1932

Abstract

Direct oral anticoagulants (DOACs) have largely replaced vitamin K antagonists, mostly warfarin, for the main indications for oral anticoagulation, prevention and treatment of venous thromboembolism, and prevention of embolic stroke in atrial fibrillation. While DOACs offer practical, fixed-dose anticoagulation in many patients, specific restrictions or contraindications may apply. DOACs are not sufficiently effective in high–thrombotic risk conditions such as antiphospholipid syndrome and mechanical heart valves. Patients with cancer-associated thrombosis may benefit from DOACs, but the bleeding risk, particularly in those with gastrointestinal or urogenital tumors, must be carefully weighed. In patients with frailty, excess body weight, and/or moderate-to-severe chronic kidney disease, DOACs must be cautiously administered and may require laboratory monitoring. Reversal agents have been developed and approved for life-threatening bleeding. In addition, the clinical testing of potentially safer anticoagulants such as factor XI(a) inhibitors is important to further optimize anticoagulant therapy in an increasingly elderly and frail population worldwide.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-032823-122811
2024-01-23
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/64/1/annurev-pharmtox-032823-122811.html?itemId=/content/journals/10.1146/annurev-pharmtox-032823-122811&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Choi SE, Sagris D, Hill A, Lip GYH, Abdul-Rahim AH. 2023. Atrial fibrillation and stroke. Expert Rev. Cardiovasc. Ther. 21:135–56
    [Google Scholar]
  2. 2.
    Ryu R, Tran R. 2022. DOACs in mechanical and bioprosthetic heart valves: a narrative review of emerging data and future directions. Clin. Appl. Thromb. Hemost. 28:10760296221103578
    [Google Scholar]
  3. 3.
    Knight JS, Branch DW, Ortel TL. 2023. Antiphospholipid syndrome: advances in diagnosis, pathogenesis, and management. BMJ 380:e069717
    [Google Scholar]
  4. 4.
    Verma R, Latter DA. 2023. Anticoagulation for rheumatic mitral stenosis, INVICTUS in perspective. Curr. Opin. Cardiol. 38:255–60
    [Google Scholar]
  5. 5.
    Werth S, Breslin T, NiAinle F, Beyer-Westendorf J. 2015. Bleeding risk, management and outcome in patients receiving non-VKA oral anticoagulants (NOACs). Am. J. Cardiovasc. Drugs 15:4235–42
    [Google Scholar]
  6. 6.
    Beyer-Westendorf J, Forster K, Pannach S, Ebertz F, Gelbricht V et al. 2014. Rates, management, and outcome of rivaroxaban bleeding in daily care: results from the Dresden NOAC registry. Blood 124:6955–62
    [Google Scholar]
  7. 7.
    Archontakis-Barakakis P, Li W, Kalaitzoglou D, Tzelves L, Manolopoulos A et al. 2022. Effectiveness and safety of intracranial events associated with the use of direct oral anticoagulants for atrial fibrillation: a systematic review and meta-analysis of 92 studies. Br. J. Clin. Pharmacol. 88:114663–75
    [Google Scholar]
  8. 8.
    Kosciuszek ND, Kalta D, Singh M, Savinova OV. 2022. Vitamin K antagonists and cardiovascular calcification: a systematic review and meta-analysis. Front. Cardiovasc. Med. 9:938567
    [Google Scholar]
  9. 9.
    Posma JJ, Grover SP, Hisada Y, Owens AP 3rd, Antoniak S et al. 2019. Roles of coagulation proteases and PARs (protease-activated receptors) in mouse models of inflammatory diseases. Arterioscler. Thromb. Vasc. Biol. 39:113–24
    [Google Scholar]
  10. 10.
    Dólleman SC, Agten SM, Spronk HMH, Hackeng TM, Bos MHA et al. 2022. Thrombin in complex with dabigatran can still interact with PAR-1 via exosite-I and instigate loss of vascular integrity. J. Thromb. Haemost. 20:4996–1007
    [Google Scholar]
  11. 11.
    ten Cate H, Guzik TJ, Eikelboom J, Spronk HMH. 2021. Pleiotropic actions of factor Xa inhibition in cardiovascular prevention: mechanistic insights and implications for anti-thrombotic treatment. Cardiovasc. Res. 117:92030–44
    [Google Scholar]
  12. 12.
    d'Alessandro E, Becker C, Bergmeier W, Bode C, Bourne JH et al. 2020. Thrombo-inflammation in cardiovascular disease: an expert consensus document from the Third Maastricht Consensus Conference on Thrombosis. Thromb. Haemost. 120:4538–64
    [Google Scholar]
  13. 13.
    Nagy M, van der Meijden PEJ, Glunz J, Schurgers L, Lutgens E et al. 2022. Integrating mechanisms in thrombotic peripheral arterial disease. Pharmaceuticals 15:111428
    [Google Scholar]
  14. 14.
    Frere C, Farge D, Schrag D, Prata PH, Connors JM. 2022. Direct oral anticoagulant versus low molecular weight heparin for the treatment of cancer-associated venous thromboembolism: 2022 updated systematic review and meta-analysis of randomized controlled trials. J. Hematol. Oncol. 15:169
    [Google Scholar]
  15. 15.
    Farge D, Frere C, Connors JM, Khorana AA, Kakkar A et al. 2022. 2022 International clinical practice guidelines for the treatment and prophylaxis of venous thromboembolism in patients with cancer, including patients with COVID-19. Lancet Oncol. 23:7e334–47
    [Google Scholar]
  16. 16.
    Falanga A, Ay C, Di Nisio M, Gerotziafas G, Langer F et al. 2023. Venous thromboembolism in cancer patients: ESMO Clinical Practice Guideline. Ann. Oncol. 34:5452–67
    [Google Scholar]
  17. 17.
    Shevell L, Ochs M, Schaefer J. 2023. Prophylactic anticoagulation in patients with cancer: when and how?. Curr. Oncol. Rep. 25:3201–9
    [Google Scholar]
  18. 18.
    Spyropoulos AC. 2022. To prophylax or not, and how much and how long? Controversies in VTE prevention for medical inpatients, including COVID-19 inpatients. Hematol. Am. Soc. Hematol. Educ. Program 2022:1506–14
    [Google Scholar]
  19. 19.
    Swan D, Thachil J. 2022. Challenges in managing patients on anticoagulation: thrombocytopenia, resumption after bleeding and recurrent thrombosis. J. R. Coll. Physicians Edinb. 52:4341–49
    [Google Scholar]
  20. 20.
    Tsoukalas N, Brito-Dellan N, Font C, Butler T, Rojas-Hernandez CM et al. 2022. Complexity and clinical significance of drug-drug interactions (DDIs) in oncology: challenging issues in the care of patients regarding cancer-associated thrombosis (CAT). Support. Care Cancer 30:108559–73
    [Google Scholar]
  21. 21.
    Musgrave KM, Power K, Laffan M, O'Donnell JS, Thachil J, Maraveyas A. 2022. Practical treatment guidance for cancer-associated thrombosis—managing the challenging patient: a consensus statement. Crit. Rev. Oncol. Hematol. 171:103599
    [Google Scholar]
  22. 22.
    Frere C, Font C, Esposito F, Crichi B, Girard P, Janus N 2022. Incidence, risk factors, and management of bleeding in patients receiving anticoagulants for the treatment of cancer-associated thrombosis. Support. Care Cancer 30:42919–31
    [Google Scholar]
  23. 23.
    Khorana AA, Mackman N, Falanga A, Pabinger I, Noble S et al. 2022. Cancer-associated venous thromboembolism. Nat. Rev. Dis. Primers 8:111
    [Google Scholar]
  24. 24.
    Carrier M, Blais N, Crowther M, Kavan P, Le Gal G et al. 2021. Treatment algorithm in cancer-associated thrombosis: updated Canadian Expert Consensus. Curr. Oncol. 28:65434–51
    [Google Scholar]
  25. 25.
    Moik F, Pabinger I, Ay C. 2020. How I treat cancer-associated thrombosis. ESMO Open 5:1e000610
    [Google Scholar]
  26. 26.
    Iyengar V, Patell R, Zwicker J. 2022. Challenges in anticoagulation for patients with brain tumors. Best Pract. Res. Clin. Haematol. 35:1101350
    [Google Scholar]
  27. 27.
    Benamouzig R, Guenoun M, Deutsch D, Fauchier L. 2022. Gastrointestinal bleeding risk with direct oral anticoagulants. Cardiovasc. Drugs Ther. 36:5973–89
    [Google Scholar]
  28. 28.
    Otten LS, Piet B, van den Heuvel MM, Marzolini C, van Geel R et al. 2022. Practical recommendations to combine small-molecule inhibitors and direct oral anticoagulants in patients with nonsmall cell lung cancer. Eur. Respir. Rev. 31:164220004
    [Google Scholar]
  29. 29.
    Brea EJ, Tiu BC, Connors JM. 2021. A comprehensive review of DOACs for cancer associated VTE prophylaxis or treatment. Postgrad. Med. 133:Suppl. 171–79
    [Google Scholar]
  30. 30.
    Sebuhyan M, Crichi B, Abdallah NA, Bonnet C, Deville L et al. 2020. Drug-drug interaction (DDI) with direct oral anticoagulant (DOAC) in patients with cancer. J. Med. Vasc. 45:6S6S31–38
    [Google Scholar]
  31. 31.
    Bellesoeur A, Thomas-Schoemann A, Allard M, Smadja D, Vidal M et al. 2018. Pharmacokinetic variability of anticoagulants in patients with cancer-associated thrombosis: clinical consequences. Crit. Rev. Oncol. Hematol. 129:102–12
    [Google Scholar]
  32. 32.
    Leader A, Hofstetter L, Spectre G. 2021. Challenges and advances in managing thrombocytopenic cancer patients. J. Clin. Med. 10:61169
    [Google Scholar]
  33. 33.
    Falanga A, Leader A, Ambaglio C, Bagoly Z, Castaman G et al. 2022. EHA guidelines on management of antithrombotic treatments in thrombocytopenic patients with cancer. Hemasphere 6:8e750
    [Google Scholar]
  34. 34.
    Lee AYY. 2017. When can we stop anticoagulation in patients with cancer-associated thrombosis?. Blood 130:232484–90
    [Google Scholar]
  35. 35.
    Becattini C, Di Nisio M, Franco L, Lee A, Agnelli G, Mandala M. 2021. Treatment of venous thromboembolism in cancer patients: the dark side of the moon. Cancer Treat. Rev. 96:102190
    [Google Scholar]
  36. 36.
    Weitz JI, Prandoni P, Verhamme P. 2020. Anticoagulation for patients with venous thromboembolism: When is extended treatment required?. TH Open 4:4e446–56
    [Google Scholar]
  37. 37.
    Sanfilippo KM, Moik F, Candeloro M, Ay C, Di Nisio M, Lee AYY. 2022. Unanswered questions in cancer-associated thrombosis. Br. J. Haematol. 198:5812–25
    [Google Scholar]
  38. 38.
    Jimenez-Fonseca P, Gallardo E, Arranz Arija F, Blanco JM, Callejo A et al. 2022. Consensus on prevention and treatment of cancer-associated thrombosis (CAT) in controversial clinical situations with low levels of evidence. Eur. J. Intern. Med. 100:33–45
    [Google Scholar]
  39. 39.
    O'Connell C, Escalante CP, Goldhaber SZ, McBane R, Connors JM, Raskob GE. 2021. Treatment of cancer-associated venous thromboembolism with low-molecular-weight heparin or direct oral anticoagulants: patient selection, controversies, and caveats. Oncologist 26:1e8–16
    [Google Scholar]
  40. 40.
    Reilly PA, Lehr T, Haertter S, Connolly SJ, Yusuf S et al. 2014. The effect of dabigatran plasma concentrations and patient characteristics on the frequency of ischemic stroke and major bleeding in atrial fibrillation patients: the RE-LY Trial (Randomized Evaluation of Long-Term Anticoagulation Therapy). J. Am. Coll. Cardiol. 63:4321–28
    [Google Scholar]
  41. 41.
    Speed V, Green B, Roberts LN, Woolcombe S, Bartoli-Abdou J et al. 2020. Fixed dose rivaroxaban can be used in extremes of bodyweight: a population pharmacokinetic analysis. J. Thromb. Haemost. 18:92296–307
    [Google Scholar]
  42. 42.
    Upreti VV, Wang J, Barrett YC, Byon W, Boyd RA et al. 2013. Effect of extremes of body weight on the pharmacokinetics, pharmacodynamics, safety and tolerability of apixaban in healthy subjects. Br. J. Clin. Pharmacol. 76:6908–16
    [Google Scholar]
  43. 43.
    Kubitza D, Becka M, Zuehlsdorf M, Mueck W. 2007. Body weight has limited influence on the safety, tolerability, pharmacokinetics, or pharmacodynamics of rivaroxaban (BAY 59-7939) in healthy subjects. J. Clin. Pharmacol. 47:2218–26
    [Google Scholar]
  44. 44.
    Rocca B, Fox KAA, Ajjan RA, Andreotti F, Baigent C et al. 2018. Antithrombotic therapy and body mass: an expert position paper of the ESC Working Group on Thrombosis. Eur. Heart J. 39:191672–86f
    [Google Scholar]
  45. 45.
    Martin K, Beyer-Westendorf J, Davidson BL, Huisman MV, Sandset PM, Moll S. 2016. Use of the direct oral anticoagulants in obese patients: guidance from the SSC of the ISTH. J. Thromb. Haemost. 14:61308–13
    [Google Scholar]
  46. 46.
    Steffel J, Collins R, Antz M, Cornu P, Desteghe L et al. 2021. European Heart Rhythm Association practical guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. Europace 23:101612–76
    [Google Scholar]
  47. 47.
    Kido K, Shimizu M, Shiga T, Hashiguchi M. 2020. Network meta-analysis comparing apixaban versus rivaroxaban in morbidly obese patients with atrial fibrillation. Am. J. Cardiol. 134:160–61
    [Google Scholar]
  48. 48.
    Kok T, de Boer H, Witteman B, Hovens M, van Luin M, Monajemi H. 2022. Anti-Xa levels in morbidly obese patients using apixaban or rivaroxaban, before and after bariatric surgery. Obes. Surg. 32:3607–14
    [Google Scholar]
  49. 49.
    Kido K, Lee JC, Hellwig T, Gulseth MP. 2020. Use of direct oral anticoagulants in morbidly obese patients. Pharmacotherapy 40:172–83
    [Google Scholar]
  50. 50.
    Grainger B, Holloway R, Merriman E, Booth M, Royle G et al. 2020. Evidence of impaired dabigatran absorption following laparoscopic Roux-en-Y gastric bypass surgery: the Auckland regional experience (2011–2018). Br. J. Haematol. 191:2e67–69
    [Google Scholar]
  51. 51.
    Li MH, Hu LH, Xiong YR, Yu Y, Zhou W et al. 2020. Association between body mass index and the risk of bleeding in elderly patients with non-valvular atrial fibrillation taking dabigatran: a cohort study. J. Geriatr. Cardiol. 17:4193–201
    [Google Scholar]
  52. 52.
    Connolly SJ, Ezekowitz MD, Yusuf S, Eikelboom J, Oldgren J et al. 2009. Dabigatran versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 361:121139–51
    [Google Scholar]
  53. 53.
    Hohnloser SH, Fudim M, Alexander JH, Wojdyla DM, Ezekowitz JA et al. 2019. Efficacy and safety of apixaban versus warfarin in patients with atrial fibrillation and extremes in body weight. Circulation 139:202292–300
    [Google Scholar]
  54. 54.
    Patel MR, Mahaffey KW, Garg J, Pan G, Singer DE et al. 2011. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N. Engl. J. Med. 365:10883–91
    [Google Scholar]
  55. 55.
    Lee SR, Choi EK, Park CS, Han KD, Jung JH et al. 2019. Direct oral anticoagulants in patients with nonvalvular atrial fibrillation and low body weight. J. Am. Coll. Cardiol. 73:8919–31
    [Google Scholar]
  56. 56.
    Andreotti F, Geisler T, Collet JP, Gigante B, Gorog DA et al. 2023. Acute, periprocedural and longterm antithrombotic therapy in older adults: 2022 update by the ESC Working Group on Thrombosis. Eur. Heart J. 44:4262–79
    [Google Scholar]
  57. 57.
    Lip GY, Nieuwlaat R, Pisters R, Lane DA, Crijns HJ. 2010. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the Euro Heart Survey on atrial fibrillation. Chest 137:2263–72
    [Google Scholar]
  58. 58.
    Pisters R, Lane DA, Nieuwlaat R, de Vos CB, Crijns HJ, Lip GY. 2010. A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: the Euro Heart Survey. Chest 138:51093–100
    [Google Scholar]
  59. 59.
    Hijazi Z, Lindback J, Alexander JH, Hanna M, Held C et al. 2016. The ABC (age, biomarkers, clinical history) stroke risk score: a biomarker-based risk score for predicting stroke in atrial fibrillation. Eur. Heart J. 37:201582–90
    [Google Scholar]
  60. 60.
    Costa F, van Klaveren D, James S, Heg D, Raber L et al. 2017. Derivation and validation of the predicting bleeding complications in patients undergoing stent implantation and subsequent dual antiplatelet therapy (PRECISE-DAPT) score: a pooled analysis of individual-patient datasets from clinical trials. Lancet 389:100731025–34
    [Google Scholar]
  61. 61.
    Urban P, Mehran R, Colleran R, Angiolillo DJ, Byrne RA et al. 2019. Defining high bleeding risk in patients undergoing percutaneous coronary intervention: a consensus document from the Academic Research Consortium for High Bleeding Risk. Circulation 140:240–61
    [Google Scholar]
  62. 62.
    Chao TF, Liu CJ, Lin YJ, Chang SL, Lo LW et al. 2018. Oral anticoagulation in very elderly patients with atrial fibrillation: a nationwide cohort study. Circulation 138:137–47
    [Google Scholar]
  63. 63.
    Silverio A, Di Maio M, Prota C, De Angelis E, Radano I et al. 2021. Safety and efficacy of non-vitamin K antagonist oral anticoagulants in elderly patients with atrial fibrillation: systematic review and meta-analysis of 22 studies and 440 281 patients. Eur. Heart J. Cardiovasc. Pharmacother. 7:FI1f20–29
    [Google Scholar]
  64. 64.
    Shen NN, Wu Y, Wang N, Kong LC, Zhang C et al. 2020. Direct oral anticoagulants versus vitamin-K antagonists in the elderly with atrial fibrillation: a systematic review comparing benefits and harms between observational studies and randomized controlled trials. Front. Cardiovasc Med. 7:132
    [Google Scholar]
  65. 65.
    Nixon AC, Bampouras TM, Pendleton N, Woywodt A, Mitra S, Dhaygude A. 2018. Frailty and chronic kidney disease: current evidence and continuing uncertainties. Clin. Kidney J. 11:2236–45
    [Google Scholar]
  66. 66.
    Park SH. 2018. Tools for assessing fall risk in the elderly: a systematic review and meta-analysis. Aging Clin. Exp. Res. 30:11–16
    [Google Scholar]
  67. 67.
    Man-Son-Hing M, Nichol G, Lau A, Laupacis A 1999. Choosing antithrombotic therapy for elderly patients with atrial fibrillation who are at risk for falls. Arch. Intern. Med. 159:7677–85
    [Google Scholar]
  68. 68.
    Mahmoodi BK, Gansevoort RT, Naess IA, Lutsey PL, Braekkan SK et al. 2012. Association of mild to moderate chronic kidney disease with venous thromboembolism: pooled analysis of five prospective general population cohorts. Circulation 126:161964–71
    [Google Scholar]
  69. 69.
    Soliman EZ, Prineas RJ, Go AS, Xie D, Lash JP et al. 2010. Chronic kidney disease and prevalent atrial fibrillation: the Chronic Renal Insufficiency Cohort (CRIC). Am. Heart J. 159:61102–7
    [Google Scholar]
  70. 70.
    Baber U, Howard VJ, Halperin JL, Soliman EZ, Zhang X et al. 2011. Association of chronic kidney disease with atrial fibrillation among adults in the United States: REasons for Geographic and Racial Differences in Stroke (REGARDS) study. Circ. Arrhythm. Electrophysiol. 4:126–32
    [Google Scholar]
  71. 71.
    Olesen JB, Lip GY, Kamper AL, Hommel K, Kober L et al. 2012. Stroke and bleeding in atrial fibrillation with chronic kidney disease. N. Engl. J. Med. 367:7625–35
    [Google Scholar]
  72. 72.
    Carrero JJ, Evans M, Szummer K, Spaak J, Lindhagen L et al. 2014. Warfarin, kidney dysfunction, and outcomes following acute myocardial infarction in patients with atrial fibrillation. JAMA 311:9919–28
    [Google Scholar]
  73. 73.
    Dahal K, Kunwar S, Rijal J, Schulman P, Lee J. 2016. Stroke, major bleeding, and mortality outcomes in warfarin users with atrial fibrillation and chronic kidney disease: a meta-analysis of observational studies. Chest 149:4951–59
    [Google Scholar]
  74. 74.
    Quinn LM, Richardson R, Cameron KJ, Battistella M. 2015. Evaluating time in therapeutic range for hemodialysis patients taking warfarin. Clin. Nephrol. 83:280–85
    [Google Scholar]
  75. 75.
    Granger CB, Alexander JH, McMurray JJ, Lopes RD, Hylek EM et al. 2011. Apixaban versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 365:11981–92
    [Google Scholar]
  76. 76.
    Giugliano RP, Ruff CT, Braunwald E, Murphy SA, Wiviott SD et al. 2013. Edoxaban versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 369:222093–104
    [Google Scholar]
  77. 77.
    Hijazi Z, Hohnloser SH, Oldgren J, Andersson U, Connolly SJ et al. 2014. Efficacy and safety of dabigatran compared with warfarin in relation to baseline renal function in patients with atrial fibrillation: a RE-LY (Randomized Evaluation of Long-term Anticoagulation Therapy) trial analysis. Circulation 129:9961–70
    [Google Scholar]
  78. 78.
    Hohnloser SH, Hijazi Z, Thomas L, Alexander JH, Amerena J et al. 2012. Efficacy of apixaban when compared with warfarin in relation to renal function in patients with atrial fibrillation: insights from the ARISTOTLE trial. Eur. Heart J. 33:222821–30
    [Google Scholar]
  79. 79.
    Bohula EA, Giugliano RP, Ruff CT, Kuder JF, Murphy SA et al. 2016. Impact of renal function on outcomes with edoxaban in the ENGAGE AF-TIMI 48 trial. Circulation 134:124–36
    [Google Scholar]
  80. 80.
    Fox KA, Piccini JP, Wojdyla D, Becker RC, Halperin JL et al. 2011. Prevention of stroke and systemic embolism with rivaroxaban compared with warfarin in patients with non-valvular atrial fibrillation and moderate renal impairment. Eur. Heart J. 32:192387–94
    [Google Scholar]
  81. 81.
    Harel Z, Sholzberg M, Shah PS, Pavenski K, Harel S et al. 2014. Comparisons between novel oral anticoagulants and vitamin K antagonists in patients with CKD. J. Am. Soc. Nephrol. 25:3431–42
    [Google Scholar]
  82. 82.
    Parker K, Hartemink J, Saha A, Mitra R, Lewis P et al. 2022. A systematic review of the efficacy and safety of anticoagulants in advanced chronic kidney disease. J. Nephrol. 35:82015–33
    [Google Scholar]
  83. 83.
    Rhee TM, Lee SR, Choi EK, Oh S, Lip GYH. 2022. Efficacy and safety of oral anticoagulants for atrial fibrillation patients with chronic kidney disease: a systematic review and meta-analysis. Front. Cardiovasc. Med. 9:885548
    [Google Scholar]
  84. 84.
    Siontis KC, Zhang X, Eckard A, Bhave N, Schaubel DE et al. 2018. Outcomes associated with apixaban use in patients with end-stage kidney disease and atrial fibrillation in the United States. Circulation 138:151519–29
    [Google Scholar]
  85. 85.
    Reinecke H, Engelbertz C, Bauersachs R, Breithardt G, Echterhoff HH et al. 2023. A randomized controlled trial comparing apixaban with the vitamin K antagonist phenprocoumon in patients on chronic hemodialysis: the AXADIA-AFNET 8 study. Circulation 147:4296–309
    [Google Scholar]
  86. 86.
    Pokorney SD, Chertow GM, Al-Khalidi HR, Gallup D, Dignacco P et al. 2022. Apixaban for patients with atrial fibrillation on hemodialysis: a multicenter randomized controlled trial. Circulation 146:231735–45
    [Google Scholar]
  87. 87.
    Galli M, Barbui T. 2003. Antiphospholipid antibodies and thrombosis: strength of association. Hematol. J. 4:3180–86
    [Google Scholar]
  88. 88.
    Konstantinides SV, Meyer G, Becattini C, Bueno H, Geersing GJ et al. 2020. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur. Heart J. 41:4543–603
    [Google Scholar]
  89. 89.
    Pengo V, Hoxha A, Andreoli L, Tincani A, Silvestri E et al. 2021. Trial of Rivaroxaban in AntiPhospholipid Syndrome (TRAPS): two-year outcomes after the study closure. J. Thromb. Haemost. 19:2531–35
    [Google Scholar]
  90. 90.
    Zuily S, Cohen H, Isenberg D, Woller SC, Crowther M et al. 2020. Use of direct oral anticoagulants in patients with thrombotic antiphospholipid syndrome: guidance from the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. J. Thromb. Haemost. 18:92126–37
    [Google Scholar]
  91. 91.
    Angiolillo DJ, Bhatt DL, Cannon CP, Eikelboom JW, Gibson CM et al. 2021. Antithrombotic therapy in patients with atrial fibrillation treated with oral anticoagulation undergoing percutaneous coronary intervention: a North American perspective: 2021 update. Circulation 143:6583–96
    [Google Scholar]
  92. 92.
    Dewilde WJ, Oirbans T, Verheugt FW, Kelder JC, De Smet BJ et al. 2013. Use of clopidogrel with or without aspirin in patients taking oral anticoagulant therapy and undergoing percutaneous coronary intervention: an open-label, randomised, controlled trial. Lancet 381:98721107–15
    [Google Scholar]
  93. 93.
    Gibson CM, Mehran R, Bode C, Halperin J, Verheugt FW et al. 2016. Prevention of bleeding in patients with atrial fibrillation undergoing PCI. N. Engl. J. Med. 375:252423–34
    [Google Scholar]
  94. 94.
    Cannon CP, Bhatt DL, Oldgren J, Lip GYH, Ellis SG et al. 2017. Dual antithrombotic therapy with dabigatran after PCI in atrial fibrillation. N. Engl. J. Med. 377:161513–24
    [Google Scholar]
  95. 95.
    Lopes RD, Heizer G, Aronson R, Vora AN, Massaro T et al. 2019. Antithrombotic therapy after acute coronary syndrome or PCI in atrial fibrillation. N. Engl. J. Med. 380:161509–24
    [Google Scholar]
  96. 96.
    Vranckx P, Valgimigli M, Eckardt L, Tijssen J, Lewalter T et al. 2019. Edoxaban-based versus vitamin K antagonist-based antithrombotic regimen after successful coronary stenting in patients with atrial fibrillation (ENTRUST-AF PCI): a randomised, open-label, Phase 3b trial. Lancet 394:102061335–43
    [Google Scholar]
  97. 97.
    Gargiulo G, Goette A, Tijssen J, Eckardt L, Lewalter T et al. 2019. Safety and efficacy outcomes of double versus triple antithrombotic therapy in patients with atrial fibrillation following percutaneous coronary intervention: a systematic review and meta-analysis of non-vitamin K antagonist oral anticoagulant-based randomized clinical trials. Eur. Heart J. 40:463757–67
    [Google Scholar]
  98. 98.
    Potpara TS, Mujovic N, Proietti M, Dagres N, Hindricks G et al. 2020. Revisiting the effects of omitting aspirin in combined antithrombotic therapies for atrial fibrillation and acute coronary syndromes or percutaneous coronary interventions: meta-analysis of pooled data from the PIONEER AF-PCI, RE-DUAL PCI, and AUGUSTUS trials. Europace 22:133–46
    [Google Scholar]
  99. 99.
    Galli M, Andreotti F, Porto I, Crea F. 2020. Intracranial haemorrhages versus stent thromboses with direct oral anticoagulant plus single antiplatelet agent or triple antithrombotic therapy: a meta-analysis of randomized trials in atrial fibrillation and percutaneous coronary intervention/acute coronary syndrome patients. Europace 22:4538–46
    [Google Scholar]
  100. 100.
    January CT, Wann LS, Calkins H, Chen LY, Cigarroa JE et al. 2019. AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients with Atrial Fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society in collaboration with the Society of Thoracic Surgeons. Circulation 140:2e125–51
    [Google Scholar]
  101. 101.
    Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ et al. 2021. 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): the task force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 42:5373–498
    [Google Scholar]
  102. 102.
    Olie RH, van der Meijden PEJ, ten Cate H. 2018. The coagulation system in atherothrombosis: implications for new therapeutic strategies. Res. Pract. Thromb. Haemost. 2:2188–98
    [Google Scholar]
  103. 103.
    Plank F, Beyer C, Friedrich G, Stuhlinger M, Hintringer F et al. 2018. Influence of vitamin K antagonists and direct oral anticoagulation on coronary artery disease: a CTA analysis. Int. J. Cardiol. 260:11–15
    [Google Scholar]
  104. 104.
    Eikelboom JW, Connolly SJ, Bosch J, Dagenais GR, Hart RG et al. 2017. Rivaroxaban with or without aspirin in stable cardiovascular disease. N. Engl. J. Med. 377:141319–30
    [Google Scholar]
  105. 105.
    Mega JL, Braunwald E, Wiviott SD, Bassand JP, Bhatt DL et al. 2012. Rivaroxaban in patients with a recent acute coronary syndrome. N. Engl. J. Med. 366:19–19
    [Google Scholar]
  106. 106.
    Collet JP, Thiele H, Barbato E, Barthelemy O, Bauersachs J et al. 2021. 2020 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 42:141289–367
    [Google Scholar]
  107. 107.
    Varghese D, Ishida C, Haseer Koya H. 2022. Polypharmacy Treasure Island, FL: StatPearls
  108. 108.
    Jaspers Focks J, Brouwer MA, Wojdyla DM, Thomas L, Lopes RD et al. 2016. Polypharmacy and effects of apixaban versus warfarin in patients with atrial fibrillation: post hoc analysis of the ARISTOTLE trial. BMJ 353:i2868
    [Google Scholar]
  109. 109.
    Piccini JP, Hellkamp AS, Washam JB, Becker RC, Breithardt G et al. 2016. Polypharmacy and the efficacy and safety of rivaroxaban versus warfarin in the prevention of stroke in patients with nonvalvular atrial fibrillation. Circulation 133:4352–60
    [Google Scholar]
  110. 110.
    Hodin S, Basset T, Jacqueroux E, Delezay O, Clotagatide A et al. 2018. In vitro comparison of the role of P-glycoprotein and breast cancer resistance protein on direct oral anticoagulants disposition. Eur. J. Drug Metab. Pharmacokinet. 43:2183–91
    [Google Scholar]
  111. 111.
    Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KLR et al. 2010. Membrane transporters in drug development. Nat. Rev. Drug Discov. 9:3215–36
    [Google Scholar]
  112. 112.
    Jungbauer L, Dobias C, Stollberger C, Weidinger F. 2010. The frequency of prescription of P-glycoprotein-affecting drugs in atrial fibrillation. J. Thromb. Haemost. 8:92069–70
    [Google Scholar]
  113. 113.
    Grymonprez M, Vanspranghe K, Capiau A, Boussery K, Steurbaut S, Lahousse L. 2022. Impact of P-glycoprotein and/or CYP3A4-interacting drugs on effectiveness and safety of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation: a meta-analysis. Br. J. Clin. Pharmacol. 88:73039–51
    [Google Scholar]
  114. 114.
    Gronich N, Stein N, Muszkat M. 2021. Association between use of pharmacokinetic-interacting drugs and effectiveness and safety of direct acting oral anticoagulants: nested case-control study. Clin. Pharmacol. Ther. 110:61526–36
    [Google Scholar]
  115. 115.
    Hill K, Sucha E, Rhodes E, Carrier M, Garg AX et al. 2020. Risk of hospitalization with hemorrhage among older adults taking clarithromycin versus azithromycin and direct oral anticoagulants. JAMA Intern. Med. 180:81052–60
    [Google Scholar]
  116. 116.
    Terrier J, Gaspar F, Guidi M, Fontana P, Daali Y et al. 2022. Population pharmacokinetic models for direct oral anticoagulants: a systematic review and clinical appraisal using exposure simulation. Clin. Pharmacol. Ther. 112:2353–63
    [Google Scholar]
  117. 117.
    Eikelboom JW, Connolly SJ, Brueckmann M, Granger CB, Kappetein AP et al. 2013. Dabigatran versus warfarin in patients with mechanical heart valves. N. Engl. J. Med. 369:131206–14
    [Google Scholar]
  118. 118.
    Jawitz OK, Wang TY, Lopes RD, Chavez A, Boyer B et al. 2020. Rationale and design of PROACT Xa: a randomized, multicenter, open-label, clinical trial to evaluate the efficacy and safety of apixaban versus warfarin in patients with a mechanical On-X aortic heart valve. Am. Heart J. 227:91–99
    [Google Scholar]
  119. 119.
    Neale T. 2022. Another DOAC fails in the setting of mechanical heart valves. tctMD Sept. 28. https://www.tctmd.com/news/another-doac-fails-setting-mechanical-heart-valves
    [Google Scholar]
  120. 120.
    Fanaroff AC, Vora AN, Lopes RD. 2022. Non-vitamin K antagonist oral anticoagulants in patients with valvular heart disease. Eur. Heart J. Suppl. 24:Suppl. AA19–31
    [Google Scholar]
  121. 121.
    ten Berg J, Rocca B, Angiolillo DJ, Hayashida K. 2022. The search for optimal antithrombotic therapy in transcatheter aortic valve implantation: facts and uncertainties. Eur. Heart J. 43:444616–34
    [Google Scholar]
  122. 122.
    Yin OQP, Antman EM, Braunwald E, Mercuri MF, Miller R et al. 2018. Linking endogenous factor Xa activity, a biologically relevant pharmacodynamic marker, to edoxaban plasma concentrations and clinical outcomes in the ENGAGE AF-TIMI 48 trial. Circulation 138:181963–73
    [Google Scholar]
  123. 123.
    Akbulut AC, Arisz R, Baaten C, Baildildinova G, Barakzie A et al. 2023. Blood coagulation and beyond: position paper from the Fourth Maastricht Consensus Conference on Thrombosis. Thromb. Haemost. 123:8808–39
    [Google Scholar]
  124. 124.
    Schmohl M, Glund S, Harada A, Imazu S, De Smet M et al. 2017. Idarucizumab does not have procoagulant effects: assessment of thrombosis biomarkers in healthy volunteers. Thromb. Haemost. 117:2269–76
    [Google Scholar]
  125. 125.
    Pollack CV Jr., Reilly PA, Weitz JI. 2017. Dabigatran reversal with idarucizumab. N. Engl. J. Med. 377:171691–92
    [Google Scholar]
  126. 126.
    Lu G, DeGuzman FR, Hollenbach SJ, Karbarz MJ, Abe K et al. 2013. A specific antidote for reversal of anticoagulation by direct and indirect inhibitors of coagulation factor Xa. Nat. Med. 19:4446–51
    [Google Scholar]
  127. 127.
    Connolly SJ, Crowther M, Eikelboom JW, Gibson CM, Curnutte JT et al. 2019. Full study report of andexanet alfa for bleeding associated with factor Xa inhibitors. N. Engl. J. Med. 380:141326–35
    [Google Scholar]
  128. 128.
    Milling TJ Jr., Middeldorp S, Xu L, Koch B, Demchuk A et al. 2023. Final study report of andexanet alfa for major bleeding with factor Xa inhibitors. Circulation 147:1026–38
    [Google Scholar]
  129. 129.
    Apostel H, Winckers K, Bidar E, Schreiber JU. 2021. Successful antithrombin administration in andexanet alfa-associated heparin resistance. J. Cardiothorac. Vasc. Anesth. 35:3904–7
    [Google Scholar]
  130. 130.
    Lu G, Lin JP, Curnutte JT, Conley PB. 2017. Effect of andexanet-TFPI interaction on in vitro thrombin formation and coagulation markers in the TF-pathway. Blood 130:629
    [Google Scholar]
  131. 131.
    Siegal DM, Curnutte JT, Connolly SJ, Lu G, Conley PB et al. 2015. Andexanet alfa for the reversal of factor Xa inhibitor activity. N. Engl. J. Med. 373:252413–24
    [Google Scholar]
  132. 132.
    Costa OS, Connolly SJ, Sharma M, Beyer-Westendorf J, Christoph MJ et al. 2022. Andexanet alfa versus four-factor prothrombin complex concentrate for the reversal of apixaban- or rivaroxaban-associated intracranial hemorrhage: a propensity score-overlap weighted analysis. Crit. Care 26:1180
    [Google Scholar]
  133. 133.
    Cohen AT, Lewis M, Connor A, Connolly SJ, Yue P et al. 2022. Thirty-day mortality with andexanet alfa compared with prothrombin complex concentrate therapy for life-threatening direct oral anticoagulant-related bleeding. J. Am. Coll. Emerg. Physicians Open 3:2e12655
    [Google Scholar]
  134. 134.
    Leentjens J, Middeldorp S, Jung C. 2022. A short review of ciraparantag in perspective of the currently available anticoagulant reversal agents. Drug Discov. Today 27:10103332
    [Google Scholar]
  135. 135.
    Sharman Moser S, Chodick G, Ni YG, Chalothorn D, Wang MD et al. 2022. The association between factor XI deficiency and the risk of bleeding, cardiovascular, and venous thromboembolic events. Thromb. Haemost. 122:5808–17
    [Google Scholar]
  136. 136.
    Maas C, Renne T. 2018. Coagulation factor XII in thrombosis and inflammation. Blood 131:171903–9
    [Google Scholar]
  137. 137.
    Hsu C, Hutt E, Bloomfield DM, Gailani D, Weitz JI. 2021. Factor XI inhibition to uncouple thrombosis from hemostasis: JACC review topic of the week. J. Am. Coll. Cardiol. 78:6625–31
    [Google Scholar]
  138. 138.
    Fredenburgh JC, Weitz JI. 2021. New anticoagulants: moving beyond the direct oral anticoagulants. J. Thromb. Haemost. 19:120–29
    [Google Scholar]
  139. 139.
    Gigante B, ten Cate H. 2023. Factor XI inhibitors in patients with cardiovascular disease and a high risk of bleeding: a cautionary tale. Nat. Rev. Cardiol 20:511–12
    [Google Scholar]
  140. 140.
    Buller HR, Bethune C, Bhanot S, Gailani D, Monia BP et al. 2015. Factor XI antisense oligonucleotide for prevention of venous thrombosis. N. Engl. J. Med. 372:3232–40
    [Google Scholar]
  141. 141.
    Nopp S, Kraemmer D, Ay C. 2022. Factor XI inhibitors for prevention and treatment of venous thromboembolism: a review on the rationale and update on current evidence. Front. Cardiovasc. Med. 9:903029
    [Google Scholar]
  142. 142.
    Rao SV, Kirsch B, Bhatt DL, Budaj A, Coppolecchia R et al. 2022. A multicenter, Phase 2, randomized, placebo-controlled, double-blind, parallel-group, dose-finding trial of the oral factor XIa inhibitor asundexian to prevent adverse cardiovascular outcomes after acute myocardial infarction. Circulation 146:161196–206
    [Google Scholar]
  143. 143.
    Piccini JP, Caso V, Connolly SJ, Fox KAA, Oldgren J et al. 2022. Safety of the oral factor XIa inhibitor asundexian compared with apixaban in patients with atrial fibrillation (PACIFIC-AF): a multicentre, randomised, double-blind, double-dummy, dose-finding phase 2 study. Lancet 399:103331383–90
    [Google Scholar]
  144. 144.
    Shoamanesh A, Mundl H, Smith EE, Masjuan J, Milanov I et al. 2022. Factor XIa inhibition with asundexian after acute non-cardioembolic ischaemic stroke (PACIFIC-Stroke): an international, randomised, double-blind, placebo-controlled, Phase 2b trial. Lancet 400:10357997–1007
    [Google Scholar]
  145. 145.
    Gibson C, Windecker S. 2022. Hot line session 5 Congr. Sess., Eur. Soc. Cardiol. Congress 2022 Aug. 28. https://esc365.escardio.org/Session/37024
  146. 146.
    Nagy M, ten Cate H. 2022. What to expect from drug targeting factor XI?. Cardiovasc. Res. 118:10e72–74
    [Google Scholar]
  147. 147.
    Cao Y, Wang Y, Zhou Z, Pan C, Jiang L et al. 2022. Liver-heart cross-talk mediated by coagulation factor XI protects against heart failure. Science 377:66131399–406
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-032823-122811
Loading
/content/journals/10.1146/annurev-pharmtox-032823-122811
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error