiu GC et al. 2009. Regulatory role of G protein-coupled estrogen receptor for vascular function and obesity. Circ. Res. 104:288–91
    [Google Scholar]
  154. 154.
    Meyer MR, Baretella O, Prossnitz ER, Barton M. 2010. Dilation of epicardial coronary arteries by the G protein-coupled estrogen receptor agonists G-1 and ICI 182,780. Pharmacology 86:58–64
    [Google Scholar]
  155. 155.
    Lindsey SH, Liu L, Chappell MC. 2014. Vasodilation by GPER in mesenteric arteries involves both endothelial nitric oxide and smooth muscle cAMP signaling. Steroids 81:99–102
    [Google Scholar]
  156. 156.
    Jessup JA, Lindsey SH, Wang H, Chappell MC, Groban L. 2010. Attenuation of salt-induced cardiac remodeling and diastolic dysfunction by the GPER agonist G-1 in female mRen2.Lewis rats. PLOS ONE 5:e15433
    [Google Scholar]
  157. 157.
    Wang H, Jessup JA, Lin MS, Chagas C, Lindsey SH, Groban L. 2012. Activation of GPR30 attenuates diastolic dysfunction and left ventricle remodelling in oophorectomized mRen2.Lewis rats. Cardiovasc. Res. 94:96–104
    [Google Scholar]
  158. 158.
    Alencar AK, da Silva JS, Lin M, Silva AM, Sun X et al. 2017. Effect of age, estrogen status, and late-life GPER activation on cardiac structure and function in the Fischer344xBrown Norway female rat. J. Gerontol. A Biol. Sci. Med. Sci. 72:152–62
    [Google Scholar]
  159. 159.
    Ogola BO, Zimmerman MA, Sure VN, Gentry KM, Duong JL et al. 2019. G protein-coupled estrogen receptor protects from angiotensin II-induced increases in pulse pressure and oxidative stress. Front. Endocrinol. 10:586
    [Google Scholar]
  160. 160.
    Davis GK, Newsome AD, Cole AB, Ojeda NB, Alexander BT. 2019. Chronic estrogen supplementation prevents the increase in blood pressure in female intrauterine growth-restricted offspring at 12 months of age. Hypertension 73:1128–36
    [Google Scholar]
  161. 161.
    Meyer MR, Fredette NC, Daniel C, Sharma G, Amann K et al. 2016. Obligatory role for GPER in cardiovascular aging and disease. Sci. Signal. 9:ra105
    [Google Scholar]
  162. 162.
    Azizian H, Khaksari M, Asadi Karam G, Esmailidehaj M, Farhadi Z 2018. Cardioprotective and anti-inflammatory effects of G-protein coupled receptor 30 (GPR30) on postmenopausal type 2 diabetic rats. Biomed. Pharmacother. 108:153–64
    [Google Scholar]
  163. 163.
    Alencar AKN, Montes GC, Costa DG, Mendes LVP, Silva AMS et al. 2018. Cardioprotection induced by activation of GPER in ovariectomized rats with pulmonary hypertension. J. Gerontol. A Biol. Sci. Med. Sci. 73:1158–66
    [Google Scholar]
  164. 164.
    Alencar AK, Montes GC, Montagnoli T, Silva AM, Martinez ST et al. 2017. Activation of GPER ameliorates experimental pulmonary hypertension in male rats. Eur. J. Pharm. Sci. 97:208–17
    [Google Scholar]
  165. 165.
    Meyer MR, Fredette NC, Howard TA, Hu C, Ramesh C et al. 2014. G protein-coupled estrogen receptor protects from atherosclerosis. Sci. Rep. 4:7564
    [Google Scholar]
  166. 166.
    Jehle J, Becher U, Nöthel M, Adler S, Groll K et al. 2021. G protein-coupled estrogen receptor GPR30 exerts vasoprotective effects in apolipoprotein E-deficient mice. Arch. Med. Sci. https://doi.org/10.5114/aoms/127200
    [Crossref] [Google Scholar]
  167. 167.
    Li F, Yu X, Szynkarski CK, Meng C, Zhou B et al. 2013. Activation of GPER induces differentiation and inhibition of coronary artery smooth muscle cell proliferation. PLOS ONE 8:e64771
    [Google Scholar]
  168. 168.
    Vanhoutte PM, Shimokawa H, Feletou M, Tang EH. 2017. Endothelial dysfunction and vascular disease—a 30th anniversary update. Acta Physiol. 219:22–96
    [Google Scholar]
  169. 169.
    Regitz-Zagrosek V, Lehmkuhl E, Weickert MO 2006. Gender differences in the metabolic syndrome and their role for cardiovascular disease. Clin. Res. Cardiol. 95:136–47
    [Google Scholar]
  170. 170.
    Meyer MR, Clegg DJ, Prossnitz ER, Barton M. 2011. Obesity, insulin resistance and diabetes: sex differences and role of oestrogen receptors. Acta Physiol. 203:259–69
    [Google Scholar]
  171. 171.
    Kozakowski J, Gietka-Czernel M, Leszczynska D, Majos A. 2017. Obesity in menopause—our negligence or an unfortunate inevitability?. Prz. Menopauzalny 16:61–65
    [Google Scholar]
  172. 172.
    Nakhjavani M, Imani M, Larry M, Aghajani-Nargesi A, Morteza A, Esteghamati A. 2014. Metabolic syndrome in premenopausal and postmenopausal women with type 2 diabetes: loss of protective effects of premenopausal status. J. Diabetes Metab. Disord. 13:102
    [Google Scholar]
  173. 173.
    Stubbins RE, Najjar K, Holcomb VB, Hong J, Nunez NP. 2012. Oestrogen alters adipocyte biology and protects female mice from adipocyte inflammation and insulin resistance. Diabetes Obes. Metab. 14:58–66
    [Google Scholar]
  174. 174.
    Stubbins RE, Holcomb VB, Hong J, Nunez NP. 2012. Estrogen modulates abdominal adiposity and protects female mice from obesity and impaired glucose tolerance. Eur. J. Nutr. 51:861–70
    [Google Scholar]
  175. 175.
    Gurney EP, Nachtigall MJ, Nachtigall LE, Naftolin F. 2014. The Women's Health Initiative trial and related studies: 10 years later: a clinician's view. J. Steroid Biochem. Mol. Biol. 142:4–11
    [Google Scholar]
  176. 176.
    Bonds DE, Lasser N, Qi L, Brzyski R, Caan B et al. 2006. The effect of conjugated equine oestrogen on diabetes incidence: the Women's Health Initiative randomised trial. Diabetologia 49:459–68
    [Google Scholar]
  177. 177.
    Sharma G, Hu C, Brigman JL, Zhu G, Hathaway HJ, Prossnitz ER. 2013. GPER deficiency in male mice results in insulin resistance, dyslipidemia, and a proinflammatory state. Endocrinology 154:4136–45
    [Google Scholar]
  178. 178.
    Martensson UE, Salehi SA, Windahl S, Gomez MF, Sward K et al. 2009. Deletion of the G protein-coupled receptor 30 impairs glucose tolerance, reduces bone growth, increases blood pressure, and eliminates estradiol-stimulated insulin release in female mice. Endocrinology 150:687–98
    [Google Scholar]
  179. 179.
    Davis KE, Carstens EJ, Irani BG, Gent LM, Hahner LM, Clegg DJ. 2014. Sexually dimorphic role of G protein-coupled estrogen receptor (GPER) in modulating energy homeostasis. Horm. Behav. 66:196–207
    [Google Scholar]
  180. 180.
    Meoli L, Isensee J, Zazzu V, Nabzdyk CS, Soewarto D et al. 2014. Sex- and age-dependent effects of Gpr30 genetic deletion on the metabolic and cardiovascular profiles of diet-induced obese mice. Gene 540:210–16
    [Google Scholar]
  181. 181.
    Butler MJ, Hildebrandt RP, Eckel LA. 2018. Selective activation of estrogen receptors, ERα and GPER-1, rapidly decreases food intake in female rats. Horm. Behav. 103:54–61
    [Google Scholar]
  182. 182.
    Jablonski EM, McConnell NA, Hughes FM Jr., Huet-Hudson YM. 2003. Estrogen regulation of aquaporins in the mouse uterus: potential roles in uterine water movement. Biol. Reprod. 69:51481–87
    [Google Scholar]
  183. 183.
    Liu S, Le May C, Wong WP, Ward RD, Clegg DJ et al. 2009. Importance of extranuclear estrogen receptor-α and membrane G protein-coupled estrogen receptor in pancreatic islet survival. Diabetes 58:2292–302
    [Google Scholar]
  184. 184.
    Sharma G, Prossnitz ER. 2011. Mechanisms of estradiol-induced insulin secretion by the G protein-coupled estrogen receptor GPR30/GPER in pancreatic β-cells. Endocrinology 152:3030–39
    [Google Scholar]
  185. 185.
    Balhuizen A, Kumar R, Amisten S, Lundquist I, Salehi A. 2010. Activation of G protein-coupled receptor 30 modulates hormone secretion and counteracts cytokine-induced apoptosis in pancreatic islets of female mice. Mol. Cell. Endocrinol. 320:16–24
    [Google Scholar]
  186. 186.
    Kumar R, Balhuizen A, Amisten S, Lundquist I, Salehi A. 2011. Insulinotropic and antidiabetic effects of 17β-estradiol and the GPR30 agonist G-1 on human pancreatic islets. Endocrinology 152:2568–79
    [Google Scholar]
  187. 187.
    Sun M, Xie HF, Tang Y, Lin SQ, Li JM et al. 2017. G protein-coupled estrogen receptor enhances melanogenesis via cAMP-protein kinase (PKA) by upregulating microphthalmia-related transcription factor-tyrosinase in melanoma. J. Steroid Biochem. Mol. Biol. 165:236–46
    [Google Scholar]
  188. 188.
    Natale CA, Duperret EK, Zhang J, Sadeghi R, Dahal A et al. 2016. Sex steroids regulate skin pigmentation through nonclassical membrane-bound receptors. eLife 5:e15104
    [Google Scholar]
  189. 189.
    Castleman MJ, Pokhrel S, Triplett KD, Kusewitt DF, Elmore BO et al. 2018. Innate sex bias of Staphylococcus aureus skin infection is driven by α-hemolysin. J. Immunol. 200:657–68
    [Google Scholar]
  190. 190.
    Brandenburg JS, Clark RM, Coffman B, Sharma G, Hathaway HJ et al. 2020. Sex differences in murine myocutaneous flap revascularization. Wound Repair Regen. 28:470–79
    [Google Scholar]
  191. 191.
    Toutain CE, Brouchet L, Raymond-Letron I, Vicendo P, Berges H et al. 2009. Prevention of skin flap necrosis by estradiol involves reperfusion of a protected vascular network. Circ. Res. 104:245–54
    [Google Scholar]
  192. 192.
    Farruggio S, Cocomazzi G, Marotta P, Romito R, Surico D et al. 2020. Genistein and 17β-estradiol protect hepatocytes from fatty degeneration by mechanisms involving mitochondria, inflammasome and kinases activation. Cell. Physiol. Biochem. 54:401–16
    [Google Scholar]
  193. 193.
    de Bari O, Wang TY, Liu M, Portincasa P, Wang DQ. 2015. Estrogen induces two distinct cholesterol crystallization pathways by activating ERα and GPR30 in female mice. J. Lipid Res. 56:1691–700
    [Google Scholar]
  194. 194.
    Wang HH, de Bari O, Arnatt CK, Liu M, Portincasa P, Wang DQ. 2020. Activation of estrogen receptor G protein–coupled receptor 30 enhances cholesterol cholelithogenesis in female mice. Hepatology 72:2077–89
    [Google Scholar]
  195. 195.
    Zielinska M, Fichna J, Bashashati M, Habibi S, Sibaev A et al. 2017. G protein-coupled estrogen receptor and estrogen receptor ligands regulate colonic motility and visceral pain. Neurogastroenterol. Motil. 29:e13025
    [Google Scholar]
  196. 196.
    Li Y, Xu J, Jiang F, Jiang Z, Liu C et al. 2016. G protein-coupled estrogen receptor is involved in modulating colonic motor function via nitric oxide release in C57BL/6 female mice. Neurogastroenterol. Motil. 28:432–42
    [Google Scholar]
  197. 197.
    Chai S, Liu K, Feng W, Liu T, Wang Q et al. 2019. Activation of G protein-coupled estrogen receptor protects intestine from ischemia/reperfusion injury in mice by protecting the crypt cell proliferation. Clin. Sci. 133:449–64
    [Google Scholar]
  198. 198.
    Jacenik D, Zielinska M, Mokrowiecka A, Michlewska S, Malecka-Panas E et al. 2019. G protein-coupled estrogen receptor mediates anti-inflammatory action in Crohn's disease. Sci. Rep. 9:6749
    [Google Scholar]
  199. 199.
    Wang Q, Li Z, Liu K, Liu J, Chai S et al. 2021. Activation of the G protein-coupled estrogen receptor prevented the development of acute colitis by protecting the crypt cell. J. Pharmacol. Exp. Ther. 376:281–93
    [Google Scholar]
  200. 200.
    Cao J, Lu M, Yan W, Li L, Ma H 2021. Dehydroepiandrosterone alleviates intestinal inflammatory damage via GPR30-mediated Nrf2 activation and NLRP3 inflammasome inhibition in colitis mice. Free Radic. . Biol. Med. 172:386–402
    [Google Scholar]
  201. 201.
    Wlodarczyk M, Sobolewska-Wlodarczyk A, Cygankiewicz AI, Jacenik D, Piechota-Polanczyk A et al. 2017. G protein-coupled receptor 30 (GPR30) expression pattern in inflammatory bowel disease patients suggests its key role in the inflammatory process. A preliminary study. J. Gastrointestin. Liver Dis. 26:29–35
    [Google Scholar]
  202. 202.
    Qin B, Dong L, Guo X, Jiang J, He Y et al. 2014. Expression of G protein-coupled estrogen receptor in irritable bowel syndrome and its clinical significance. Int. J. Clin. Exp. Pathol. 7:2238–46
    [Google Scholar]
  203. 203.
    Meyer MR, Rosemann T, Barton M, Prossnitz ER. 2017. GPER mediates functional endothelial aging in renal arteries. Pharmacology 100:188–93
    [Google Scholar]
  204. 204.
    Chang Y, Han Z, Zhang Y, Zhou Y, Feng Z et al. 2019. G protein-coupled estrogen receptor activation improves contractile and diastolic functions in rat renal interlobular artery to protect against renal ischemia reperfusion injury. Biomed. Pharmacother. 112:108666
    [Google Scholar]
  205. 205.
    Hofmeister MV, Damkier HH, Christensen BM, Olde B, Leeb-Lundberg LMF et al. 2012. 17β-Estradiol induces nongenomic effects in renal intercalated cells through G protein-coupled estrogen receptor 1. Am. J. Physiol. Ren. Physiol. 302:F358–68
    [Google Scholar]
  206. 206.
    Gohar EY, Daugherty EM, Aceves JO, Sedaka R, Obi IE et al. 2020. Evidence for G-protein-coupled estrogen receptor as a pronatriuretic factor. J. Am. Heart Assoc. 9:e015110
    [Google Scholar]
  207. 207.
    Qiao C, Ye W, Li S, Wang H, Ding X. 2018. Icariin modulates mitochondrial function and apoptosis in high glucose–induced glomerular podocytes through G protein–coupled estrogen receptors. Mol. Cell. Endocrinol. 473:146–55
    [Google Scholar]
  208. 208.
    Lindsey SH, Yamaleyeva LM, Brosnihan KB, Gallagher PE, Chappell MC. 2011. Estrogen receptor GPR30 reduces oxidative stress and proteinuria in the salt-sensitive female mRen2.Lewis rat. Hypertension 58:665–71
    [Google Scholar]
  209. 209.
    Gohar EY, Almutlaq RN, Daugherty EM, Butt MK, Jin C et al. 2021. Activation of G protein-coupled estrogen receptor 1 ameliorates proximal tubular injury and proteinuria in Dahl salt-sensitive female rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 320:R297–306
    [Google Scholar]
  210. 210.
    Kurt AH, Bozkus F, Uremis N, Uremis MM. 2016. The protective role of G protein-coupled estrogen receptor 1 (GPER-1) on methotrexate-induced nephrotoxicity in human renal epithelium cells. Ren. Fail. 38:686–92
    [Google Scholar]
  211. 211.
    Meyer MR, Daniel C, Fredette NC, Amann K, Barton M, Prossnitz ER. 2015. Deletion of GPER protects from age-related renovascular dysfunction and tubulo-interstitial injury. Hypertension 66:Suppl. 1AP607
    [Google Scholar]
  212. 212.
    Wang C, Dehghani B, Li Y, Kaler LJ, Proctor T et al. 2009. Membrane estrogen receptor regulates experimental autoimmune encephalomyelitis through up-regulation of programmed death 1. J. Immunol. 182:3294–303
    [Google Scholar]
  213. 213.
    Itoga M, Konno Y, Moritoki Y, Saito Y, Ito W et al. 2015. G-protein-coupled estrogen receptor agonist suppresses airway inflammation in a mouse model of asthma through IL-10. PLOS ONE 10:e0123210
    [Google Scholar]
  214. 214.
    Jacenik D, Beswick EJ, Krajewska WM, Prossnitz ER. 2019. G protein-coupled estrogen receptor in colon function, immune regulation and carcinogenesis. World J. Gastroenterol. 25:4092–104
    [Google Scholar]
  215. 215.
    Du ZR, Feng XQ, Li N, Qu JX, Feng L et al. 2018. G protein-coupled estrogen receptor is involved in the anti-inflammatory effects of genistein in microglia. Phytomedicine 43:11–20
    [Google Scholar]
  216. 216.
    Guan J, Yang B, Fan Y, Zhang J. 2017. GPER agonist G1 attenuates neuroinflammation and dopaminergic neurodegeneration in Parkinson disease. Neuroimmunomodulation 24:60–66
    [Google Scholar]
  217. 217.
    Blasko E, Haskell CA, Leung S, Gualtieri G, Halks-Miller M et al. 2009. Beneficial role of the GPR30 agonist G-1 in an animal model of multiple sclerosis. J. Neuroimmunol. 214:67–77
    [Google Scholar]
  218. 218.
    Roque C, Mendes-Oliveira J, Duarte-Chendo C, Baltazar G. 2019. The role of G protein-coupled estrogen receptor 1 on neurological disorders. Front. Neuroendocrinol. 55:100786
    [Google Scholar]
  219. 219.
    Brunsing RL, Owens KS, Prossnitz ER. 2013. The G protein-coupled estrogen receptor (GPER) agonist G-1 expands the regulatory T-cell population under TH17-polarizing conditions. J. Immunother. 36:190–96
    [Google Scholar]
  220. 220.
    Brunsing RL, Prossnitz ER. 2011. Induction of interleukin-10 in the T helper type 17 effector population by the G protein coupled estrogen receptor (GPER) agonist G-1. Immunology 134:93–106
    [Google Scholar]
  221. 221.
    Harding AT, Goff MA, Froggatt HM, Lim JK, Heaton NS. 2021. GPER1 is required to protect fetal health from maternal inflammation. Science 371:271–76
    [Google Scholar]
  222. 222.
    Kubota T, Matsumoto H, Kirino Y. 2016. Ameliorative effect of membrane-associated estrogen receptor G protein coupled receptor 30 activation on object recognition memory in mouse models of Alzheimer's disease. J. Pharmacol. Sci. 131:219–22
    [Google Scholar]
  223. 223.
    Wang ZF, Pan ZY, Xu CS, Li ZQ. 2017. Activation of G-protein coupled estrogen receptor 1 improves early-onset cognitive impairment via PI3K/Akt pathway in rats with traumatic brain injury. Biochem. Biophys. Res. Commun. 482:948–53
    [Google Scholar]
  224. 224.
    Amirkhosravi L, Khaksari M, Soltani Z, Esmaeili-Mahani S, Asadi Karam G, Hoseini M 2021. E2-BSA and G1 exert neuroprotective effects and improve behavioral abnormalities following traumatic brain injury: the role of classic and non-classic estrogen receptors. Brain Res. 1750:147168
    [Google Scholar]
  225. 225.
    Bai N, Zhang Q, Zhang W, Liu B, Yang F et al. 2020. G-protein-coupled estrogen receptor activation upregulates interleukin-1 receptor antagonist in the hippocampus after global cerebral ischemia: implications for neuronal self-defense. J. Neuroinflamm. 17:45
    [Google Scholar]
  226. 226.
    Prossnitz ER. 2012. G protein-coupled estrogen receptor: a new therapeutic target in stroke and traumatic brain/spinal cord injury?. Crit. Care Med. 40:3323–25
    [Google Scholar]
  227. 227.
    Hu R, Sun H, Zhang Q, Chen J, Wu N et al. 2012. G-protein coupled estrogen receptor 1 mediated estrogenic neuroprotection against spinal cord injury. Crit. Care Med. 40:3230–37
    [Google Scholar]
  228. 228.
    Lebesgue D, Traub M, De Butte-Smith M, Chen C, Zukin RS et al. 2010. Acute administration of non-classical estrogen receptor agonists attenuates ischemia-induced hippocampal neuron loss in middle-aged female rats. PLOS ONE 5:e8642
    [Google Scholar]
  229. 229.
    Zhang Z, Qin P, Deng Y, Ma Z, Guo H et al. 2018. The novel estrogenic receptor GPR30 alleviates ischemic injury by inhibiting TLR4-mediated microglial inflammation. J. Neuroinflamm. 15:206
    [Google Scholar]
  230. 230.
    Lu D, Qu Y, Shi F, Feng D, Tao K et al. 2016. Activation of G protein-coupled estrogen receptor 1 (GPER-1) ameliorates blood-brain barrier permeability after global cerebral ischemia in ovariectomized rats. Biochem. Biophys. Res. Commun. 477:209–14
    [Google Scholar]
  231. 231.
    Murata T, Dietrich HH, Xiang C, Dacey RG Jr. 2013. G protein-coupled estrogen receptor agonist improves cerebral microvascular function after hypoxia/reoxygenation injury in male and female rats. Stroke 44:779–85
    [Google Scholar]
  232. 232.
    Zhang B, Subramanian S, Dziennis S, Jia J, Uchida M et al. 2010. Estradiol and G1 reduce infarct size and improve immunosuppression after experimental stroke. J. Immunol. 184:4087–94
    [Google Scholar]
  233. 233.
    Han ZW, Chang YC, Zhou Y, Zhang H, Chen L et al. 2019. GPER agonist G1 suppresses neuronal apoptosis mediated by endoplasmic reticulum stress after cerebral ischemia/reperfusion injury. Neural Regen. Res. 14:1221–29
    [Google Scholar]
  234. 234.
    Wang XS, Yue J, Hu LN, Tian Z, Zhang K et al. 2020. Activation of G protein-coupled receptor 30 protects neurons by regulating autophagy in astrocytes. Glia 68:27–43
    [Google Scholar]
  235. 235.
    Wang J, Li HY, Shen SY, Zhang JR, Liang LF et al. 2021. The antidepressant and anxiolytic effect of GPER on translocator protein (TSPO) via protein kinase a (PKA) signaling in menopausal female rats. J. Steroid Biochem. Mol. Biol. 207:105807
    [Google Scholar]
  236. 236.
    Zheng Y, Wu M, Gao T, Meng L, Ding X et al. 2020. GPER-deficient rats exhibit lower serum corticosterone level and increased anxiety-like behavior. Neural Plast. 2020:8866187
    [Google Scholar]
  237. 237.
    Yang S, Yin Z, Zhu G. 2021. A review of the functions of G protein-coupled estrogen receptor 1 in vascular and neurological aging. Eur. J. Pharmacol. 908:174363
    [Google Scholar]
  238. 238.
    Oliveira de Souza L, Barroso Machado GD, Souza de Freitas B, Camargo Rodrigues SL, Severo MPA et al. 2021. The G protein-coupled estrogen receptor (GPER) regulates recognition and aversively-motivated memory in male rats. Neurobiol. Learn. Mem. 184:107499
    [Google Scholar]
  239. 239.
    Zhang C, Liu Q, Yu CY, Wang F, Shao Y et al. 2020. G protein-coupled estrogen receptor 1 knockout deteriorates MK-801-induced learning and memory impairment in mice. Front. Behav. Neurosci. 14:157
    [Google Scholar]
  240. 240.
    Barroso Machado GD, Souza de Freitas B, Zanetti Florian L, Tavares Monteiro R, Gus H, Schroder N 2019. G protein-coupled oestrogen receptor stimulation ameliorates iron- and ovariectomy-induced memory impairments through the cAMP/PKA/CREB signalling pathway. J. Neuroendocrinol. 31:e12780
    [Google Scholar]
  241. 241.
    Dominguez-Ordonez R, Garcia-Juarez M, Lima-Hernandez FJ, Gomora-Arrati P, Dominguez-Salazar E et al. 2018. Lordosis facilitated by GPER-1 receptor activation involves GnRH-1, progestin and estrogen receptors in estrogen-primed rats. Horm. Behav. 98:77–87
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-031122-121944
Loading
/content/journals/10.1146/annurev-pharmtox-031122-121944
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error