1932

Abstract

The fibroblast growth factor (FGF) family, which comprises 22 structurally related proteins, plays diverse roles in cell proliferation, differentiation, development, and metabolism. Among them, two classical members (FGF1 and FGF4) and two endocrine members (FGF19 and FGF21) are important regulators of whole-body energy homeostasis, glucose/lipid metabolism, and insulin sensitivity. Preclinical studies have consistently demonstrated the therapeutic benefits of these FGFs for the treatment of obesity, diabetes, dyslipidemia, and nonalcoholic steatohepatitis (NASH). Several genetically engineered FGF19 and FGF21 analogs with improved pharmacodynamic and pharmacokinetic properties have been developed and progressed into various stages of clinical trials. These FGF analogs are effective in alleviating hepatic steatosis, steatohepatitis, and liver fibrosis in biopsy-confirmed NASH patients, whereas their antidiabetic and antiobesity effects are mildand vary greatly in different clinical trials. This review summarizes recent advances in biopharmaceutical development of FGF-based therapies against obesity-related metabolic complications, highlights major challenges in clinical implementation, and discusses possible strategies to overcome these hurdles.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-032322-093904
2023-01-20
2024-10-04
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/63/1/annurev-pharmtox-032322-093904.html?itemId=/content/journals/10.1146/annurev-pharmtox-032322-093904&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Hruby A, Hu FB. 2015. The epidemiology of obesity: a big picture. Pharmacoeconomics 33:673–89
    [Google Scholar]
  2. 2.
    Kyrou I, Randeva HS, Tsigos C, Kaltsas G, Weickert MO. 2022. Clinical Problems Caused by Obesity South Dartmouth, MA: MDText.com, Inc.
    [Google Scholar]
  3. 3.
    Onakpoya IJ, Heneghan CJ, Aronson JK. 2016. Post-marketing withdrawal of anti-obesity medicinal products because of adverse drug reactions: a systematic review. BMC Med 14:191
    [Google Scholar]
  4. 4.
    Chaudhury A, Duvoor C, Reddy Dendi VS, Kraleti S, Chada A et al. 2017. Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus management. Front. Endocrinol. 8:6
    [Google Scholar]
  5. 5.
    Attia SL, Softic S, Mouzaki M. 2021. Evolving role for pharmacotherapy in NAFLD/NASH. Clin. Transl. Sci. 14:11–19
    [Google Scholar]
  6. 6.
    Beenken A, Mohammadi M. 2009. The FGF family: biology, pathophysiology and therapy. Nat. Rev. Drug Discov. 8:235–53
    [Google Scholar]
  7. 7.
    Itoh N, Ornitz DM. 2004. Evolution of the Fgf and Fgfr gene families. Trends Genet 20:563–69
    [Google Scholar]
  8. 8.
    Degirolamo C, Sabba C, Moschetta A. 2016. Therapeutic potential of the endocrine fibroblast growth factors FGF19, FGF21 and FGF23. Nat. Rev. Drug Discov. 15:51–69
    [Google Scholar]
  9. 9.
    Touat M, Ileana E, Postel-Vinay S, Andre F, Soria JC 2015. Targeting FGFR signaling in cancer. Clin. Cancer Res. 21:2684–94
    [Google Scholar]
  10. 10.
    Zhu DL, Tuo XM, Rong Y, Zhang K, Guo Y. 2020. Fibroblast growth factor receptor signaling as therapeutic targets in female reproductive system cancers. J. Cancer 11:7264–75
    [Google Scholar]
  11. 11.
    Phan P, Saikia BB, Sonnaila S, Agrawal S, Alraawi Z et al. 2021. The saga of endocrine FGFs. Cells 10:2418
    [Google Scholar]
  12. 12.
    Martin A, David V, Quarles LD. 2012. Regulation and function of the FGF23/klotho endocrine pathways. Physiol. Rev. 92:131–55
    [Google Scholar]
  13. 13.
    Insogna KL, Briot K, Imel EA, Kamenicky P, Ruppe MD et al. 2018. A randomized, double-blind, placebo-controlled, phase 3 trial evaluating the efficacy of burosumab, an anti-FGF23 antibody, in adults with X-linked hypophosphatemia: week 24 primary analysis. J. Bone Miner. Res. 33:1383–93
    [Google Scholar]
  14. 14.
    Geng L, Lam KSL, Xu A. 2020. The therapeutic potential of FGF21 in metabolic diseases: from bench to clinic. Nat. Rev. Endocrinol. 16:654–67
    [Google Scholar]
  15. 15.
    Gadaleta RM, Moschetta A. 2019. Metabolic messengers: fibroblast growth factor 15/19. Nat. Metab. 1:588–94
    [Google Scholar]
  16. 16.
    Suh JM, Jonker JW, Ahmadian M, Goetz R, Lackey D et al. 2014. Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer. Nature 513:436–39
    [Google Scholar]
  17. 17.
    Sancar G, Liu S, Gasser E, Alvarez JG, Moutos C et al. 2022. FGF1 and insulin control lipolysis by convergent pathways. Cell Metab 34:171–83.e6
    [Google Scholar]
  18. 18.
    Ying L, Wang L, Guo K, Hou Y, Li N et al. 2021. Paracrine FGFs target skeletal muscle to exert potent anti-hyperglycemic effects. Nat. Commun. 12:7256
    [Google Scholar]
  19. 19.
    Song L, Wang L, Hou Y, Zhou J, Chen C et al. 2022. FGF4 protects the liver from non-alcoholic fatty liver disease by activating the AMPK-Caspase 6 signal axis. Hepatology 76:110520
    [Google Scholar]
  20. 20.
    Somm E, Jornayvaz FR. 2018. Fibroblast growth factor 15/19: from basic functions to therapeutic perspectives. Endocr. Rev. 39:960–89
    [Google Scholar]
  21. 21.
    Zweers SJ, Booij KA, Komuta M, Roskams T, Gouma DJ et al. 2012. The human gallbladder secretes fibroblast growth factor 19 into bile: towards defining the role of fibroblast growth factor 19 in the enterobiliary tract. Hepatology 55:575–83
    [Google Scholar]
  22. 22.
    Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL et al. 2005. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2:217–25
    [Google Scholar]
  23. 23.
    Schmidt DR, Holmstrom SR, Fon Tacer K, Bookout AL, Kliewer SA, Mangelsdorf DJ 2010. Regulation of bile acid synthesis by fat-soluble vitamins A and D. J. Biol. Chem. 285:14486–94
    [Google Scholar]
  24. 24.
    Wistuba W, Gnewuch C, Liebisch G, Schmitz G, Langmann T. 2007. Lithocholic acid induction of the FGF19 promoter in intestinal cells is mediated by PXR. World J. Gastroenterol. 13:4230–35
    [Google Scholar]
  25. 25.
    Vergnes L, Lee JM, Chin RG, Auwerx J, Reue K. 2013. Diet1 functions in the FGF15/19 enterohepatic signaling axis to modulate bile acid and lipid levels. Cell Metab 17:916–28
    [Google Scholar]
  26. 26.
    Nishimura T, Utsunomiya Y, Hoshikawa M, Ohuchi H, Itoh N. 1999. Structure and expression of a novel human FGF, FGF-19, expressed in the fetal brain. Biochim. Biophys. Acta 1444:148–51
    [Google Scholar]
  27. 27.
    Ito S, Fujimori T, Furuya A, Satoh J, Nabeshima Y, Nabeshima Y-I. 2005. Impaired negative feedback suppression of bile acid synthesis in mice lacking βKlotho. J. Clin. Investig. 115:2202–8
    [Google Scholar]
  28. 28.
    Yu C, Wang F, Kan M, Jin C, Jones RB et al. 2000. Elevated cholesterol metabolism and bile acid synthesis in mice lacking membrane tyrosine kinase receptor FGFR4. J. Biol. Chem. 275:15482–89
    [Google Scholar]
  29. 29.
    Yu C, Wang F, Jin C, Huang X, McKeehan WL. 2005. Independent repression of bile acid synthesis and activation of c-Jun N-terminal kinase (JNK) by activated hepatocyte fibroblast growth factor receptor 4 (FGFR4) and bile acids. J. Biol. Chem. 280:17707–14
    [Google Scholar]
  30. 30.
    Struik D, Dommerholt MB, Jonker JW. 2019. Fibroblast growth factors in control of lipid metabolism: from biological function to clinical application. Curr. Opin. Lipidol. 30:235–43
    [Google Scholar]
  31. 31.
    Potthoff MJ, Kliewer SA, Mangelsdorf DJ. 2012. Endocrine fibroblast growth factors 15/19 and 21: from feast to famine. Genes Dev 26:312–24
    [Google Scholar]
  32. 32.
    Kir S, Beddow SA, Samuel VT, Miller P, Previs SF et al. 2011. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science 331:1621–24
    [Google Scholar]
  33. 33.
    Potthoff MJ, Boney-Montoya J, Choi M, He T, Sunny NE et al. 2011. FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1α pathway. Cell Metab. 13:729–38
    [Google Scholar]
  34. 34.
    Fu L, John LM, Adams SH, Yu XX, Tomlinson E et al. 2004. Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology 145:2594–603
    [Google Scholar]
  35. 35.
    Tomlinson E, Fu L, John L, Hultgren B, Huang X et al. 2002. Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology 143:1741–47
    [Google Scholar]
  36. 36.
    Zhou M, Learned RM, Rossi SJ, DePaoli AM, Tian H, Ling L. 2017. Engineered FGF19 eliminates bile acid toxicity and lipotoxicity leading to resolution of steatohepatitis and fibrosis in mice. Hepatol. Commun. 1:1024–42
    [Google Scholar]
  37. 37.
    Morton GJ, Matsen ME, Bracy DP, Meek TH, Nguyen HT et al. 2013. FGF19 action in the brain induces insulin-independent glucose lowering. J. Clin. Investig. 123:4799–808
    [Google Scholar]
  38. 38.
    Marcelin G, Jo YH, Li X, Schwartz GJ, Zhang Y et al. 2014. Central action of FGF19 reduces hypothalamic AGRP/NPY neuron activity and improves glucose metabolism. Mol. Metab. 3:19–28
    [Google Scholar]
  39. 39.
    Ryan KK, Kohli R, Gutierrez-Aguilar R, Gaitonde SG, Woods SC, Seeley RJ. 2013. Fibroblast growth factor-19 action in the brain reduces food intake and body weight and improves glucose tolerance in male rats. Endocrinology 154:9–15
    [Google Scholar]
  40. 40.
    Moron-Ros S, Uriarte I, Berasain C, Avila MA, Sabater-Masdeu M et al. 2021. FGF15/19 is required for adipose tissue plasticity in response to thermogenic adaptations. Mol. Metab. 43:101113
    [Google Scholar]
  41. 41.
    Antonellis PJ, Droz BA, Cosgrove R, O'Farrell LS, Coskun T et al. 2019. The anti-obesity effect of FGF19 does not require UCP1-dependent thermogenesis. Mol. Metab. 30:131–39
    [Google Scholar]
  42. 42.
    Lan T, Morgan DA, Rahmouni K, Sonoda J, Fu X et al. 2017. FGF19, FGF21, and an FGFR1/β-Klotho-activating antibody act on the nervous system to regulate body weight and glycemia. Cell Metab 26:709–18.e3
    [Google Scholar]
  43. 43.
    Lundasen T, Galman C, Angelin B, Rudling M. 2006. Circulating intestinal fibroblast growth factor 19 has a pronounced diurnal variation and modulates hepatic bile acid synthesis in man. J. Intern. Med. 260:530–36
    [Google Scholar]
  44. 44.
    Lenicek M, Duricova D, Komarek V, Gabrysova B, Lukas M et al. 2011. Bile acid malabsorption in inflammatory bowel disease: assessment by serum markers. Inflamm. Bowel Dis. 17:1322–27
    [Google Scholar]
  45. 45.
    Walters JR, Tasleem AM, Omer OS, Brydon WG, Dew T, le Roux CW. 2009. A new mechanism for bile acid diarrhea: defective feedback inhibition of bile acid biosynthesis. Clin. Gastroenterol. Hepatol. 7:1189–94
    [Google Scholar]
  46. 46.
    Mraz M, Lacinova Z, Kavalkova P, Haluzikova D, Trachta P et al. 2011. Serum concentrations of fibroblast growth factor 19 in patients with obesity and type 2 diabetes mellitus: the influence of acute hyperinsulinemia, very-low calorie diet and PPAR-α agonist treatment. Physiol. Res. 60:627–36
    [Google Scholar]
  47. 47.
    Schreuder TC, Marsman HA, Lenicek M, van Werven JR, Nederveen AJ et al. 2010. The hepatic response to FGF19 is impaired in patients with nonalcoholic fatty liver disease and insulin resistance. Am. J. Physiol. Gastrointest. Liver Physiol. 298:G440–45
    [Google Scholar]
  48. 48.
    Reiche M, Bachmann A, Lossner U, Bluher M, Stumvoll M, Fasshauer M. 2010. Fibroblast growth factor 19 serum levels: relation to renal function and metabolic parameters. Horm. Metab. Res. 42:178–81
    [Google Scholar]
  49. 49.
    Mulla CM, Goldfine AB, Dreyfuss JM, Houten S, Pan H et al. 2019. Plasma FGF-19 levels are increased in patients with post-bariatric hypoglycemia. Obes. Surg. 29:2092–99
    [Google Scholar]
  50. 50.
    Ahn SM, Jang SJ, Shim JH, Kim D, Hong SM et al. 2014. Genomic portrait of resectable hepatocellular carcinomas: implications of RB1 and FGF19 aberrations for patient stratification. Hepatology 60:1972–82
    [Google Scholar]
  51. 51.
    Sawey ET, Chanrion M, Cai C, Wu G, Zhang J et al. 2011. Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer by oncogenomic screening. Cancer Cell 19:347–58
    [Google Scholar]
  52. 52.
    Nicholes K, Guillet S, Tomlinson E, Hillan K, Wright B et al. 2002. A mouse model of hepatocellular carcinoma: ectopic expression of fibroblast growth factor 19 in skeletal muscle of transgenic mice. Am. J. Pathol. 160:2295–307
    [Google Scholar]
  53. 53.
    Miura S, Mitsuhashi N, Shimizu H, Kimura F, Yoshidome H et al. 2012. Fibroblast growth factor 19 expression correlates with tumor progression and poorer prognosis of hepatocellular carcinoma. BMC Cancer 12:56
    [Google Scholar]
  54. 54.
    Wu X, Ge H, Lemon B, Vonderfecht S, Baribault H et al. 2010. Separating mitogenic and metabolic activities of fibroblast growth factor 19 (FGF19). PNAS 107:14158–63
    [Google Scholar]
  55. 55.
    Pai R, Dunlap D, Qing J, Mohtashemi I, Hotzel K, French DM. 2008. Inhibition of fibroblast growth factor 19 reduces tumor growth by modulating β-catenin signaling. Cancer Res 68:5086–95
    [Google Scholar]
  56. 56.
    French DM, Lin BC, Wang M, Adams C, Shek T et al. 2012. Targeting FGFR4 inhibits hepatocellular carcinoma in preclinical mouse models. PLOS ONE 7:e36713
    [Google Scholar]
  57. 57.
    Wu X, Lemon B, Li X, Gupte J, Weiszmann J et al. 2008. C-terminal tail of FGF19 determines its specificity toward Klotho co-receptors. J. Biol. Chem. 283:33304–9
    [Google Scholar]
  58. 58.
    Wu AL, Coulter S, Liddle C, Wong A, Eastham-Anderson J et al. 2011. FGF19 regulates cell proliferation, glucose and bile acid metabolism via FGFR4-dependent and independent pathways. PLOS ONE 6:e17868
    [Google Scholar]
  59. 59.
    Niu J, Zhao J, Wu J, Qiao G, Gu J et al. 2020. Curtailing FGF19’s mitogenicity by suppressing its receptor dimerization ability. PNAS 117:29025–34
    [Google Scholar]
  60. 60.
    Zhou M, Wang X, Phung V, Lindhout DA, Mondal K et al. 2014. Separating tumorigenicity from bile acid regulatory activity for endocrine hormone FGF19. Cancer Res 74:3306–16
    [Google Scholar]
  61. 61.
    DePaoli AM, Zhou M, Kaplan DD, Hunt SC, Adams TD et al. 2019. FGF19 analog as a surgical factor mimetic that contributes to metabolic effects beyond glucose homeostasis. Diabetes 68:1315–28
    [Google Scholar]
  62. 62.
    Harrison SA, Rinella ME, Abdelmalek MF, Trotter JF, Paredes AH et al. 2018. NGM282 for treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 391:1174–85
    [Google Scholar]
  63. 63.
    Harrison SA, Rossi SJ, Paredes AH, Trotter JF, Bashir MR et al. 2020. NGM282 improves liver fibrosis and histology in 12 weeks in patients with nonalcoholic steatohepatitis. Hepatology 71:1198–212
    [Google Scholar]
  64. 64.
    Harrison SA, Neff G, Guy CD, Bashir MR, Paredes AH et al. 2021. Efficacy and safety of aldafermin, an engineered FGF19 analog, in a randomized, double-blind, placebo-controlled trial of patients with nonalcoholic steatohepatitis. Gastroenterology 160:219–31.e1
    [Google Scholar]
  65. 65.
    Sanyal AJ, Ling L, Beuers U, DePaoli AM, Lieu HD et al. 2021. Potent suppression of hydrophobic bile acids by aldafermin, an FGF19 analogue, across metabolic and cholestatic liver diseases. JHEP Rep 3:100255
    [Google Scholar]
  66. 66.
    NGM Bio 2021. NGM Bio reports topline results from 24-week phase 2b ALPINE 2/3 study of aldafermin in NASH News Release May 24. https://ir.ngmbio.com/news-releases/news-release-details/ngm-bio-reports-topline-results-24-week-phase-2b-alpine-23-study
    [Google Scholar]
  67. 67.
    Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R et al. 2005. FGF-21 as a novel metabolic regulator. J. Clin. Investig. 115:1627–35
    [Google Scholar]
  68. 68.
    Wente W, Efanov AM, Brenner M, Kharitonenkov A, Koster A et al. 2006. Fibroblast growth factor-21 improves pancreatic β-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes 55:2470–78
    [Google Scholar]
  69. 69.
    Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E. 2007. Hepatic fibroblast growth factor 21 is regulated by PPARα and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 5:426–37
    [Google Scholar]
  70. 70.
    Inagaki T, Dutchak P, Zhao G, Ding X, Gautron L et al. 2007. Endocrine regulation of the fasting response by PPARα-mediated induction of fibroblast growth factor 21. Cell Metab 5:415–25
    [Google Scholar]
  71. 71.
    Lundasen T, Hunt MC, Nilsson LM, Sanyal S, Angelin B et al. 2007. PPARα is a key regulator of hepatic FGF21. Biochem. Biophys. Res. Commun. 360:437–40
    [Google Scholar]
  72. 72.
    Kurosu H, Choi M, Ogawa Y, Dickson AS, Goetz R et al. 2007. Tissue-specific expression of βKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J. Biol. Chem. 282:26687–95
    [Google Scholar]
  73. 73.
    Suzuki M, Uehara Y, Motomura-Matsuzaka K, Oki J, Koyama Y et al. 2008. βKlotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c. Mol. Endocrinol. 22:1006–14
    [Google Scholar]
  74. 74.
    Wu X, Ge H, Lemon B, Vonderfecht S, Weiszmann J et al. 2010. FGF19-induced hepatocyte proliferation is mediated through FGFR4 activation. J. Biol. Chem. 285:5165–70
    [Google Scholar]
  75. 75.
    Ogawa Y, Kurosu H, Yamamoto M, Nandi A, Rosenblatt KP et al. 2007. βKlotho is required for metabolic activity of fibroblast growth factor 21. PNAS 104:7432–37
    [Google Scholar]
  76. 76.
    Minard AY, Tan SX, Yang P, Fazakerley DJ, Domanova W et al. 2016. mTORC1 is a major regulatory node in the FGF21 signaling network in adipocytes. Cell Rep 17:29–36
    [Google Scholar]
  77. 77.
    Kim KH, Lee MS. 2014. FGF21 as a stress hormone: the roles of FGF21 in stress adaptation and the treatment of metabolic diseases. Diabetes Metab. J. 38:245–51
    [Google Scholar]
  78. 78.
    Kharitonenkov A, Wroblewski VJ, Koester A, Chen YF, Clutinger CK et al. 2007. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 148:774–81
    [Google Scholar]
  79. 79.
    Coskun T, Bina HA, Schneider MA, Dunbar JD, Hu CC et al. 2008. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149:6018–27
    [Google Scholar]
  80. 80.
    Tillman EJ, Rolph T. 2020. FGF21: an emerging therapeutic target for non-alcoholic steatohepatitis and related metabolic diseases. Front. Endocrinol. 11:601290
    [Google Scholar]
  81. 81.
    Huang X, Yu C, Jin C, Yang C, Xie R et al. 2006. Forced expression of hepatocyte-specific fibroblast growth factor 21 delays initiation of chemically induced hepatocarcinogenesis. Mol. Carcinog. 45:934–42
    [Google Scholar]
  82. 82.
    Jin L, Lin Z, Xu A. 2016. Fibroblast growth factor 21 protects against atherosclerosis via fine-tuning the multiorgan crosstalk. Diabetes Metab. J. 40:22–31
    [Google Scholar]
  83. 83.
    Dollet L, Levrel C, Coskun T, Le Lay S, Le May C et al. 2016. FGF21 improves the adipocyte dysfunction related to seipin deficiency. Diabetes 65:3410–17
    [Google Scholar]
  84. 84.
    Veniant MM, Hale C, Helmering J, Chen MM, Stanislaus S et al. 2012. FGF21 promotes metabolic homeostasis via white adipose and leptin in mice. PLOS ONE 7:e40164
    [Google Scholar]
  85. 85.
    Ding X, Boney-Montoya J, Owen BM, Bookout AL, Coate KC et al. 2012. βKlotho is required for fibroblast growth factor 21 effects on growth and metabolism. Cell Metab 16:387–93
    [Google Scholar]
  86. 86.
    Adams AC, Yang C, Coskun T, Cheng CC, Gimeno RE et al. 2012. The breadth of FGF21’s metabolic actions are governed by FGFR1 in adipose tissue. Mol. Metab. 2:31–37
    [Google Scholar]
  87. 87.
    Schlein C, Talukdar S, Heine M, Fischer AW, Krott LM et al. 2016. FGF21 lowers plasma triglycerides by accelerating lipoprotein catabolism in white and brown adipose tissues. Cell Metab 23:441–53
    [Google Scholar]
  88. 88.
    Lin Z, Tian H, Lam KS, Lin S, Hoo RC et al. 2013. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab 17:779–89
    [Google Scholar]
  89. 89.
    Holland WL, Adams AC, Brozinick JT, Bui HH, Miyauchi Y et al. 2013. An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metab 17:790–97
    [Google Scholar]
  90. 90.
    Adams AC, Halstead CA, Hansen BC, Irizarry AR, Martin JA et al. 2013. LY2405319, an engineered FGF21 variant, improves the metabolic status of diabetic monkeys. PLOS ONE 8:e65763
    [Google Scholar]
  91. 91.
    Talukdar S, Zhou Y, Li D, Rossulek M, Dong J et al. 2016. A long-acting FGF21 molecule, PF-05231023, decreases body weight and improves lipid profile in non-human primates and type 2 diabetic subjects. Cell Metab 23:427–40
    [Google Scholar]
  92. 92.
    Gaich G, Chien JY, Fu H, Glass LC, Deeg MA et al. 2013. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab 18:333–40
    [Google Scholar]
  93. 93.
    Sanyal A, Charles ED, Neuschwander-Tetri BA, Loomba R, Harrison SA et al. 2019. Pegbelfermin (BMS-986036), a PEGylated fibroblast growth factor 21 analogue, in patients with non-alcoholic steatohepatitis: a randomised, double-blind, placebo-controlled, phase 2a trial. Lancet 392:2705–17
    [Google Scholar]
  94. 94.
    Kim AM, Somayaji VR, Dong JQ, Rolph TP, Weng Y et al. 2017. Once-weekly administration of a long-acting fibroblast growth factor 21 analogue modulates lipids, bone turnover markers, blood pressure and body weight differently in obese people with hypertriglyceridaemia and in non-human primates. Diabetes Obes. Metab. 19:1762–72
    [Google Scholar]
  95. 95.
    Charles ED, Neuschwander-Tetri BA, Frias JP, Kundu S, Luo Y et al. 2019. Pegbelfermin (BMS-986036), PEGylated FGF21, in patients with obesity and type 2 diabetes: results from a randomized phase 2 study. Obesity 27:41–49
    [Google Scholar]
  96. 96.
    Kaufman A, Abuqayyas L, Denney WS, Tillman EJ, Rolph T. 2020. AKR-001, an Fc-FGF21 analog, showed sustained pharmacodynamic effects on insulin sensitivity and lipid metabolism in type 2 diabetes patients. Cell Rep. Med. 1:100057
    [Google Scholar]
  97. 97.
    Lin Z, Pan X, Wu F, Ye D, Zhang Y et al. 2015. Fibroblast growth factor 21 prevents atherosclerosis by suppression of hepatic sterol regulatory element-binding protein-2 and induction of adiponectin in mice. Circulation 131:1861–71
    [Google Scholar]
  98. 98.
    Joki Y, Ohashi K, Yuasa D, Shibata R, Ito M et al. 2015. FGF21 attenuates pathological myocardial remodeling following myocardial infarction through the adiponectin-dependent mechanism. Biochem. Biophys. Res. Commun. 459:124–30
    [Google Scholar]
  99. 99.
    Bao L, Yin J, Gao W, Wang Q, Yao W, Gao X. 2018. A long-acting FGF21 alleviates hepatic steatosis and inflammation in a mouse model of non-alcoholic steatohepatitis partly through an FGF21-adiponectin-IL17A pathway. Br. J. Pharmacol. 175:3379–93
    [Google Scholar]
  100. 100.
    BonDurant LD, Ameka M, Naber MC, Markan KR, Idiga SO et al. 2017. FGF21 regulates metabolism through adipose-dependent and -independent mechanisms. Cell Metab 25:935–44.e4
    [Google Scholar]
  101. 101.
    Huang Z, Zhong L, Lee JTH, Zhang J, Wu D et al. 2017. The FGF21-CCL11 axis mediates beiging of white adipose tissues by coupling sympathetic nervous system to type 2 immunity. Cell Metab 26:493–508.e4
    [Google Scholar]
  102. 102.
    Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ et al. 2012. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 26:271–81
    [Google Scholar]
  103. 103.
    Owen BM, Ding X, Morgan DA, Coate KC, Bookout AL et al. 2014. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab 20:670–77
    [Google Scholar]
  104. 104.
    Veniant MM, Sivits G, Helmering J, Komorowski R, Lee J et al. 2015. Pharmacologic effects of FGF21 are independent of the “browning” of white adipose tissue. Cell Metab 21:731–38
    [Google Scholar]
  105. 105.
    Samms RJ, Smith DP, Cheng CC, Antonellis PP, Perfield JW 2nd et al. 2015. Discrete aspects of FGF21 in vivo pharmacology do not require UCP1. Cell Rep 11:991–99
    [Google Scholar]
  106. 106.
    Ikeda K, Yamada T. 2020. UCP1 dependent and independent thermogenesis in brown and beige adipocytes. Front. Endocrinol. 11:498
    [Google Scholar]
  107. 107.
    Chen MZ, Chang JC, Zavala-Solorio J, Kates L, Thai M et al. 2017. FGF21 mimetic antibody stimulates UCP1-independent brown fat thermogenesis via FGFR1/βKlotho complex in non-adipocytes. Mol. Metab. 6:1454–67
    [Google Scholar]
  108. 108.
    Liang Q, Zhong L, Zhang J, Wang Y, Bornstein SR et al. 2014. FGF21 maintains glucose homeostasis by mediating the cross talk between liver and brain during prolonged fasting. Diabetes 63:4064–75
    [Google Scholar]
  109. 109.
    Bookout AL, de Groot MH, Owen BM, Lee S, Gautron L et al. 2013. FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat. Med. 19:1147–52
    [Google Scholar]
  110. 110.
    von Holstein-Rathlou S, BonDurant LD, Peltekian L, Naber MC, Yin TC et al. 2016. FGF21 mediates endocrine control of simple sugar intake and sweet taste preference by the liver. Cell Metab 23:335–43
    [Google Scholar]
  111. 111.
    Hsuchou H, Pan W, Kastin AJ. 2007. The fasting polypeptide FGF21 can enter brain from blood. Peptides 28:2382–86
    [Google Scholar]
  112. 112.
    Tan BK, Hallschmid M, Adya R, Kern W, Lehnert H, Randeva HS. 2011. Fibroblast growth factor 21 (FGF21) in human cerebrospinal fluid: relationship with plasma FGF21 and body adiposity. Diabetes 60:2758–62
    [Google Scholar]
  113. 113.
    Yang C, Jin C, Li X, Wang F, McKeehan WL, Luo Y 2012. Differential specificity of endocrine FGF19 and FGF21 to FGFR1 and FGFR4 in complex with KLB. PLOS ONE 7:e33870
    [Google Scholar]
  114. 114.
    Sarruf DA, Thaler JP, Morton GJ, German J, Fischer JD et al. 2010. Fibroblast growth factor 21 action in the brain increases energy expenditure and insulin sensitivity in obese rats. Diabetes 59:1817–24
    [Google Scholar]
  115. 115.
    Owen BM, Bookout AL, Ding X, Lin VY, Atkin SD et al. 2013. FGF21 contributes to neuroendocrine control of female reproduction. Nat. Med. 19:1153–56
    [Google Scholar]
  116. 116.
    Ge X, Wang Y, Lam KSL, Xu A. 2012. Metabolic actions of FGF21: molecular mechanisms and therapeutic implications. Acta Pharm. Sin. B 2:350–57
    [Google Scholar]
  117. 117.
    Gong Q, Hu Z, Zhang F, Cui A, Chen X et al. 2016. Fibroblast growth factor 21 improves hepatic insulin sensitivity by inhibiting mammalian target of rapamycin complex 1 in mice. Hepatology 64:425–38
    [Google Scholar]
  118. 118.
    Potthoff MJ, Inagaki T, Satapati S, Ding X, He T et al. 2009. FGF21 induces PGC-1α and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. PNAS 106:10853–58
    [Google Scholar]
  119. 119.
    Zhang Y, Lei T, Huang JF, Wang SB, Zhou LL et al. 2011. The link between fibroblast growth factor 21 and sterol regulatory element binding protein 1c during lipogenesis in hepatocytes. Mol. Cell Endocrinol. 342:41–47
    [Google Scholar]
  120. 120.
    Zarei M, Barroso E, Palomer X, Dai J, Rada P et al. 2018. Hepatic regulation of VLDL receptor by PPARβ/δ and FGF21 modulates non-alcoholic fatty liver disease. Mol. Metab. 8:117–31
    [Google Scholar]
  121. 121.
    Ye D, Wang Y, Li H, Jia W, Man K et al. 2014. Fibroblast growth factor 21 protects against acetaminophen-induced hepatotoxicity by potentiating peroxisome proliferator-activated receptor coactivator protein-1α-mediated antioxidant capacity in mice. Hepatology 60:977–89
    [Google Scholar]
  122. 122.
    Xu P, Zhang Y, Liu Y, Yuan Q, Song L et al. 2016. Fibroblast growth factor 21 attenuates hepatic fibrogenesis through TGF-β/smad2/3 and NF-κB signaling pathways. Toxicol. Appl. Pharmacol. 290:43–53
    [Google Scholar]
  123. 123.
    Zhang J, Gupte J, Gong Y, Weiszmann J, Zhang Y et al. 2017. Chronic over-expression of fibroblast growth factor 21 increases bile acid biosynthesis by opposing FGF15/19 action. EBioMedicine 15:173–83
    [Google Scholar]
  124. 124.
    Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K 2006. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Investig. 116:1784–92
    [Google Scholar]
  125. 125.
    Hug C, Wang J, Ahmad NS, Bogan JS, Tsao TS, Lodish HF. 2004. T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. PNAS 101:10308–13
    [Google Scholar]
  126. 126.
    Singhal G, Fisher FM, Chee MJ, Tan TG, El Ouaamari A et al. 2016. Fibroblast growth factor 21 (FGF21) protects against high fat diet induced inflammation and islet hyperplasia in pancreas. PLOS ONE 11:e0148252
    [Google Scholar]
  127. 127.
    Geng L, Liao B, Jin L, Yu J, Zhao X et al. 2022. β-Klotho promotes glycolysis and glucose-stimulated insulin secretion via GP130. Nat. Metab. 4:5608–26
    [Google Scholar]
  128. 128.
    Xu J, Stanislaus S, Chinookoswong N, Lau YY, Hager T et al. 2009. Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models—association with liver and adipose tissue effects. Am. J. Physiol. Endocrinol. Metab. 297:E1105–14
    [Google Scholar]
  129. 129.
    Zhao L, Niu J, Lin H, Zhao J, Liu Y et al. 2019. Paracrine-endocrine FGF chimeras as potent therapeutics for metabolic diseases. EBioMedicine 48:462–77
    [Google Scholar]
  130. 130.
    Huang J, Ishino T, Chen G, Rolzin P, Osothprarop TF et al. 2013. Development of a novel long-acting antidiabetic FGF21 mimetic by targeted conjugation to a scaffold antibody. J. Pharmacol. Exp. Ther. 346:270–80
    [Google Scholar]
  131. 131.
    Kharitonenkov A, Beals JM, Micanovic R, Strifler BA, Rathnachalam R et al. 2013. Rational design of a fibroblast growth factor 21–based clinical candidate, LY2405319. PLOS ONE 8:e58575
    [Google Scholar]
  132. 132.
    Weng Y, Chabot JR, Bernardo B, Yan Q, Zhu Y et al. 2015. Pharmacokinetics (PK), pharmacodynamics (PD) and integrated PK/PD modeling of a novel long acting FGF21 clinical candidate PF-05231023 in diet-induced obese and leptin-deficient obese mice. PLOS ONE 10:e0119104
    [Google Scholar]
  133. 133.
    Thompson WC, Zhou Y, Talukdar S, Musante CJ. 2016. PF-05231023, a long-acting FGF21 analogue, decreases body weight by reduction of food intake in non-human primates. J. Pharmacokinet. Pharmacodyn. 43:411–25
    [Google Scholar]
  134. 134.
    Stanislaus S, Hecht R, Yie J, Hager T, Hall M et al. 2017. A novel Fc-FGF21 with improved resistance to proteolysis, increased affinity toward β-Klotho, and enhanced efficacy in mice and cynomolgus monkeys. Endocrinology 158:1314–27
    [Google Scholar]
  135. 135.
    So WY, Cheng Q, Xu A, Lam KS, Leung PS. 2015. Loss of fibroblast growth factor 21 action induces insulin resistance, pancreatic islet hyperplasia and dysfunction in mice. Cell Death Dis 6:e1707
    [Google Scholar]
  136. 136.
    Harrison SA, Ruane PJ, Freilich BL, Neff G, Patil R et al. 2021. Efruxifermin in non-alcoholic steatohepatitis: a randomized, double-blind, placebo-controlled, phase 2a trial. Nat. Med. 27:1262–71
    [Google Scholar]
  137. 137.
    Rader DJ, Maratos-Flier E, Nguyen A, Hom D, Ferriere M et al. 2022. LLF580, an FGF21 analog, reduces triglycerides and hepatic fat in obese adults with modest hypertriglyceridemia. J. Clin. Endocrinol. Metab. 107:e57–70
    [Google Scholar]
  138. 138.
    Yang R, Xu A, Kharitonenkov A. 2022. Another kid on the block: long-acting FGF21 analogue to treat dyslipidemia and fatty liver. J. Clin. Endocrinol. Metab. 107:e417–19
    [Google Scholar]
  139. 139.
    Camacho RC, Zafian PT, Achanfuo-Yeboah J, Manibusan A, Berger JP. 2013. Pegylated Fgf21 rapidly normalizes insulin-stimulated glucose utilization in diet-induced insulin resistant mice. Eur. J. Pharmacol. 715:41–45
    [Google Scholar]
  140. 140.
    Abdelmalek MF, Charles ED, Sanyal AJ, Harrison SA, Neuschwander-Tetri BA et al. 2021. The FALCON program: two phase 2b randomized, double-blind, placebo-controlled studies to assess the efficacy and safety of pegbelfermin in the treatment of patients with nonalcoholic steatohepatitis and bridging fibrosis or compensated cirrhosis. Contemp. Clin. Trials. 104:106335
    [Google Scholar]
  141. 141.
    Pan Q, Lin S, Li Y, Liu L, Li X et al. 2021. A novel GLP-1 and FGF21 dual agonist has therapeutic potential for diabetes and non-alcoholic steatohepatitis. EBioMedicine 63:103202
    [Google Scholar]
  142. 142.
    Smith R, Duguay A, Bakker A, Li P, Weiszmann J et al. 2013. FGF21 can be mimicked in vitro and in vivo by a novel anti-FGFR1c/β-Klotho bispecific protein. PLOS ONE 8:e61432
    [Google Scholar]
  143. 143.
    Wu AL, Kolumam G, Stawicki S, Chen Y, Li J et al. 2011. Amelioration of type 2 diabetes by antibody-mediated activation of fibroblast growth factor receptor 1. Sci. Transl. Med. 3:113ra26
    [Google Scholar]
  144. 144.
    Foltz IN, Hu S, King C, Wu X, Yang C et al. 2012. Treating diabetes and obesity with an FGF21-mimetic antibody activating the βKlotho/FGFR1c receptor complex. Sci. Transl. Med. 4:162ra53
    [Google Scholar]
  145. 145.
    Min X, Weiszmann J, Johnstone S, Wang W, Yu X et al. 2018. Agonistic β-Klotho antibody mimics fibroblast growth factor 21 (FGF21) functions. J. Biol. Chem. 293:3814678–88
    [Google Scholar]
  146. 146.
    Kolumam G, Chen MZ, Tong R, Zavala-Solorio J, Kates L et al. 2015. Sustained brown fat stimulation and insulin sensitization by a humanized bispecific antibody agonist for fibroblast growth factor receptor 1/βKlotho complex. EBioMedicine 2:730–43
    [Google Scholar]
  147. 147.
    Baruch A, Wong C, Chinn LW, Vaze A, Sonoda J et al. 2020. Antibody-mediated activation of the FGFR1/Klothoβ complex corrects metabolic dysfunction and alters food preference in obese humans. PNAS 117:28992–9000
    [Google Scholar]
  148. 148.
    Shi SY, Lu YW, Liu Z, Stevens J, Murawsky CM et al. 2018. A biparatopic agonistic antibody that mimics fibroblast growth factor 21 ligand activity. J. Biol. Chem. 293:5909–19
    [Google Scholar]
  149. 149.
    Luo Y, Decato BE, Charles ED, Shevell DE, McNaney C et al. 2022. Pegbelfermin selectively reduces secondary bile acid concentrations in patients with non-alcoholic steatohepatitis. JHEP Rep 4:100392
    [Google Scholar]
  150. 150.
    Wei W, Dutchak PA, Wang X, Ding X, Wang X et al. 2012. Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor γ. PNAS 109:3143–48
    [Google Scholar]
  151. 151.
    Owen BM, Mangelsdorf DJ, Kliewer SA. 2015. Tissue-specific actions of the metabolic hormones FGF15/19 and FGF21. Trends Endocrinol. Metab. 26:22–29
    [Google Scholar]
  152. 152.
    Gomez-Ambrosi J, Gallego-Escuredo JM, Catalan V, Rodriguez A, Domingo P et al. 2017. FGF19 and FGF21 serum concentrations in human obesity and type 2 diabetes behave differently after diet- or surgically-induced weight loss. Clin. Nutr. 36:861–68
    [Google Scholar]
  153. 153.
    Gerhard GS, Styer AM, Wood GC, Roesch SL, Petrick AT et al. 2013. A role for fibroblast growth factor 19 and bile acids in diabetes remission after Roux-en-Y gastric bypass. Diabetes Care 36:1859–64
    [Google Scholar]
  154. 154.
    Henriksson E, Andersen B. 2020. FGF19 and FGF21 for the treatment of NASH—two sides of the same coin? Differential and overlapping effects of FGF19 and FGF21 from mice to human. Front. Endocrinol. 11:601349
    [Google Scholar]
  155. 155.
    Singhal G, Kumar G, Chan S, Fisher FM, Ma Y et al. 2018. Deficiency of fibroblast growth factor 21 (FGF21) promotes hepatocellular carcinoma (HCC) in mice on a long term obesogenic diet. Mol. Metab. 13:56–66
    [Google Scholar]
  156. 156.
    Gadaleta RM, Scialpi N, Peres C, Cariello M, Ko B et al. 2018. Suppression of hepatic bile acid synthesis by a non-tumorigenic FGF19 analogue protects mice from fibrosis and hepatocarcinogenesis. Sci. Rep. 8:17210
    [Google Scholar]
  157. 157.
    Chen MM, Hale C, Stanislaus S, Xu J, Veniant MM. 2018. FGF21 acts as a negative regulator of bile acid synthesis. J. Endocrinol. 237:139–52
    [Google Scholar]
  158. 158.
    Powers CJ, McLeskey SW, Wellstein A. 2000. Fibroblast growth factors, their receptors and signaling. Endocr. Relat. Cancer 7:165–97
    [Google Scholar]
  159. 159.
    Jonker JW, Suh JM, Atkins AR, Ahmadian M, Li P et al. 2012. A PPARγ-FGF1 axis is required for adaptive adipose remodelling and metabolic homeostasis. Nature 485:391–94
    [Google Scholar]
  160. 160.
    Choi Y, Jang S, Choi MS, Ryoo ZY, Park T. 2016. Increased expression of FGF1-mediated signaling molecules in adipose tissue of obese mice. J. Physiol. Biochem. 72:157–67
    [Google Scholar]
  161. 161.
    Lin Q, Huang Z, Cai G, Fan X, Yan X et al. 2021. Activating adenosine monophosphate-activated protein kinase mediates fibroblast growth factor 1 protection from nonalcoholic fatty liver disease in mice. Hepatology 73:2206–22
    [Google Scholar]
  162. 162.
    Lou G, Zhang Q, Xiao F, Xiang Q, Su Z et al. 2012. Intranasal administration of TAT-haFGF14–154 attenuates disease progression in a mouse model of Alzheimer's disease. Neuroscience 223:225–37
    [Google Scholar]
  163. 163.
    Suzuki S, Li AJ, Ishisaki A, Hou X, Hasegawa M et al. 2001. Feeding suppression by fibroblast growth factor-1 is accompanied by selective induction of heat shock protein 27 in hypothalamic astrocytes. Eur. J. Neurosci. 13:2299–308
    [Google Scholar]
  164. 164.
    Scarlett JM, Rojas JM, Matsen ME, Kaiyala KJ, Stefanovski D et al. 2016. Central injection of fibroblast growth factor 1 induces sustained remission of diabetic hyperglycemia in rodents. Nat. Med. 22:800–6
    [Google Scholar]
  165. 165.
    Scarlett JM, Muta K, Brown JM, Rojas JM, Matsen ME et al. 2019. Peripheral mechanisms mediating the sustained antidiabetic action of FGF1 in the brain. Diabetes 68:654–64
    [Google Scholar]
  166. 166.
    Perry RJ, Lee S, Ma L, Zhang D, Schlessinger J, Shulman GI. 2015. FGF1 and FGF19 reverse diabetes by suppression of the hypothalamic-pituitary-adrenal axis. Nat. Commun. 6:6980
    [Google Scholar]
  167. 167.
    Huang Z, Tan Y, Gu J, Liu Y, Song L et al. 2017. Uncoupling the mitogenic and metabolic functions of FGF1 by tuning FGF1-FGF receptor dimer stability. Cell Rep 20:1717–28
    [Google Scholar]
  168. 168.
    Mori S, Tran V, Nishikawa K, Kaneda T, Hamada Y et al. 2013. A dominant-negative FGF1 mutant (the R50E mutant) suppresses tumorigenesis and angiogenesis. PLOS ONE 8:e57927
    [Google Scholar]
  169. 169.
    Jackson TC, Janesko-Feldman K, Carlson SW, Kotermanski SE, Kochanek PM. 2019. Robust RBM3 and β-klotho expression in developing neurons in the human brain. J. Cereb. Blood Flow Metab. 39:2355–67
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-032322-093904
Loading
/content/journals/10.1146/annurev-pharmtox-032322-093904
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error