1932

Abstract

Sleep is essential for human well-being, yet the quality and quantity of sleep reduce as age advances. Older persons (>65 years old) are more at risk of disorders accompanied and/or exacerbated by poor sleep. Furthermore, evidence supports a bidirectional relationship between disrupted sleep and Alzheimer's disease (AD) or related dementias. Orexin/hypocretin neuropeptides stabilize wakefulness, and several orexin receptor antagonists (ORAs) are approved for the treatment of insomnia in adults. Dysregulation of the orexin system occurs in aging and AD, positioning ORAs as advantageous for these populations. Indeed, several clinical studies indicate that ORAs are efficacious hypnotics in older persons and dementia patients and, as in adults, are generally well tolerated. ORAs are likely to be more effective when administered early in sleep/wake dysregulation to reestablish good sleep/wake-related behaviors and reduce the accumulation of dementia-associated proteinopathic substrates. Improving sleep in aging and dementia represents a tremendous opportunity to benefit patients, caregivers, and health systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-040323-031929
2024-01-23
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/64/1/annurev-pharmtox-040323-031929.html?itemId=/content/journals/10.1146/annurev-pharmtox-040323-031929&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Worley SL. 2018. The extraordinary importance of sleep: The detrimental effects of inadequate sleep on health and public safety drive an explosion of sleep research. Pharm. Ther. 43:758–63
    [Google Scholar]
  2. 2.
    Ford ES, Cunningham TJ, Croft JB. 2015. Trends in self-reported sleep duration among US adults from 1985 to 2012. Sleep 38:829–32
    [Google Scholar]
  3. 3.
    Mander BA, Winer JR, Walker MP. 2017. Sleep and human aging. Neuron 94:19–36
    [Google Scholar]
  4. 4.
    Harper S. 2014. Economic and social implications of aging societies. Science 346:587–91
    [Google Scholar]
  5. 5.
    Medic G, Wille M, Hemels ME. 2017. Short- and long-term health consequences of sleep disruption. Nat. Sci. Sleep 9:151–61
    [Google Scholar]
  6. 6.
    Hoyer D, Jacobson LH. 2013. Orexin in sleep, addiction and more: Is the perfect insomnia drug at hand?. Neuropeptides 47:477–88
    [Google Scholar]
  7. 7.
    Jacobson LH, Hoyer D, de Lecea L. 2022. Hypocretins (orexins): the ultimate translational neuropeptides. J. Intern. Med. 291:533–56
    [Google Scholar]
  8. 8.
    Lowe CJ, Safati A, Hall PA. 2017. The neurocognitive consequences of sleep restriction: a meta-analytic review. Neurosci. Biobehav. Rev. 80:586–604
    [Google Scholar]
  9. 9.
    Krause AJ, Simon EB, Mander BA, Greer SM, Saletin JM et al. 2017. The sleep-deprived human brain. Nat. Rev. Neurosci. 18:404–18
    [Google Scholar]
  10. 10.
    Kim TW, Jeong JH, Hong SC. 2015. The impact of sleep and circadian disturbance on hormones and metabolism. Int. J. Endocrinol. 2015:591729
    [Google Scholar]
  11. 11.
    Mostaghimi L, Obermeyer WH, Ballamudi B, Martinez-Gonzalez D, Benca RM. 2005. Effects of sleep deprivation on wound healing. J. Sleep Res. 14:213–19
    [Google Scholar]
  12. 12.
    Li SB, Borniger JC, Yamaguchi H, Hedou J, Gaudilliere B, de Lecea L. 2020. Hypothalamic circuitry underlying stress-induced insomnia and peripheral immunosuppression. Sci. Adv. 6:abc2590
    [Google Scholar]
  13. 13.
    Besedovsky L, Lange T, Haack M. 2019. The sleep-immune crosstalk in health and disease. Physiol. Rev. 99:1325–80
    [Google Scholar]
  14. 14.
    Garbarino S, Lanteri P, Bragazzi NL, Magnavita N, Scoditti E. 2021. Role of sleep deprivation in immune-related disease risk and outcomes. Commun. Biol. 4:1304
    [Google Scholar]
  15. 15.
    Everson CA, Henchen CJ, Szabo A, Hogg N. 2014. Cell injury and repair resulting from sleep loss and sleep recovery in laboratory rats. Sleep 37:1929–40
    [Google Scholar]
  16. 16.
    Hori T, Sugita Y, Koga E, Shirakawa S, Inoue K et al. 2001. Proposed supplements and amendments to ‘A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages ofHuman Subjects’, the Rechtschaffen & Kales (1968) standard. Psychiatry Clin. Neurosci. 55:305–10
    [Google Scholar]
  17. 17.
    Rechtschaffen A, Kales A. 1968. A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects Washington, DC: Public Health Serv., US Gov. Print. Off.
  18. 18.
    Rodenbeck A, Binder R, Geisler P, Danker-Hopfe H, Lund R et al. 2006. A review of sleep EEG patterns. Part I: a compilation of amended rules for their visual recognition according to Rechtschaffen and Kales. Somnologie 10:159–75
    [Google Scholar]
  19. 19.
    Sullivan SS, Carskadon MA, Dement WC, Jackson CL 2022. Normal human sleep: an overview. Principles and Practice of Sleep Medicine M Kryger, T Roth, CA Goldstein, WC Dement 16–26. Philadelphia, PA: Elsevier
    [Google Scholar]
  20. 20.
    Siegel JM. 2022. Sleep function: an evolutionary perspective. Lancet Neurol. 21:937–46
    [Google Scholar]
  21. 21.
    Borbély AA. 1982. A two process model of sleep regulation. Hum. Neurobiol. 1:195–204
    [Google Scholar]
  22. 22.
    Borbély AA, Daan S, Wirz-Justice A, Deboer T. 2016. The two-process model of sleep regulation: a reappraisal. J. Sleep Res. 25:131–43
    [Google Scholar]
  23. 23.
    Saper CB, Fuller PM. 2017. Wake-sleep circuitry: an overview. Curr. Opin. Neurobiol. 44:186–92
    [Google Scholar]
  24. 24.
    Scammell TE, Arrigoni E, Lipton JO. 2017. Neural circuitry of wakefulness and sleep. Neuron 93:747–65
    [Google Scholar]
  25. 25.
    Fuller P, Sherman D, Pedersen NP, Saper CB, Lu J. 2011. Reassessment of the structural basis of the ascending arousal system. J. Comp. Neurol. 519:933–56
    [Google Scholar]
  26. 26.
    Carter ME, Yizhar O, Chikahisa S, Nguyen H, Adamantidis A et al. 2010. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat. Neurosci. 13:1526–33
    [Google Scholar]
  27. 27.
    Monti JM. 2011. Serotonin control of sleep-wake behavior. Sleep Med. Rev. 15:269–81
    [Google Scholar]
  28. 28.
    Lu J, Jhou TC, Saper CB. 2006. Identification of wake-active dopaminergic neurons in the ventral periaqueductal gray matter. J. Neurosci. 26:193–202
    [Google Scholar]
  29. 29.
    Yoshikawa T, Nakamura T, Yanai K. 2021. Histaminergic neurons in the tuberomammillary nucleus as a control centre for wakefulness. Br. J. Pharmacol. 178:750–69
    [Google Scholar]
  30. 30.
    Lu J, Greco MA, Shiromani P, Saper CB. 2000. Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. J. Neurosci. 20:3830–42
    [Google Scholar]
  31. 31.
    Gvilia I, Xu F, McGinty D, Szymusiak R. 2006. Homeostatic regulation of sleep: a role for preoptic area neurons. J. Neurosci. 26:9426–33
    [Google Scholar]
  32. 32.
    Anaclet C, Ferrari L, Arrigoni E, Bass CE, Saper CB et al. 2014. The GABAergic parafacial zone is a medullary slow wave sleep-promoting center. Nat. Neurosci. 17:1217–24
    [Google Scholar]
  33. 33.
    Saper CB, Chou TC, Scammell TE. 2001. The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 24:726–31
    [Google Scholar]
  34. 34.
    de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE et al. 1998. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. PNAS 95:322–27
    [Google Scholar]
  35. 35.
    Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM et al. 1998. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein–coupled receptors that regulate feeding behavior. Cell 92:573–85
    [Google Scholar]
  36. 36.
    Alexander SP, Christopoulos A, Davenport AP, Kelly E, Mathie A et al. 2021. The concise guide to pharmacology 2021/22: G protein–coupled receptors. Br. J. Pharmacol. 178:Suppl. 1S27–156
    [Google Scholar]
  37. 37.
    Soya S, Sakurai T. 2020. Evolution of orexin neuropeptide system: structure and function. Front. Neurosci. 14:691
    [Google Scholar]
  38. 38.
    Azeez IA, Igado OO, Olopade JO. 2021. An overview of the orexinergic system in different animal species. Metab. Brain Dis 36:1419–44
    [Google Scholar]
  39. 39.
    Lee MG, Hassani OK, Jones BE. 2005. Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J. Neurosci. 25:6716–20
    [Google Scholar]
  40. 40.
    Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC et al. 1998. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci. 18:9996–10015
    [Google Scholar]
  41. 41.
    Li S-B, de Lecea L. 2020. The hypocretin (orexin) system: from a neural circuitry perspective. Neuropharmacology 167:107993
    [Google Scholar]
  42. 42.
    Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE. 2010. Sleep state switching. Neuron 68:1023–42
    [Google Scholar]
  43. 43.
    Luppi PH, Gervasoni D, Verret L, Goutagny R, Peyron C et al. 2006. Paradoxical (REM) sleep genesis: the switch from an aminergic-cholinergic to a GABAergic-glutamatergic hypothesis. J. Physiol. 100:271–83
    [Google Scholar]
  44. 44.
    Shouse MN, Siegel JM. 1992. Pontine regulation of REM sleep components in cats: Integrity of the pedunculopontine tegmentum (PPT) is important for phasic events but unnecessary for atonia during REM sleep. Brain Res 571:50–63
    [Google Scholar]
  45. 45.
    Blanco-Centurion C, Gerashchenko D, Shiromani PJ. 2007. Effects of saporin-induced lesions of three arousal populations on daily levels of sleep and wake. J. Neurosci. 27:14041–48
    [Google Scholar]
  46. 46.
    Nishino S, Ripley B, Overeem S, Lammers GJ, Mignot E. 2000. Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355:39–40
    [Google Scholar]
  47. 47.
    Nishino S, Ripley B, Overeem S, Nevsimalova S, Lammers GJ et al. 2001. Low cerebrospinal fluid hypocretin (orexin) and altered energy homeostasis in human narcolepsy. Ann. Neurol. 50:381–88
    [Google Scholar]
  48. 48.
    Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T et al. 1999. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98:437–51
    [Google Scholar]
  49. 49.
    Lin L, Faraco J, Li R, Kadotani H, Rogers W et al. 1999. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98:365–76
    [Google Scholar]
  50. 50.
    Bassetti CLA, Adamantidis A, Burdakov D, Han F, Gay S et al. 2019. Narcolepsy—clinical spectrum, aetiopathophysiology, diagnosis and treatment. Nat. Rev. Neurol. 15:519–39
    [Google Scholar]
  51. 51.
    Saper CB. 2013. The neurobiology of sleep. Continuum 19:19–31
    [Google Scholar]
  52. 52.
    Mieda M, Hasegawa E, Kisanuki YY, Sinton CM, Yanagisawa M, Sakurai T. 2011. Differential roles of orexin receptor-1 and -2 in the regulation of non-REM and REM sleep. J. Neurosci. 31:6518–26
    [Google Scholar]
  53. 53.
    Hara J, Beuckmann CT, Nambu T, Willie JT, Chemelli RM et al. 2001. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30:345–54
    [Google Scholar]
  54. 54.
    Lin L, Faraco J, Li R, Kadotani H, Rogers W et al. 1999. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98:365–76
    [Google Scholar]
  55. 55.
    Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L. 2007. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450:420–24
    [Google Scholar]
  56. 56.
    Tsunematsu T, Kilduff TS, Boyden ES, Takahashi S, Tominaga M, Yamanaka A. 2011. Acute optogenetic silencing of orexin/hypocretin neurons induces slow-wave sleep in mice. J. Neurosci. 31:10529–39
    [Google Scholar]
  57. 57.
    Willie JT, Chemelli RM, Sinton CM, Tokita S, Williams SC et al. 2003. Distinct narcolepsy syndromes in orexin receptor-2 and orexin null mice: molecular genetic dissection of non-REM and REM sleep regulatory processes. Neuron 38:715–30
    [Google Scholar]
  58. 58.
    Brisbare-Roch C, Dingemanse J, Koberstein R, Hoever P, Aissaoui H et al. 2007. Promotion of sleep by targeting the orexin system in rats, dogs and humans. Nat. Med. 13:150–55
    [Google Scholar]
  59. 59.
    Herring WJ, Connor KM, Ivgy-May N, Snyder E, Liu K et al. 2016. Suvorexant in patients with insomnia: results from two 3-month randomized controlled clinical trials. Biol. Psychiatry 79:136–48
    [Google Scholar]
  60. 60.
    Karppa M, Yardley J, Pinner K, Filippov G, Zammit G et al. 2020. Long-term efficacy and tolerability of lemborexant compared with placebo in adults with insomnia disorder: results from the phase 3 randomized clinical trial SUNRISE 2. Sleep 43:zsaa123
    [Google Scholar]
  61. 61.
    Mignot E, Mayleben D, Fietze I, Leger D, Zammit G et al. 2022. Safety and efficacy of daridorexant in patients with insomnia disorder: results from two multicentre, randomised, double-blind, placebo-controlled, phase 3 trials. Lancet Neurol. 21:125–39
    [Google Scholar]
  62. 62.
    Mang GM, Durst T, Burki H, Imobersteg S, Abramowski D et al. 2012. The dual orexin receptor antagonist almorexant induces sleep and decreases orexin-induced locomotion by blocking orexin 2 receptors. Sleep 35:1625–35
    [Google Scholar]
  63. 63.
    Clark JW, Brian ML, Drummond SPA, Hoyer D, Jacobson LH. 2020. Effects of orexin receptor antagonism on human sleep architecture: a systematic review. Sleep Med. Rev. 53:101332
    [Google Scholar]
  64. 64.
    Mahoney CE, Mochizuki T, Scammell TE. 2020. Dual orexin receptor antagonists increase sleep and cataplexy in wild type mice. Sleep 43:zsz302
    [Google Scholar]
  65. 65.
    Betschart C, Hintermann S, Behnke D, Cotesta S, Fendt M et al. 2013. Identification of a novel series of orexin receptor antagonists with a distinct effect on sleep architecture for the treatment of insomnia. J. Med. Chem. 56:7590–607
    [Google Scholar]
  66. 66.
    Dugovic C, Shelton JE, Yun S, Bonaventure P, Shireman BT, Lovenberg TW. 2014. Orexin-1 receptor blockade dysregulates REM sleep in the presence of orexin-2 receptor antagonism. Front. Neurosci. 8:28
    [Google Scholar]
  67. 67.
    Hoyer D, Durst T, Fendt M, Jacobson LH, Betschart C et al. 2013. Distinct effects of IPSU and suvorexant on mouse sleep architecture. Front. Neurosci. 7:235
    [Google Scholar]
  68. 68.
    Bonaventure P, Yun S, Johnson PL, Shekhar A, Fitz SD et al. 2015. A selective orexin-1 receptor antagonist attenuates stress-induced hyperarousal without hypnotic effects. J. Pharmacol. Exp. Ther. 352:590–601
    [Google Scholar]
  69. 69.
    Bonaventure P, Dugovic C, Shireman B, Preville C, Yun S et al. 2017. Evaluation of JNJ-54717793 a novel brain penetrant selective orexin 1 receptor antagonist in two rat models of panic attack provocation. Front. Pharmacol. 8:357
    [Google Scholar]
  70. 70.
    Recourt K, de Boer P, Zuiker R, Luthringer R, Kent J et al. 2019. The selective orexin-2 antagonist seltorexant (JNJ-42847922/MIN-202) shows antidepressant and sleep-promoting effects in patients with major depressive disorder. Transl. Psychiatry 9:216
    [Google Scholar]
  71. 71.
    Dietrich H, Jenck F. 2010. Intact learning and memory in rats following treatment with the dual orexin receptor antagonist almorexant. Psychopharmacology 212:145–54
    [Google Scholar]
  72. 72.
    Morairty SR, Wilk AJ, Lincoln WU, Neylan TC, Kilduff TS. 2014. The hypocretin/orexin antagonist almorexant promotes sleep without impairment of performance in rats. Front. Neurosci. 8:3
    [Google Scholar]
  73. 73.
    Zhou M, Tang J, Li S, Li Y, Zhao M. 2022. Orexin dual receptor antagonists, zolpidem, zopiclone, eszopiclone, and cognitive research: a comprehensive dose-response meta-analysis. Front. Hum. Neurosci. 16:1029554
    [Google Scholar]
  74. 74.
    Uslaner JM, Tye SJ, Eddins DM, Wang X, Fox SV et al. 2013. Orexin receptor antagonists differ from standard sleep drugs by promoting sleep at doses that do not disrupt cognition. Sci. Transl. Med. 5:179ra44
    [Google Scholar]
  75. 75.
    Drake CL, Kalmbach DA, Cheng P, Roth T, Tran KM et al. 2019. Can the orexin antagonist suvorexant preserve the ability to awaken to auditory stimuli while improving sleep?. J. Clin. Sleep Med. 15:1285–91
    [Google Scholar]
  76. 76.
    Tannenbaum PL, Tye SJ, Stevens J, Gotter AL, Fox SV et al. 2016. Inhibition of orexin signaling promotes sleep yet preserves salient arousability in monkeys. Sleep 39:603–12
    [Google Scholar]
  77. 77.
    Moline M, Asakura S, Beuckman C, Landry I, Setnik B et al. 2023. The abuse potential of lemborexant, a dual orexin receptor antagonist, according to the 8 factors of the Controlled Substances Act. Psychopharmacology 240:699–711
    [Google Scholar]
  78. 78.
    Yamamoto H, Nagumo Y, Ishikawa Y, Irukayama-Tomobe Y, Namekawa Y et al. 2022. OX2R-selective orexin agonism is sufficient to ameliorate cataplexy and sleep/wake fragmentation without inducing drug-seeking behavior in mouse model of narcolepsy. PLOS ONE 17:e0271901
    [Google Scholar]
  79. 79.
    Tanaka S-I, Evans R, Alexander R, Imazaki M, Touno S et al. 2020. Selective orexin 2 receptor agonist TAK-925 to treat narcolepsy: results of a randomized, double-blind, placebo-controlled, multiple-ascending-dose, phase 1 study in patients with narcolepsy type 2. J. Sleep Res. 29:171–72
    [Google Scholar]
  80. 80.
    Evans R, Kimura H, Alexander R, Davies CH, Faessel H et al. 2022. Orexin 2 receptor-selective agonist danavorexton improves narcolepsy phenotype in a mouse model and in human patients. PNAS 119:e2207531119
    [Google Scholar]
  81. 81.
    Galland BC, Taylor BJ, Elder DE, Herbison P. 2012. Normal sleep patterns in infants and children: a systematic review of observational studies. Sleep Med. Rev. 16:213–22
    [Google Scholar]
  82. 82.
    Roffwarg HP, Muzio JN, Dement WC. 1966. Ontogenetic development of the human sleep-dream cycle. Science 152:604–19
    [Google Scholar]
  83. 83.
    Ohayon MM, Carskadon MA, Guilleminault C, Vitiello MV. 2004. Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the human lifespan. Sleep 27:1255–73
    [Google Scholar]
  84. 84.
    Mander BA, Rao V, Lu B, Saletin JM, Lindquist JR et al. 2013. Prefrontal atrophy, disrupted NREM slow waves and impaired hippocampal-dependent memory in aging. Nat. Neurosci. 16:357–64
    [Google Scholar]
  85. 85.
    Munch M, Knoblauch V, Blatter K, Wirz-Justice A, Cajochen C. 2007. Is homeostatic sleep regulation under low sleep pressure modified by age?. Sleep 30:781–92
    [Google Scholar]
  86. 86.
    Dijk DJ, Groeger JA, Stanley N, Deacon S. 2010. Age-related reduction in daytime sleep propensity and nocturnal slow wave sleep. Sleep 33:211–23
    [Google Scholar]
  87. 87.
    Klerman EB, Dijk DJ. 2008. Age-related reduction in the maximal capacity for sleep—implications for insomnia. Curr. Biol. 18:1118–23
    [Google Scholar]
  88. 88.
    Philip P, Taillard J, Sagaspe P, Valtat C, Sanchez-Ortuno M et al. 2004. Age, performance and sleep deprivation. J. Sleep Res. 13:105–10
    [Google Scholar]
  89. 89.
    Harrison Y, Horne JA, Rothwell A. 2000. Prefrontal neuropsychological effects of sleep deprivation in young adults—a model for healthy aging?. Sleep 23:1067–73
    [Google Scholar]
  90. 90.
    Meyer PT, Elmenhorst D, Boy C, Winz O, Matusch A et al. 2007. Effect of aging on cerebral A1 adenosine receptors: a [18F]CPFPX PET study in humans. Neurobiol. Aging 28:1914–24
    [Google Scholar]
  91. 91.
    Lim AS, Ellison BA, Wang JL, Yu L, Schneider JA et al. 2014. Sleep is related to neuron numbers in the ventrolateral preoptic/intermediate nucleus in older adults with and without Alzheimer's disease. Brain 137:2847–61
    [Google Scholar]
  92. 92.
    de Sarro GB, Bagetta G, Ascioti C, Libri V, Nisticò G. 1988. Microinfusion of clonidine and yohimbine into locus coeruleus alters EEG power spectrum: effects of aging and reversal by phosphatidylserine. Br. J. Pharmacol. 95:1278–86
    [Google Scholar]
  93. 93.
    Wang JL, Lim AS, Chiang WY, Hsieh WH, Lo MT et al. 2015. Suprachiasmatic neuron numbers and rest-activity circadian rhythms in older humans. Ann. Neurol. 78:317–22
    [Google Scholar]
  94. 94.
    Hunt NJ, Rodriguez ML, Waters KA, Machaalani R. 2015. Changes in orexin (hypocretin) neuronal expression with normal aging in the human hypothalamus. Neurobiol. Aging 36:292–300
    [Google Scholar]
  95. 95.
    Kessler BA, Stanley EM, Frederick-Duus D, Fadel J. 2011. Age-related loss of orexin/hypocretin neurons. Neuroscience 178:82–88
    [Google Scholar]
  96. 96.
    Li S-B, Damonte VM, Chen C, Wang GX, Kebschull JM et al. 2022. Hyperexcitable arousal circuits drive sleep instability during aging. Science 375:eabh3021
    [Google Scholar]
  97. 97.
    Jacobson LH, Hoyer D. 2022. Losing sleep with age. Science 375:816–17
    [Google Scholar]
  98. 98.
    Moran M, Lynch CA, Walsh C, Coen R, Coakley D, Lawlor BA. 2005. Sleep disturbance in mild to moderate Alzheimer's disease. Sleep Med 6:347–52
    [Google Scholar]
  99. 99.
    Ju Y-ES, Lucey BP, Holtzman DM. 2014. Sleep and Alzheimer disease pathology—a bidirectional relationship. Nat. Rev. Neurol. 10:115–19
    [Google Scholar]
  100. 100.
    Bubu OM, Brannick M, Mortimer J, Umasabor-Bubu O, Sebastião YV et al. 2017. Sleep, cognitive impairment, and Alzheimer's disease: a systematic review and meta-analysis. Sleep 40:zsw032
    [Google Scholar]
  101. 101.
    Edinger JD, Bonnet MH, Bootzin RR, Doghramji K, Dorsey CM et al. 2004. Derivation of research diagnostic criteria for insomnia: report of an American Academy of Sleep Medicine Work Group. Sleep 27:1567–96
    [Google Scholar]
  102. 102.
    Wardle-Pinkston S, Slavish DC, Taylor DJ. 2019. Insomnia and cognitive performance: a systematic review and meta-analysis. Sleep Med. Rev. 48:101205
    [Google Scholar]
  103. 103.
    Sabia S, Fayosse A, Dumurgier J, van Hees VT, Paquet C et al. 2021. Association of sleep duration in middle and old age with incidence of dementia. Nat. Commun. 12:2289
    [Google Scholar]
  104. 104.
    Zhang Y, Ren R, Yang L, Zhang H, Shi Y et al. 2022. Sleep in Alzheimer's disease: a systematic review and meta-analysis of polysomnographic findings. Transl. Psychiatry 12:136
    [Google Scholar]
  105. 105.
    Lim AS, Kowgier M, Yu L, Buchman AS, Bennett DA. 2013. Sleep fragmentation and the risk of incident Alzheimer's disease and cognitive decline in older persons. Sleep 36:1027–32
    [Google Scholar]
  106. 106.
    Hahn EA, Wang HX, Andel R, Fratiglioni L. 2014. A change in sleep pattern may predict Alzheimer disease. Am. J. Geriatr. Psychiatry 22:1262–71
    [Google Scholar]
  107. 107.
    Shi L, Chen SJ, Ma MY, Bao YP, Han Y et al. 2018. Sleep disturbances increase the risk of dementia: a systematic review and meta-analysis. Sleep Med. Rev. 40:4–16
    [Google Scholar]
  108. 108.
    Winer JR, Deters KD, Kennedy G, Jin M, Goldstein-Piekarski A et al. 2021. Association of short and long sleep duration with amyloid-β burden and cognition in aging. JAMA Neurol. 78:1187–96
    [Google Scholar]
  109. 109.
    Lim MM, Gerstner JR, Holtzman DM. 2014. The sleep-wake cycle and Alzheimer's disease: What do we know?. Neurodegener. Dis. Manag. 4:351–62
    [Google Scholar]
  110. 110.
    Ju YE, Lucey BP, Holtzman DM. 2014. Sleep and Alzheimer disease pathology—a bidirectional relationship. Nat. Rev. Neurol. 10:115–19
    [Google Scholar]
  111. 111.
    Vanderheyden WM, Lim MM, Musiek ES, Gerstner JR. 2018. Alzheimer's disease and sleep-wake disturbances: amyloid, astrocytes, and animal models. J. Neurosci. 38:2901–10
    [Google Scholar]
  112. 112.
    Ju Y-ES, McLeland JS, Toedebusch CD, Xiong C, Fagan AM et al. 2013. Sleep quality and preclinical Alzheimer disease. JAMA Neurol 70:587–93
    [Google Scholar]
  113. 113.
    Peter-Derex L, Yammine P, Bastuji H, Croisile B. 2015. Sleep and Alzheimer's disease. Sleep Med. Rev. 19:29–38
    [Google Scholar]
  114. 114.
    Urrestarazu E, Iriarte J. 2016. Clinical management of sleep disturbances in Alzheimer's disease: current and emerging strategies. Nat. Sci. Sleep 8:21–33
    [Google Scholar]
  115. 115.
    Cagnin A, Fragiacomo F, Camporese G, Turco M, Bussè C et al. 2017. Sleep-wake profile in dementia with Lewy bodies, Alzheimer's disease, and normal aging. J. Alzheimer's Dis. 55:1529–36
    [Google Scholar]
  116. 116.
    Petit D, Gagnon J-F, Fantini ML, Ferini-Strambi L, Montplaisir J. 2004. Sleep and quantitative EEG in neurodegenerative disorders. J. Psychosom. Res. 56:487–96
    [Google Scholar]
  117. 117.
    Tao P, Svetnik V, Bliwise DL, Zammit G, Lines C, Herring WJ. 2023. Comparison of polysomnography in people with Alzheimer's disease and insomnia versus non-demented elderly people with insomnia. Sleep Med 101:515–21
    [Google Scholar]
  118. 118.
    Vitiello MV, Prinz PN, Williams DE, Frommlet MS, Ries RK. 1990. Sleep disturbances in patients with mild-stage Alzheimer's disease. J. Gerontol. 45:M131–38
    [Google Scholar]
  119. 119.
    Bombois S, Derambure P, Pasquier F, Monaca C. 2010. Sleep disorders in aging and dementia. J. Nutr. Health Aging 14:212–17
    [Google Scholar]
  120. 120.
    Aini N, Chu H, Banda KJ, Chen R, Lee TY et al. 2023. Prevalence of sleep-related breathing disorders and associated risk factors among people with dementia: a meta-analysis. Sleep Med 103:51–61
    [Google Scholar]
  121. 121.
    Sforza E, Roche F. 2016. Chronic intermittent hypoxia and obstructive sleep apnea: an experimental and clinical approach. Hypoxia 4:99–108
    [Google Scholar]
  122. 122.
    Ong JC, Crawford MR. 2013. Insomnia and obstructive sleep apnea. Sleep Med. Clin. 8:389–98
    [Google Scholar]
  123. 123.
    Bubu OM, Andrade AG, Umasabor-Bubu OQ, Hogan MM, Turner AD et al. 2020. Obstructive sleep apnea, cognition and Alzheimer's disease: a systematic review integrating three decades of multidisciplinary research. Sleep Med. Rev. 50:101250
    [Google Scholar]
  124. 124.
    Bliwise DL, Hughes M, McMahon PM, Kutner N. 1995. Observed sleep/wakefulness and severity of dementia in an Alzheimer's disease special care unit. J. Gerontol. A Biol. Sci. Med. Sci. 50:M303–6
    [Google Scholar]
  125. 125.
    Spalletta G, Long JD, Robinson RG, Trequattrini A, Pizzoli S et al. 2015. Longitudinal neuropsychiatric predictors of death in Alzheimer's disease. J. Alzheimer's Dis. 48:627–36
    [Google Scholar]
  126. 126.
    Irwin MR, Vitiello MV. 2019. Implications of sleep disturbance and inflammation for Alzheimer's disease dementia. Lancet Neurol 18:296–306
    [Google Scholar]
  127. 127.
    Shi Y, Holtzman DM. 2018. Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nat. Rev. Immunol. 18:759–72
    [Google Scholar]
  128. 128.
    Ferreira S, Lourenco M, Oliveira M, De Felice F. 2015. Soluble amyloid-β oligomers as synaptotoxins leading to cognitive impairment in Alzheimer's disease. Front. Cell. Neurosci. 9:191
    [Google Scholar]
  129. 129.
    Bateman RJ, Munsell LY, Morris JC, Swarm R, Yarasheski KE, Holtzman DM. 2006. Human amyloid-β synthesis and clearance rates as measured in cerebrospinal fluid in vivo. Nat. Med. 12:856–61
    [Google Scholar]
  130. 130.
    Kang JE, Lim MM, Bateman RJ, Lee JJ, Smyth LP et al. 2009. Amyloid-β dynamics are regulated by orexin and the sleep-wake cycle. Science 326:1005–7
    [Google Scholar]
  131. 131.
    Lucey BP, Fagan AM, Holtzman DM, Morris JC, Bateman RJ. 2017. Diurnal oscillation of CSF Aβ and other AD biomarkers. Mol. Neurodegener. 12:36
    [Google Scholar]
  132. 132.
    Roh JH, Huang Y, Bero AW, Kasten T, Stewart FR et al. 2012. Disruption of the sleep-wake cycle and diurnal fluctuation of β-amyloid in mice with Alzheimer's disease pathology. Sci. Transl. Med. 4:150ra22
    [Google Scholar]
  133. 133.
    Del Gallo F, Bianchi S, Bertani I, Messa M, Colombo L et al. 2021. Sleep inhibition induced by amyloid-β oligomers is mediated by the cellular prion protein. J. Sleep Res. 30:e13187
    [Google Scholar]
  134. 134.
    Ju YS, Ooms SJ, Sutphen C, Macauley SL, Zangrilli MA et al. 2017. Slow wave sleep disruption increases cerebrospinal fluid amyloid-β levels. Brain 140:2104–11
    [Google Scholar]
  135. 135.
    Ooms S, Overeem S, Besse K, Rikkert MO, Verbeek M, Claassen JA. 2014. Effect of 1 night of total sleep deprivation on cerebrospinal fluid β-amyloid 42 in healthy middle-aged men: a randomized clinical trial. JAMA Neurol 71:971–77
    [Google Scholar]
  136. 136.
    Shokri-Kojori E, Wang GJ, Wiers CE, Demiral SB, Guo M et al. 2018. β-Amyloid accumulation in the human brain after one night of sleep deprivation. PNAS 115:4483–88
    [Google Scholar]
  137. 137.
    Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T et al. 2010. Decreased clearance of CNS β-amyloid in Alzheimer's disease. Science 330:1774
    [Google Scholar]
  138. 138.
    Hablitz LM, Vinitsky HS, Sun Q, Stæger FF, Sigurdsson B et al. 2019. Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. Sci. Adv. 5:eaav5447
    [Google Scholar]
  139. 139.
    Mander BA, Marks SM, Vogel JW, Rao V, Lu B et al. 2015. β-amyloid disrupts human NREM slow waves and related hippocampus-dependent memory consolidation. Nat. Neurosci. 18:1051–57
    [Google Scholar]
  140. 140.
    Marshall L, Helgadottir H, Molle M, Born J 2006. Boosting slow oscillations during sleep potentiates memory. Nature 444:610–13
    [Google Scholar]
  141. 141.
    Chauvette S, Seigneur J, Timofeev I. 2012. Sleep oscillations in the thalamocortical system induce long-term neuronal plasticity. Neuron 75:1105–13
    [Google Scholar]
  142. 142.
    Miyamoto D, Hirai D, Murayama M. 2017. The roles of cortical slow waves in synaptic plasticity and memory consolidation. Front. Neural Circuits 11:92
    [Google Scholar]
  143. 143.
    Insel PS, Mohlenhoff BS, Neylan TC, Krystal AD, Mackin RS. 2021. Association of sleep and β-amyloid pathology among older cognitively unimpaired adults. JAMA Netw. Open 4:e2117573
    [Google Scholar]
  144. 144.
    Wisor JP, Edgar DM, Yesavage J, Ryan HS, McCormick CM et al. 2005. Sleep and circadian abnormalities in a transgenic mouse model of Alzheimer's disease: a role for cholinergic transmission. Neuroscience 131:375–85
    [Google Scholar]
  145. 145.
    Zhang B, Veasey SC, Wood MA, Leng LZ, Kaminski C et al. 2005. Impaired rapid eye movement sleep in the Tg2576 APP murine model of Alzheimer's disease with injury to pedunculopontine cholinergic neurons. Am. J. Pathol. 167:1361–69
    [Google Scholar]
  146. 146.
    Colby-Milley J, Cavanagh C, Jego S, Breitner JC, Quirion R, Adamantidis A. 2015. Sleep-wake cycle dysfunction in the TgCRND8 mouse model of Alzheimer's disease: from early to advanced pathological stages. PLOS ONE 10:e0130177
    [Google Scholar]
  147. 147.
    Duncan MJ, Smith JT, Franklin KM, Beckett TL, Murphy MP et al. 2012. Effects of aging and genotype on circadian rhythms, sleep, and clock gene expression in APPxPS1 knock-in mice, a model for Alzheimer's disease. Exp. Neurol. 236:249–58
    [Google Scholar]
  148. 148.
    Schneider F, Baldauf K, Wetzel W, Reymann KG. 2014. Behavioral and EEG changes in male 5xFAD mice. Physiol. Behav. 135:25–33
    [Google Scholar]
  149. 149.
    Sethi M, Joshi SS, Webb RL, Beckett TL, Donohue KD et al. 2015. Increased fragmentation of sleep-wake cycles in the 5XFAD mouse model of Alzheimer's disease. Neuroscience 290:80–89
    [Google Scholar]
  150. 150.
    Platt B, Drever B, Koss D, Stoppelkamp S, Jyoti A et al. 2011. Abnormal cognition, sleep, EEG and brain metabolism in a novel knock-in Alzheimer mouse, PLB1. PLOS ONE 6:e27068
    [Google Scholar]
  151. 151.
    Roh JH, Huang Y, Bero AW, Kasten T, Stewart FR et al. 2012. Disruption of the sleep-wake cycle and diurnal fluctuation of β-amyloid in mice with Alzheimer's disease pathology. Sci. Transl. Med. 4:150ra22
    [Google Scholar]
  152. 152.
    Zhou F, Yan XD, Wang C, He YX, Li YY et al. 2020. Suvorexant ameliorates cognitive impairments and pathology in APP/PS1 transgenic mice. Neurobiol. Aging 91:66–75
    [Google Scholar]
  153. 153.
    Zhao P, You Y, Wang Z, Zhou Y, Chai G et al. 2022. Orexin A peptidergic system: comparative sleep behavior, morphology and population in brains between wild type and Alzheimer's disease mice. Brain Struct. Funct. 227:1051–65
    [Google Scholar]
  154. 154.
    Braak H, Del Tredici K. 2015. The preclinical phase of the pathological process underlying sporadic Alzheimer's disease. Brain 138:2814–33
    [Google Scholar]
  155. 155.
    Braak H, Thal DR, Ghebremedhin E, Del Tredici K. 2011. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J. Neuropathol. Exp. Neurol. 70:960–69
    [Google Scholar]
  156. 156.
    Yamada K, Holth JK, Liao F, Stewart FR, Mahan TE et al. 2014. Neuronal activity regulates extracellular tau in vivo. J. Exp. Med. 211:387–93
    [Google Scholar]
  157. 157.
    Pooler AM, Phillips EC, Lau DH, Noble W, Hanger DP. 2013. Physiological release of endogenous tau is stimulated by neuronal activity. EMBO Rep 14:389–94
    [Google Scholar]
  158. 158.
    Holth JK, Fritschi SK, Wang C, Pedersen NP, Cirrito JR et al. 2019. The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans. Science 363:880–84
    [Google Scholar]
  159. 159.
    Sani TP, Bond RL, Marshall CR, Hardy CJD, Russell LL et al. 2019. Sleep symptoms in syndromes of frontotemporal dementia and Alzheimer's disease: a proof-of-principle behavioural study. eNeurologicalSci 17:100212
    [Google Scholar]
  160. 160.
    Bonakis A, Economou N-T, Paparrigopoulos T, Bonanni E, Maestri M et al. 2013. Sleep in frontotemporal dementia is equally or possibly more disrupted, and at an earlier stage, when compared to sleep in Alzheimer's disease. J. Alzheimer's Dis. 38:85–91
    [Google Scholar]
  161. 161.
    Anderson KN, Hatfield C, Kipps C, Hastings M, Hodges JR. 2009. Disrupted sleep and circadian patterns in frontotemporal dementia. Eur. J. Neurol. 16:317–23
    [Google Scholar]
  162. 162.
    Holth J, Patel T, Holtzman DM. 2017. Sleep in Alzheimer's disease—beyond amyloid. Neurobiol. Sleep Circadian Rhythms 2:4–14
    [Google Scholar]
  163. 163.
    Lew CH, Petersen C, Neylan TC, Grinberg LT. 2021. Tau-driven degeneration of sleep- and wake-regulating neurons in Alzheimer's disease. Sleep Med. Rev. 60:101541
    [Google Scholar]
  164. 164.
    Drummond E, Wisniewski T. 2017. Alzheimer's disease: experimental models and reality. Acta Neuropathol 133:155–75
    [Google Scholar]
  165. 165.
    Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N et al. 2007. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53:337–51
    [Google Scholar]
  166. 166.
    Holth JK, Mahan TE, Robinson GO, Rocha A, Holtzman DM. 2017. Altered sleep and EEG power in the P301S tau transgenic mouse model. Ann. Clin. Transl. Neurol. 4:180–90
    [Google Scholar]
  167. 167.
    Zhu Y, Zhan G, Fenik P, Brandes M, Bell P et al. 2018. Chronic sleep disruption advances the temporal progression of tauopathy in P301S mutant mice. J. Neurosci. 38:10255–70
    [Google Scholar]
  168. 168.
    Han SM, Jang YJ, Kim EY, Park SA. 2022. The change in circadian rhythms in P301S transgenic mice is linked to variability in Hsp70-related tau disaggregation. Exp. Neurobiol. 31:196–207
    [Google Scholar]
  169. 169.
    Iba M, McBride JD, Guo JL, Zhang B, Trojanowski JQ, Lee VM. 2015. Tau pathology spread in PS19 tau transgenic mice following locus coeruleus (LC) injections of synthetic tau fibrils is determined by the LC's afferent and efferent connections. Acta Neuropathol 130:349–62
    [Google Scholar]
  170. 170.
    Koss DJ, Robinson L, Drever BD, Plucińska K, Stoppelkamp S et al. 2016. Mutant tau knock-in mice display frontotemporal dementia relevant behaviour and histopathology. Neurobiol. Dis. 91:105–23
    [Google Scholar]
  171. 171.
    Cantero JL, Hita-Yañez E, Moreno-Lopez B, Portillo F, Rubio A, Avila J. 2010. Tau protein role in sleep-wake cycle. J. Alzheimer's Dis. 21:411–21
    [Google Scholar]
  172. 172.
    Holton CM, Hanley N, Shanks E, Oxley P, McCarthy A et al. 2020. Longitudinal changes in EEG power, sleep cycles and behaviour in a tau model of neurodegeneration. Alzheimer's Res. Ther. 12:84
    [Google Scholar]
  173. 173.
    Keenan RJ, Daykin H, Chu J, Cornthwaite-Duncan L, Allocca G et al. 2022. Differential sleep/wake response and sex differences following acute suvorexant, MK-1064 and zolpidem administration in the rTg4510 mouse model of tauopathy. Br. J. Pharmacol. 179:3403–17
    [Google Scholar]
  174. 174.
    Blackmore T, Meftah S, Murray TK, Craig PJ, Blockeel A et al. 2017. Tracking progressive pathological and functional decline in the rTg4510 mouse model of tauopathy. Alzheimer's Res. Ther. 9:77
    [Google Scholar]
  175. 175.
    Keenan RJ, Oberrauch S, Bron R, Nowell CJ, Challis LM et al. 2021. Decreased orexin receptor 1 mRNA expression in the locus coeruleus in both tau transgenic rTg4510 and tau knockout mice and accompanying ascending arousal system tau invasion in rTg4510. J. Alzheimer's Dis. 79:693–708
    [Google Scholar]
  176. 176.
    Lucey BP, McCullough A, Landsness EC, Toedebusch CD, McLeland JS et al. 2019. Reduced non-rapid eye movement sleep is associated with tau pathology in early Alzheimer's disease. Sci. Transl. Med. 11:eaau6550
    [Google Scholar]
  177. 177.
    Barthélemy NR, Liu H, Lu W, Kotzbauer PT, Bateman RJ, Lucey BP. 2020. Sleep deprivation affects tau phosphorylation in human cerebrospinal fluid. Ann. Neurol. 87:700–9
    [Google Scholar]
  178. 178.
    Roth T, Black J, Cluydts R, Charef P, Cavallaro M et al. 2017. Dual orexin receptor antagonist, almorexant, in elderly patients with primary insomnia: a randomized, controlled study. Sleep 40:zsw034
    [Google Scholar]
  179. 179.
    Herring WJ, Ceesay P, Snyder E, Bliwise D, Budd K et al. 2020. Polysomnographic assessment of suvorexant in patients with probable Alzheimer's disease dementia and insomnia: a randomized trial. Alzheimer's Dement. 16:541–51
    [Google Scholar]
  180. 180.
    Svetnik V, Wang TC, Ceesay P, Snyder E, Ceren O et al. 2021. Pilot evaluation of a consumer wearable device to assess sleep in a clinical polysomnography trial of suvorexant for treating insomnia in patients with Alzheimer's disease. J. Sleep Res. 30:e13328
    [Google Scholar]
  181. 181.
    Hatta K, Kishi Y, Wada K, Takeuchi T, Ito S et al. 2017. Preventive effects of suvorexant on delirium: a randomized placebo-controlled trial. J. Clin. Psychiatry 78:e970–79
    [Google Scholar]
  182. 182.
    Kawada K, Ohta T, Tanaka K, Miyamura M, Tanaka S. 2019. Addition of suvorexant to ramelteon therapy for improved sleep quality with reduced delirium risk in acute stroke patients. J. Stroke Cerebrovasc. Dis. 28:142–48
    [Google Scholar]
  183. 183.
    Moline M, Thein S, Bsharat M, Rabbee N, Kemethofer-Waliczky M et al. 2021. Safety and efficacy of lemborexant in patients with irregular sleep-wake rhythm disorder and Alzheimer's disease dementia: results from a Phase 2 randomized clinical trial. J. Prev. Alzheimer's Dis. 8:7–18
    [Google Scholar]
  184. 184.
    Mellor A, Kavaliotis E, Mascaro L, Drummond SPA. 2022. Approaches to the assessment of adherence to CBT-I, predictors of adherence, and the association of adherence to outcomes: a systematic review. Sleep Med. Rev. 63:101620
    [Google Scholar]
  185. 185.
    Uemura SI, Imanishi A, Terui Y, Park I, Satake M et al. 2022. Residual effects of low dose of suvorexant, zolpidem, and ramelteon in healthy elderly subjects: a randomized double-blind study. Neuropsychopharmacol. Rep. 42:288–98
    [Google Scholar]
  186. 186.
    Bland H, Li X, Mangin E, Yee KL, Lines C et al. 2021. Effects of bedtime dosing with suvorexant and zolpidem on balance and psychomotor performance in healthy elderly participants during the night and in the morning. J. Clin. Psychopharmacol. 41:414–20
    [Google Scholar]
  187. 187.
    Muehlan C, Boehler M, Brooks S, Zuiker R, van Gerven J, Dingemanse J. 2020. Clinical pharmacology of the dual orexin receptor antagonist ACT-541468 in elderly subjects: exploration of pharmacokinetics, pharmacodynamics and tolerability following single-dose morning and repeated-dose evening administration. J. Psychopharmacol. 34:326–35
    [Google Scholar]
  188. 188.
    Murphy P, Kumar D, Zammit G, Rosenberg R, Moline M. 2020. Safety of lemborexant versus placebo and zolpidem: effects on auditory awakening threshold, postural stability, and cognitive performance in healthy older participants in the middle of the night and upon morning awakening. J. Clin. Sleep Med. 16:765–73
    [Google Scholar]
  189. 189.
    Vermeeren A, Jongen S, Murphy P, Moline M, Filippov G et al. 2019. On-the-road driving performance the morning after bedtime administration of lemborexant in healthy adult and elderly volunteers. Sleep 42:zsy260
    [Google Scholar]
  190. 190.
    Vermeeren A, Vets E, Vuurman EF, Van Oers AC, Jongen S et al. 2016. On-the-road driving performance the morning after bedtime use of suvorexant 15 and 30 mg in healthy elderly. Psychopharmacology 233:3341–51
    [Google Scholar]
  191. 191.
    Hoever P, Hay J, Rad M, Cavallaro M, van Gerven JM, Dingemanse J 2013. Tolerability, pharmacokinetics, and pharmacodynamics of single-dose almorexant, an orexin receptor antagonist, in healthy elderly subjects. J. Clin. Psychopharmacol. 33:363–70
    [Google Scholar]
  192. 192.
    Adomi M, Maeda M, Murata F, Fukuda H. 2023. Comparative risk of fracture in community-dwelling older adults initiating suvorexant versus Z-drugs: results from LIFE study. J. Am. Geriatr. Soc. 71:109–20
    [Google Scholar]
  193. 193.
    Inoue Y, Nishida M, Kubota N, Koebis M, Taninaga T et al. 2023. Comparison of the treatment effectiveness between lemborexant and zolpidem tartrate extended-release for insomnia disorder subtypes defined based on polysomnographic findings. J. Clin. Sleep Med. 19:519–28
    [Google Scholar]
  194. 194.
    Fietze I, Bassetti CLA, Mayleben DW, Pain S, Seboek Kinter D, McCall WV 2022. Efficacy and safety of daridorexant in older and younger adults with insomnia disorder: a secondary analysis of a randomised placebo-controlled trial. Drugs Aging 39:795–810
    [Google Scholar]
  195. 195.
    Moline M, Zammit G, Cheng JY, Perdomo C, Kumar D, Mayleben D. 2021. Comparison of the effect of lemborexant with placebo and zolpidem tartrate extended release on sleep architecture in older adults with insomnia disorder. J. Clin. Sleep Med. 17:1167–74
    [Google Scholar]
  196. 196.
    Zammit G, Dauvilliers Y, Pain S, Sebök Kinter D, Mansour Y, Kunz D 2020. Daridorexant, a new dual orexin receptor antagonist, in elderly subjects with insomnia disorder. Neurology 94:e2222–32
    [Google Scholar]
  197. 197.
    Rosenberg R, Murphy P, Zammit G, Mayleben D, Kumar D et al. 2019. Comparison of lemborexant with placebo and zolpidem tartrate extended release for the treatment of older adults with insomnia disorder: a Phase 3 randomized clinical trial. JAMA Netw. Open 2:e1918254
    [Google Scholar]
  198. 198.
    Herring WJ, Connor KM, Snyder E, Snavely DB, Zhang Y et al. 2017. Suvorexant in elderly patients with insomnia: pooled analyses of data from Phase III randomized controlled clinical trials. Am. J. Geriatr. Psychiatry 25:791–802
    [Google Scholar]
  199. 199.
    Michelson D, Snyder E, Paradis E, Chengan-Liu M, Snavely DB et al. 2014. Safety and efficacy of suvorexant during 1-year treatment of insomnia with subsequent abrupt treatment discontinuation: a phase 3 randomised, double-blind, placebo-controlled trial. Lancet Neurol 13:461–71
    [Google Scholar]
  200. 200.
    Cheng JY, Filippov G, Moline M, Zammit GK, Bsharat M, Hall N. 2020. Respiratory safety of lemborexant in healthy adult and elderly subjects with mild obstructive sleep apnea: a randomized, double-blind, placebo-controlled, crossover study. J. Sleep Res. 29:e13021
    [Google Scholar]
  201. 201.
    Hatta K, Kishi Y, Wada K, Takeuchi T, Hashimoto N et al. 2019. Real-world effectiveness of ramelteon and suvorexant for delirium prevention in 948 patients with delirium risk factors. J. Clin. Psychiatry 81:19m12865
    [Google Scholar]
  202. 202.
    Fogel SM. 2009. The role of rapid eye movement and slow wave sleep for the consolidation of memory in rats PhD Diss. Queen's Univ. Kingston, Can.:
  203. 203.
    Gulia KK, Kumar VM. 2018. Sleep disorders in the elderly: a growing challenge. Psychogeriatrics 18:155–65
    [Google Scholar]
  204. 204.
    Münch M. 2006. Circadian and homeostatic sleep regulation in humans: effects of age and monochromatic light PhD Diss., Univ. Basel Basel, Switz.:
/content/journals/10.1146/annurev-pharmtox-040323-031929
Loading
/content/journals/10.1146/annurev-pharmtox-040323-031929
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error