1932

Abstract

Drug discovery is adapting to novel technologies such as data science, informatics, and artificial intelligence (AI) to accelerate effective treatment development while reducing costs and animal experiments. AI is transforming drug discovery, as indicated by increasing interest from investors, industrial and academic scientists, and legislators. Successful drug discovery requires optimizing properties related to pharmacodynamics, pharmacokinetics, and clinical outcomes. This review discusses the use of AI in the three pillars of drug discovery: diseases, targets, and therapeutic modalities, with a focus on small-molecule drugs. AI technologies, such as generative chemistry, machine learning, and multiproperty optimization, have enabled several compounds to enter clinical trials. The scientific community must carefully vet known information to address the reproducibility crisis. The full potential of AI in drug discovery can only be realized with sufficient ground truth and appropriate human intervention at later pipeline stages.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-040323-040828
2024-01-23
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/64/1/annurev-pharmtox-040323-040828.html?itemId=/content/journals/10.1146/annurev-pharmtox-040323-040828&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Wagner J, Dahlem AM, Hudson LD, Terry SF, Altman RB et al. 2018. A dynamic map for learning, communicating, navigating and improving therapeutic development. Nat. Rev. Drug Discov. 17:2150
    [Google Scholar]
  2. 2.
    Wagner JA, Dahlem AM, Hudson LD, Terry SF, Altman RB et al. 2018. Application of a dynamic map for learning, communicating, navigating, and improving therapeutic development. Clin. Transl. Sci. 11:2166–74
    [Google Scholar]
  3. 3.
    Tambuyzer E, Vandendriessche B, Austin CP, Brooks PJ, Larsson K et al. 2020. Therapies for rare diseases: therapeutic modalities, progress and challenges ahead. Nat. Rev. Drug Discov. 19:293–111
    [Google Scholar]
  4. 4.
    Zhu H. 2020. Big data and artificial intelligence modeling for drug discovery. Annu. Rev. Pharmacol. Toxicol. 60:573–89
    [Google Scholar]
  5. 5.
    Jayatunga MKP, Xie W, Ruder L, Schulze U, Meier C. 2022. AI in small-molecule drug discovery: a coming wave?. Nat. Rev. Drug Discov. 21:3175–76
    [Google Scholar]
  6. 6.
    Bentwich I. 2023. Pharma's bio-AI revolution. Drug Discov. Today 28:5103515
    [Google Scholar]
  7. 7.
    Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E et al. 2019. Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov. 18:6463–77
    [Google Scholar]
  8. 8.
    Schneider P, Walters WP, Plowright AT, Sieroka N, Listgarten J et al. 2020. Rethinking drug design in the artificial intelligence era. Nat. Rev. Drug Discov. 19:5353–64
    [Google Scholar]
  9. 9.
    Bender A, Cortés-Ciriano I. 2021. Artificial intelligence in drug discovery: What is realistic, what are illusions? Part 1: ways to make an impact, and why we are not there yet. Drug Discov. Today 26:2511–24
    [Google Scholar]
  10. 10.
    Bender A, Cortes-Ciriano I. 2021. Artificial intelligence in drug discovery: What is realistic, what are illusions? Part 2: a discussion of chemical and biological data. Drug Discov. Today 26:41040–52
    [Google Scholar]
  11. 11.
    Harris LA. 2021. Artificial intelligence: background, selected issues, and policy considerations Rep. R46795 Congr. Res. Serv. Washington, DC.: https://crsreports.congress.gov/product/pdf/R/R46795
  12. 12.
    Duran-Frigola M, Cigler M, Winter GE. 2023. Advancing targeted protein degradation via multiomics profiling and artificial intelligence. J. Am. Chem. Soc. 145:52711–32
    [Google Scholar]
  13. 13.
    Kim J, McFee M, Fang Q, Abdin O, Kim PM. 2023. Computational and artificial intelligence-based methods for antibody development. Trends Pharmacol. Sci. 44:3175–89
    [Google Scholar]
  14. 14.
    Ichikawa DM, Abdin O, Alerasool N, Kogenaru M, Mueller AL et al. 2023. A universal deep-learning model for zinc finger design enables transcription factor reprogramming. Nat. Biotechnol. 41:1117–29
    [Google Scholar]
  15. 15.
    Sciabola S, Xi H, Cruz D, Cao Q, Lawrence C et al. 2021. PFRED: a computational platform for siRNA and antisense oligonucleotides design. PLOS ONE 16:1e0238753
    [Google Scholar]
  16. 16.
    McCaffrey P. 2022. Artificial intelligence for vaccine design. Methods Mol. Biol. 2412:3–13
    [Google Scholar]
  17. 17.
    Hey T, Tansley S, Tolle K, eds. 2009. The Fourth Paradigm: Data-Intensive Scientific Discovery Redmond, WA: Microsoft Res.
  18. 18.
    Tecuci G, Marcu D, Boicu M, Schum DA. 2016. Knowledge Engineering: Building Cognitive Assistants for Evidence-Based Reasoning Cambridge, UK: Cambridge Univ. Press
  19. 19.
    Borthwick A, Sterling J, Agichtein E, Grishman R. 1998. Exploiting diverse knowledge sources via maximum entropy in named entity recognition. Proceedings of the Sixth Workshop on Very Large Corpora https://aclanthology.org/W98-1118.pdf
    [Google Scholar]
  20. 20.
    Grissa D, Junge A, Oprea TI, Jensen LJ. 2022. Diseases 2.0: a weekly updated database of disease-gene associations from text mining and data integration. Database 2022:baac019
    [Google Scholar]
  21. 21.
    Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F et al. 2023. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 51:D1D638–46
    [Google Scholar]
  22. 22.
    Ochoa D, Hercules A, Carmona M, Suveges D, Baker J et al. 2023. The next-generation Open Targets Platform: reimagined, redesigned, rebuilt. Nucleic Acids Res. 51:D1D1353–59
    [Google Scholar]
  23. 23.
    Kelleher KJ, Sheils TK, Mathias SL, Yang JJ, Metzger VT et al. 2023. Pharos 2023: an integrated resource for the understudied human proteome. Nucleic Acids Res. 51:D1D1405–16
    [Google Scholar]
  24. 24.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596:7873583–89
    [Google Scholar]
  25. 25.
    Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S et al. 2021. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373:6557871–76
    [Google Scholar]
  26. 26.
    Bartusiak M. 1981. Designing drugs with computers. Discover Magazine Aug. 47–50
    [Google Scholar]
  27. 27.
    Bylinsky G. 1981. A new industrial revolution is on the way. Fortune Magazine Oct. 5 106–14
    [Google Scholar]
  28. 28.
    Ajay A, Walters WP, Murcko MA. 1998. Can we learn to distinguish between “drug-like” and “nondrug-like” molecules?. J. Med. Chem. 41:183314–24
    [Google Scholar]
  29. 29.
    Sadowski J, Kubinyi H. 1998. A scoring scheme for discriminating between drugs and nondrugs. J. Med. Chem. 41:183325–29
    [Google Scholar]
  30. 30.
    Ursu O, Rayan A, Goldblum A, Oprea TI. 2011. Understanding drug-likeness. Wiley Interdiscip. Rev. Comput. Mol. Sci. 1:5760–81
    [Google Scholar]
  31. 31.
    Schuster D, Laggner C, Langer T. 2005. Why drugs fail—a study on side effects in new chemical entities. Curr. Pharm. Des. 11:273545–59
    [Google Scholar]
  32. 32.
    Mak K-K, Balijepalli MK, Pichika MR. 2022. Success stories of AI in drug discovery - where do things stand?. Expert Opin. Drug Discov. 17:179–92
    [Google Scholar]
  33. 33.
    Kumar Y, Koul A, Singla R, Ijaz MF. 2022. Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda. J. Ambient Intell. Humaniz. Comput. 14:78459–86
    [Google Scholar]
  34. 34.
    Langlotz CP. 2019. Will artificial intelligence replace radiologists?. Radiol. Artif. Intell. 1:3e190058
    [Google Scholar]
  35. 35.
    Chauhan C, Gullapalli RR. 2021. Ethics of AI in pathology: current paradigms and emerging issues. Am. J. Pathol. 191:101673–83
    [Google Scholar]
  36. 36.
    Zhavoronkov A, Vanhaelen Q, Oprea TI. 2020. Will artificial intelligence for drug discovery impact clinical pharmacology?. Clin. Pharmacol. Ther. 107:4780–85
    [Google Scholar]
  37. 37.
    Levin JM, Oprea TI, Davidovich S, Clozel T, Overington JP et al. 2020. Artificial intelligence, drug repurposing and peer review. Nat. Biotechnol. 38:101127–31
    [Google Scholar]
  38. 38.
    Kung TH, Cheatham M, Medenilla A, Sillos C, De Leon L et al. 2023. Performance of ChatGPT on USMLE: potential for AI-assisted medical education using large language models. PLOS Digit. Health 2:2e0000198
    [Google Scholar]
  39. 39.
    Chen M, Decary M. 2020. Artificial intelligence in healthcare: an essential guide for health leaders. Healthc. Manag. Forum 33:110–18
    [Google Scholar]
  40. 40.
    Cui M, Zhang DY. 2021. Artificial intelligence and computational pathology. Lab. Investig. 101:4412–22
    [Google Scholar]
  41. 41.
    Baxi V, Edwards R, Montalto M, Saha S. 2022. Digital pathology and artificial intelligence in translational medicine and clinical practice. Mod. Pathol. 35:123–32
    [Google Scholar]
  42. 42.
    Yasaka K, Abe O. 2018. Deep learning and artificial intelligence in radiology: current applications and future directions. PLOS Med. 15:11e1002707
    [Google Scholar]
  43. 43.
    Makino T, Jastrzębski S, Oleszkiewicz W, Chacko C, Ehrenpreis R et al. 2022. Differences between human and machine perception in medical diagnosis. Sci. Rep. 12:16877
    [Google Scholar]
  44. 44.
    Yanagisawa Y, Shido K, Kojima K, Yamasaki K. 2023. Convolutional neural network-based skin image segmentation model to improve classification of skin diseases in conventional and non-standardized picture images. J. Dermatol. Sci. 109:130–36
    [Google Scholar]
  45. 45.
    Haendel MA, McMurry JA, Relevo R, Mungall CJ, Robinson PN, Chute CG. 2018. A census of disease ontologies. Annu. Rev. Biomed. Data Sci. 1:305–31
    [Google Scholar]
  46. 46.
    Vasilevsky NA, Matentzoglu NA, Toro S, Flack JE IV, Hegde H et al. 2022. Mondo: unifying diseases for the world, by the world. medRxiv 2022.04.13.22273750. https://doi.org/10.1101/2022.04.13.22273750
    [Crossref]
  47. 47.
    Haendel M, Vasilevsky N, Unni D, Bologa C, Harris N et al. 2020. How many rare diseases are there?. Nat. Rev. Drug Discov. 19:277–78
    [Google Scholar]
  48. 48.
    Avram S, Wilson TB, Curpan R, Halip L, Borota A et al. 2023. DrugCentral 2023 extends human clinical data and integrates veterinary drugs. Nucleic Acids Res. 51:D1D1276–87
    [Google Scholar]
  49. 49.
    Nelson SJ, Oprea TI, Ursu O, Bologa CG, Zaveri A et al. 2017. Formalizing drug indications on the road to therapeutic intent. J. Am. Med. Inform. Assoc. 24:61169–72
    [Google Scholar]
  50. 50.
    Moodley K, Rieswijk L, Oprea TI, Dumontier M. 2021. InContext: curation of medical context for drug indications. J. Biomed. Semant. 12:12
    [Google Scholar]
  51. 51.
    Avram S, Halip L, Curpan R, Borota A, Bora A, Oprea TI. 2022. Annotating off-label drug usage from unconventional sources. medRxiv 2022.09.08.22279709. https://doi.org/10.1101/2022.09.08.22279709
    [Crossref]
  52. 52.
    Oprea TI, Bologa CG, Brunak S, Campbell A, Gaulton A et al. 2017. Unexplored therapeutic opportunities in the human genome. Nat. Rev. Drug Discov. 17:5317–32
    [Google Scholar]
  53. 53.
    Zeng X, Zhu S, Lu W, Liu Z, Huang J et al. 2020. Target identification among known drugs by deep learning from heterogeneous networks. Chem. Sci. 11:71775–97
    [Google Scholar]
  54. 54.
    Ye Q, Hsieh C-Y, Yang Z, Kang Y, Chen J et al. 2021. A unified drug-target interaction prediction framework based on knowledge graph and recommendation system. Nat. Commun. 12:16775
    [Google Scholar]
  55. 55.
    Sun Y, Barber R, Gupta M, Aggarwal CC, Han J. 2011. Co-author relationship prediction in heterogeneous bibliographic networks. 2011 International Conference on Advances in Social Networks Analysis and Mining121–28. Piscataway, NJ: IEEE
    [Google Scholar]
  56. 56.
    Himmelstein DS, Baranzini SE. 2015. Heterogeneous network edge prediction: a data integration approach to prioritize disease-associated genes. PLOS Comput. Biol. 11:7e1004259
    [Google Scholar]
  57. 57.
    Fu G, Ding Y, Seal A, Chen B, Sun Y, Bolton E. 2016. Predicting drug target interactions using meta-path-based semantic network analysis. BMC Bioinform. 17:160
    [Google Scholar]
  58. 58.
    Chen T, Guestrin C. 2016. XGBoost: a scalable tree boosting system. KDD '16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining785–94. New York: ACM
    [Google Scholar]
  59. 59.
    Binder J, Ursu O, Bologa C, Jiang S, Maphis N et al. 2022. Machine learning prediction and tau-based screening identifies potential Alzheimer's disease genes relevant to immunity. Commun. Biol. 5:1125
    [Google Scholar]
  60. 60.
    Vojtechova I, Machacek T, Kristofikova Z, Stuchlik A, Petrasek T. 2022. Infectious origin of Alzheimer's disease: amyloid beta as a component of brain antimicrobial immunity. PLOS Pathog. 18:11e1010929
    [Google Scholar]
  61. 61.
    Klionsky DJ, Petroni G, Amaravadi RK, Baehrecke EH, Ballabio A et al. 2021. Autophagy in major human diseases. EMBO J. 40:19e108863
    [Google Scholar]
  62. 62.
    Homma K, Suzuki K, Sugawara H. 2011. The Autophagy Database: an all-inclusive information resource on autophagy that provides nourishment for research. Nucleic Acids Res. 39:Database issueD986–90
    [Google Scholar]
  63. 63.
    Lamb CA, Yoshimori T, Tooze SA. 2013. The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 14:12759–74
    [Google Scholar]
  64. 64.
    Ranjbar M, Yang JJ, Kumar P, Byrd DR, Bearer EL, Oprea TI. 2023. Autophagy dark genes: Can we find them with machine learning?. Nat. Sci. 3:e20220067
    [Google Scholar]
  65. 65.
    Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. 2019. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 47:D1D419–26
    [Google Scholar]
  66. 66.
    Jassal B, Matthews L, Viteri G, Gong C, Lorente P et al. 2020. The reactome pathway knowledgebase. Nucleic Acids Res. 48:D1D498–503
    [Google Scholar]
  67. 67.
    Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. 2015. Omim.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 43:Database issueD789–98
    [Google Scholar]
  68. 68.
    Köhler S, Carmody L, Vasilevsky N, Jacobsen JOB, Danis D et al. 2019. Expansion of the Human Phenotype Ontology (HPO) knowledge base and resources. Nucleic Acids Res 47:D1D1018–27
    [Google Scholar]
  69. 69.
    Groza T, Gomez FL, Mashhadi HH, Muñoz-Fuentes V, Gunes O et al. 2023. The International Mouse Phenotyping Consortium: comprehensive knockout phenotyping underpinning the study of human disease. Nucleic Acids Res. 51:D1D1038–45
    [Google Scholar]
  70. 70.
    Nusinow DP, Szpyt J, Ghandi M, Rose CM, McDonald ER 3rd et al. 2020. Quantitative proteomics of the Cancer Cell Line Encyclopedia. Cell 180:2387–402.e16
    [Google Scholar]
  71. 71.
    UniProt Consort 2021. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49:D1D480–89
    [Google Scholar]
  72. 72.
    Gene Ontology Consort 2019. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 47:D1D330–D338
    [Google Scholar]
  73. 73.
    Ramilowski JA, Goldberg T, Harshbarger J, Kloppmann E, Lizio M et al. 2015. A draft network of ligand-receptor-mediated multicellular signalling in human. Nat. Commun. 6:17866
    [Google Scholar]
  74. 74.
    Karlsson M, Zhang C, Méar L, Zhong W, Digre A et al. 2021. A single-cell type transcriptomics map of human tissues. Sci. Adv. 7:31eabh2169
    [Google Scholar]
  75. 75.
    Samala RK, Chan H-P, Hadjiiski L, Koneru S. 2020. Hazards of data leakage in machine learning: a study on classification of breast cancer using deep neural networks. Proceedings of the SPIE Medical Imaging 2020: Computer-Aided Diagnosis Bellingham, WA: SPIE. https://doi.org/10.1117/12.2549313
    [Crossref] [Google Scholar]
  76. 76.
    Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. 2023. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51:D1D587–92
    [Google Scholar]
  77. 77.
    Kapoor S, Narayanan A. 2022. Leakage and the reproducibility crisis in ML-based science. arXiv:2207.07048 [cs.LG]
  78. 78.
    Hansch C, Fujita T. 1964. p-σ-π Analysis. A method for the correlation of biological activity and chemical structure. J. Am. Chem. Soc. 86:81616–26
    [Google Scholar]
  79. 79.
    Hansch C, Leo A, Hoekman DH. 1995. Exploring QSAR: Fundamentals and Applications in Chemistry and Biology Washington, DC: Am. Chem. Soc.
  80. 80.
    Todeschini R, Consonni V. 2009. Molecular Descriptors for Chemoinformatics Weinheim, Ger.: Wiley-VCH
  81. 81.
    Muratov EN, Bajorath J, Sheridan RP, Tetko IV, Filimonov D et al. 2020. QSAR without borders. Chem. Soc. Rev. 49:113525–64
    [Google Scholar]
  82. 82.
    Muratov EN, Amaro R, Andrade CH, Brown N, Ekins S et al. 2021. A critical overview of computational approaches employed for COVID-19 drug discovery. Chem. Soc. Rev. 50:169121–51
    [Google Scholar]
  83. 83.
    Olah M, Bologa C, Oprea TI. 2004. An automated PLS search for biologically relevant QSAR descriptors. J. Comput. Aided Mol. Des. 18:7437–49
    [Google Scholar]
  84. 84.
    Davies M, Jones RDO, Grime K, Jansson-Löfmark R, Fretland AJ et al. 2020. Improving the accuracy of predicted human pharmacokinetics: lessons learned from the AstraZeneca drug pipeline over two decades. Trends Pharmacol. Sci. 41:6390–408
    [Google Scholar]
  85. 85.
    Göller AH, Kuhnke L, Montanari F, Bonin A, Schneckener S et al. 2020. Bayer's in silico ADMET platform: a journey of machine learning over the past two decades. Drug Discov. Today 25:91702–9
    [Google Scholar]
  86. 86.
    Sheridan RP. 2022. Stability of prediction in production ADMET models as a function of version: why and when predictions change. J. Chem. Inf. Model. 62:153477–85
    [Google Scholar]
  87. 87.
    Chen EP, Bondi RW, Zhang C, Price DJ, Ho M-H et al. 2022. Applications of model-based target pharmacology assessment in defining drug design and DMPK strategies: GSK experiences. J. Med. Chem. 65:96926–39
    [Google Scholar]
  88. 88.
    Tetko I, Oprea TI. 2008. Early ADME/T predictions: toy or tool?. Chemoinformatics Approaches to Virtual Screening A Tropsha, A Varnek 240–67. Cambridge, UK: Royal Soc. Chem.
    [Google Scholar]
  89. 89.
    Weininger D. 1988. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28:131–36
    [Google Scholar]
  90. 90.
    Duvenaud D, Maclaurin D, Aguilera-Iparraguirre J, Gómez-Bombarelli R, Hirzel T et al. 2015. Convolutional networks on graphs for learning molecular fingerprints. arXiv:1509.09292 [cs.LG]
  91. 91.
    Zitnik M, Agrawal M, Leskovec J. 2018. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34:13i457–66
    [Google Scholar]
  92. 92.
    Torng W, Altman RB. 2019. Graph convolutional neural networks for predicting drug-target interactions. J. Chem. Inf. Model. 59:104131–49
    [Google Scholar]
  93. 93.
    Jiang D, Wu Z, Hsieh C-Y, Chen G, Liao B et al. 2021. Could graph neural networks learn better molecular representation for drug discovery? A comparison study of descriptor-based and graph-based models. J. Cheminform. 13:112
    [Google Scholar]
  94. 94.
    Vanhaelen Q, Lin Y-C, Zhavoronkov A. 2020. The advent of generative chemistry. ACS Med. Chem. Lett. 11:81496–505
    [Google Scholar]
  95. 95.
    Lyu J, Irwin JJ, Shoichet BK. 2023. Modeling the expansion of virtual screening libraries. Nat. Chem. Biol. 19:6712–18
    [Google Scholar]
  96. 96.
    Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D et al. 2014. Generative adversarial networks. arXiv:1406.2661 [stat.ML]
  97. 97.
    Kadurin A, Aliper A, Kazennov A, Mamoshina P, Vanhaelen Q et al. 2017. The cornucopia of meaningful leads: applying deep adversarial autoencoders for new molecule development in oncology. Oncotarget 8:710883–90
    [Google Scholar]
  98. 98.
    Natl. Cancer Inst 2023. NCI-60 growth inhibition data Database Natl. Cancer Inst. Bethesda, MD: updated July 2. https://wiki.nci.nih.gov/display/NCIDTPdata/NCI-60+Growth+Inhibition+Data
  99. 99.
    Kim S, Chen J, Cheng T, Gindulyte A, He J et al. 2023. PubChem 2023 update.. Nucleic Acids Res. 51:D1D1373–80
    [Google Scholar]
  100. 100.
    Polykovskiy D, Zhebrak A, Vetrov D, Ivanenkov Y, Aladinskiy V et al. 2018. Entangled conditional adversarial autoencoder for de novo drug discovery. Mol. Pharm. 15:104398–405
    [Google Scholar]
  101. 101.
    Hwang C-L, Masud AS, Paidy SR, Yoon K. 1979. Multiple Objective Decision Making—Methods and Applications: A State-of-the-Art Survey Heidelberg: Springer-Verlag
  102. 102.
    Hopfinger AJ. 1985. Computer-assisted drug design. J. Med. Chem. 28:91133–39
    [Google Scholar]
  103. 103.
    Fromer JC, Coley CW. 2022. Computer-aided multi-objective optimization in small molecule discovery. Patterns 4:2100678
    [Google Scholar]
  104. 104.
    Oprea TI, Zamora I, Ungell A-L. 2002. Pharmacokinetically based mapping device for chemical space navigation. J. Comb. Chem. 4:4258–66
    [Google Scholar]
  105. 105.
    Bleicher KH, Böhm H-J, Müller K, Alanine AI. 2003. Hit and lead generation: beyond high-throughput screening. Nat. Rev. Drug Discov. 2:5369–78
    [Google Scholar]
  106. 106.
    Zamora I, Oprea TI, Cruciani G, Pastor M, Ungell AL. 2003. Surface descriptors for protein−ligand affinity prediction. J. Med. Chem. 46:125–33
    [Google Scholar]
  107. 107.
    Besnard J, Ruda GF, Setola V, Abecassis K, Rodriguiz RM et al. 2012. Automated design of ligands to polypharmacological profiles. Nature 492:7428215–20
    [Google Scholar]
  108. 108.
    Rogers D, Brown RD, Hahn M. 2005. Using extended-connectivity fingerprints with Laplacian-modified Bayesian analysis in high-throughput screening follow-up. J. Biomol. Screen. 10:7682–86
    [Google Scholar]
  109. 109.
    Paolini GV, Shapland RHB, van Hoorn WP, Mason JS, Hopkins AL. 2006. Global mapping of pharmacological space. Nat. Biotechnol. 24:7805–15
    [Google Scholar]
  110. 110.
    Deb K, Sundar J, Udaya Bhaskara Rao N, Chaudhuri S 2006. Reference point based multi-objective optimization using evolutionary algorithms. Int. J. Comput. Intell. Res. 2:273–86
    [Google Scholar]
  111. 111.
    Zhu Z, Shi C, Zhang Z, Liu S, Xu M et al. 2022. Torchdrug: a powerful and flexible machine learning platform for drug discovery. arXiv:2202.08320 [cs.LG]
  112. 112.
    Paszke A, Gross S, Chintala S, Chanan G, Yang E et al. 2017. Automatic differentiation in PyTorch Paper presented at the 31st Conference on Neural Information Processing Systems (NIPS 2017) Long Beach, CA: Dec. 4–9
  113. 113.
    Liu S, Wang H, Liu W, Lasenby J, Guo H, Tang J. 2021. Pre-training molecular graph representation with 3D geometry. arXiv:2110.07728 [cs.LG]
  114. 114.
    Zhu Z, Galkin M, Zhang Z, Tang J. 2022. Neural-symbolic models for logical queries on knowledge graphs. arXiv:2205.10128 [cs.AI]
  115. 115.
    Blaschke T, Arús-Pous J, Chen H, Margreitter C, Tyrchan C et al. 2020. REINVENT 2.0: an AI tool for de novo drug design. J. Chem. Inf. Model. 60:125918–22
    [Google Scholar]
  116. 116.
    Blaschke T, Engkvist O, Bajorath J, Chen H. 2020. Memory-assisted reinforcement learning for diverse molecular de novo design. J. Cheminform. 12:168
    [Google Scholar]
  117. 117.
    Cummins DJ, Bell MA. 2016. Integrating everything: the molecule selection toolkit, a system for compound prioritization in drug discovery. J. Med. Chem. 59:156999–7010
    [Google Scholar]
  118. 118.
    Landrum G. 2022. RDKit: open-source cheminformatics software. RDKit. https://www.rdkit.org/
    [Google Scholar]
  119. 119.
    Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B et al. 2011. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12:852825–30
    [Google Scholar]
  120. 120.
    Abadi M, Agarwal A, Barham P. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv:1603.04467 [cs.DC]
  121. 121.
    Zhavoronkov A, Ivanenkov YA, Aliper A, Veselov MS, Aladinskiy VA et al. 2019. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol. 37:91038–40
    [Google Scholar]
  122. 122.
    Fu H-L, Valiathan RR, Arkwright R, Sohail A, Mihai C et al. 2013. Discoidin domain receptors: unique receptor tyrosine kinases in collagen-mediated signaling. J. Biol. Chem. 288:117430–37
    [Google Scholar]
  123. 123.
    Mehta V, Chander H, Munshi A. 2021. Complex roles of discoidin domain receptor tyrosine kinases in cancer. Clin. Transl. Oncol. 23:81497–510
    [Google Scholar]
  124. 124.
    Moll S, Desmoulière A, Moeller MJ, Pache J-C, Badi L et al. 2019. DDR1 role in fibrosis and its pharmacological targeting. Biochim. Biophys. Acta Mol. Cell Res. 1866:11118474
    [Google Scholar]
  125. 125.
    Tingle BI, Tang KG, Castanon M, Gutierrez JJ, Khurelbaatar M et al. 2023. ZINC-22—a free multi-billion-scale database of tangible compounds for ligand discovery. J. Chem. Inf. Model. 63:41166–76
    [Google Scholar]
  126. 126.
    Gaulton A, Hersey A, Nowotka M, Bento AP, Chambers J et al. 2017. The ChEMBL database in 2017. Nucleic Acids Res 45:D1D945–54
    [Google Scholar]
  127. 127.
    Tse EG, Aithani L, Anderson M, Cardoso-Silva J, Cincilla G et al. 2021. An open drug discovery competition: experimental validation of predictive models in a series of novel antimalarials. J. Med. Chem. 64:2216450–63
    [Google Scholar]
  128. 128.
    Huang K, Fu T, Gao W, Zhao Y, Roohani Y et al. 2022. Artificial intelligence foundation for therapeutic science. Nat. Chem. Biol. 18:101033–36
    [Google Scholar]
  129. 129.
    Wu Z, Ramsundar B, Feinberg EN, Gomes J, Geniesse C et al. 2018. MoleculeNet: a benchmark for molecular machine learning. Chem. Sci. 9:2513–30
    [Google Scholar]
  130. 130.
    Méndez-Lucio O, Nicolaou C, Earnshaw B. 2022. MolE: a molecular foundation model for drug discovery. arXiv:2211.02657 [q-bio.QM]
  131. 131.
    Sushko I, Novotarskyi S, Körner R, Pandey AK, Rupp M et al. 2011. Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information. J. Comput. Aided Mol. Des. 25:6533–54
    [Google Scholar]
  132. 132.
    Sosnin S, Vashurina M, Withnall M, Karpov P, Fedorov M, Tetko IV. 2019. A survey of multi-task learning methods in chemoinformatics. Mol. Inform. 38:4e1800108
    [Google Scholar]
  133. 133.
    Varnek A, Gaudin C, Marcou G, Baskin I, Pandey AK, Tetko IV. 2009. Inductive transfer of knowledge: application of multi-task learning and feature net approaches to model tissue-air partition coefficients. J. Chem. Inf. Model. 49:1133–44
    [Google Scholar]
  134. 134.
    Zakharov AV, Zhao T, Nguyen D-T, Peryea T, Sheils T et al. 2019. Novel consensus architecture to improve performance of large-scale multitask deep learning QSAR models. J. Chem. Inf. Model. 59:114613–24
    [Google Scholar]
  135. 135.
    Govinda KCB, Bocci G, Verma S, Hassan MM, Holmes J et al. 2021. A machine learning platform to estimate anti-SARS-CoV-2 activities. Nat. Mach. Intell. 3:6527–35
    [Google Scholar]
  136. 136.
    Siramshetty V, Williams J, Nguyễn Ð-T, Neyra J, Southall N et al. 2021. Validating ADME QSAR models using marketed drugs. SLAS Discov 26:101326–36
    [Google Scholar]
  137. 137.
    Xiong G, Wu Z, Yi J, Fu L, Yang Z et al. 2021. ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res 49:W1W5–14
    [Google Scholar]
  138. 138.
    Renz P, Van Rompaey D, Wegner JK, Hochreiter S, Klambauer G. 2019. On failure modes in molecule generation and optimization. Drug Discov. Today Technol. 32–33:55–63
    [Google Scholar]
  139. 139.
    Walters WP, Murcko M. 2020. Assessing the impact of generative AI on medicinal chemistry. Nat. Biotechnol. 38:2143–45
    [Google Scholar]
  140. 140.
    Stokes JM, Yang K, Swanson K, Jin W, Cubillos-Ruiz A et al. 2020. A deep learning approach to antibiotic discovery. Cell 180:4688–702.e13
    [Google Scholar]
  141. 141.
    Lemonick S. 2020. AI finds molecules that kill bacteria, but would they make good antibiotics?. Chemical & Engineering News Feb. 26. https://cen.acs.org/physical-chemistry/computational-chemistry/AI-finds-molecules-kill-bacteria/98/web/2020/02
    [Google Scholar]
  142. 142.
    Hu F, Santagostino SF, Danilenko DM, Tseng M, Brumm J et al. 2022. Assessment of skin toxicity in an in vitro reconstituted human epidermis model using deep learning. Am. J. Pathol. 192:4687–700
    [Google Scholar]
  143. 143.
    Hasselgren C, Myatt GJ. 2018. Computational toxicology and drug discovery. Methods Mol. Biol. 1800:233–44
    [Google Scholar]
  144. 144.
    Vo AH, Van Vleet TR, Gupta RR, Liguori MJ, Rao MS. 2020. An overview of machine learning and big data for drug toxicity evaluation. Chem. Res. Toxicol. 33:120–37
    [Google Scholar]
  145. 145.
    Liu A, Seal S, Yang H, Bender A. 2023. Using chemical and biological data to predict drug toxicity. SLAS Discov. 28:353–64
    [Google Scholar]
  146. 146.
    Gardiner L-J, Carrieri AP, Wilshaw J, Checkley S, Pyzer-Knapp EO, Krishna R 2020. Using human in vitro transcriptome analysis to build trustworthy machine learning models for prediction of animal drug toxicity. Sci. Rep. 10:19522
    [Google Scholar]
  147. 147.
    Whitehead TM, Irwin BWJ, Hunt P, Segall MD, Conduit GJ. 2019. Imputation of assay bioactivity data using deep learning. J. Chem. Inf. Model. 59:31197–204
    [Google Scholar]
  148. 148.
    Williams DP, Lazic SE, Foster AJ, Semenova E, Morgan P. 2020. Predicting drug-induced liver injury with Bayesian machine learning. Chem. Res. Toxicol. 33:1239–48
    [Google Scholar]
  149. 149.
    Johnson M, Patel M, Phipps A, van der Schaar M, Boulton D, Gibbs M. 2023. The potential and pitfalls of artificial intelligence in clinical pharmacology. CPT Pharmacometrics Syst. Pharmacol. 12:3279–84
    [Google Scholar]
  150. 150.
    Bean DM, Wu H, Iqbal E, Dzahini O, Ibrahim ZM et al. 2017. Knowledge graph prediction of unknown adverse drug reactions and validation in electronic health records. Sci. Rep. 7:116416
    [Google Scholar]
  151. 151.
    Int. Counc. Harmon. Tech. Requir. Pharm. Hum. Use (ICH) 2023. M7: assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk Multidiscip. Guidel. ICH Geneva: https://ich.org/page/multidisciplinary-guidelines#7-2
    [Google Scholar]
  152. 152.
    EMA (Eur. Med. Agency) 2018. Reflection paper on the qualification of non-genotoxic impurities Rep. EMA London: https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-qualification-non-genotoxic-impurities_en.pdf
  153. 153.
    Hines PA, Herold R, Pinheiro L, Frias Z, Arlett P. 2022. Artificial intelligence in European medicines regulation. Nat. Rev. Drug Discov. https://www.nature.com/articles/d41573-022-00190-3
    [Google Scholar]
  154. 154.
    FDA (US Food Drug Admin.) 2023. Using artificial intelligence and machine learning in the development of drug and biological products Discuss. Pap. FDA Silver Spring, MD.: https://www.fda.gov/media/167973/download?attachment
  155. 155.
    FDA (US Food Drug Admin.) 2023. Artifical intelligence in drug manufacturing Discuss. Pap. Cent. Drug Eval. Res., FDA Silver Spring, MD.: https://www.fda.gov/media/165743/download?attachment
  156. 156.
    Myatt GJ, Ahlberg E, Akahori Y, Allen D, Amberg A et al. 2018. In silico toxicology protocols. Regul. Toxicol. Pharmacol. 96:1–17
    [Google Scholar]
  157. 157.
    Myatt GJ, Bassan A, Bower D, Crofton KM, Cross KP et al. 2022. Increasing the acceptance of in silico toxicology through development of protocols and position papers. Comput. Toxicol. 21:100209
    [Google Scholar]
  158. 158.
    Bercu J, Masuda-Herrera MJ, Trejo-Martin A, Hasselgren C, Lord J et al. 2021. A cross-industry collaboration to assess if acute oral toxicity (Q)SAR models are fit-for-purpose for GHS classification and labelling. Regul. Toxicol. Pharmacol. 120:104843
    [Google Scholar]
  159. 159.
    Graham JC, Trejo-Martin A, Chilton ML, Kostal J, Bercu J et al. 2022. An evaluation of the occupational health hazards of peptide couplers. Chem. Res. Toxicol. 35:61011–22
    [Google Scholar]
  160. 160.
    Musuamba FT, Skottheim Rusten I, Lesage R, Russo G, Bursi R et al. 2021. Scientific and regulatory evaluation of mechanistic in silico drug and disease models in drug development: building model credibility. CPT Pharmacometr. Syst. Pharmacol. 10:8804–25
    [Google Scholar]
  161. 161.
    Exscientia 2020. DSP-1181 Press Release, Jan. 30. https://www.exscientia.ai/dsp-1181
  162. 162.
    Yoshinaga H, Uemachi H, Ohno T, Besnard J. 2020. 2,6-Disubstituted pyridine derivative US Patent 10,800,755B2
  163. 163.
    Wills T. 2022. AI drug discovery: assessing the first AI-designed drug candidates to go into human clinical trials. CAS Sept. 23. https://www.cas.org/resources/cas-insights/drug-discovery/ai-designed-drug-candidates
    [Google Scholar]
  164. 164.
    Yoshinaga H, Ikuma Y, Ikeda J, Adachi S, Mitsunuma H et al. 2020. Condensed lactam derivative US Patent 10,745,401B2
  165. 165.
    Kornauth C, Pemovska T, Vladimer GI, Bayer G, Bergmann M et al. 2022. Functional precision medicine provides clinical benefit in advanced aggressive hematologic cancers and identifies exceptional responders. Cancer Discov. 12:2372–87
    [Google Scholar]
  166. 166.
    Fultinavičiūtė U. 2023. Insilico's AI drug enters Phase II IPF trial. Clinical Trials Arena June 27. https://www.clinicaltrialsarena.com/news/insilico-medicine-ins018055-ai/
    [Google Scholar]
  167. 167.
    Pun FW, Liu BHM, Long X, Leung HW, Leung GHD et al. 2022. Identification of therapeutic targets for amyotrophic lateral sclerosis using PandaOmics—an AI-enabled biological target discovery platform. Front. Aging Neurosci. 14:914017
    [Google Scholar]
  168. 168.
    Ivanenkov YA, Polykovskiy D, Bezrukov D, Zagribelnyy B, Aladinskiy V et al. 2023. Chemistry42: an AI-driven platform for molecular design and optimization. J. Chem. Inf. Model. 63:3695–701
    [Google Scholar]
  169. 169.
    Aliper A, Aladinskiy V, Zavoronkovs A. 2020. Methods of inhibiting kinases WO Patent 2020/170203
  170. 170.
    InSilico Med 2023. Hong Kong Stock Exchange application proof of InSilico Medicine Cayman TopCo Appl. Proof InSilico Med. Hong Kong: https://www1.hkexnews.hk/app/sehk/2023/105489/documents/sehk23062701667.pdf
  171. 171.
    Williams B, Taylor A, Orozco O, Owen C, Kelley E et al. 2022. Discovery and characterization of the potent, allosteric SHP2 inhibitor GDC-1971 for the treatment of RTK/RAS driven tumors. Cancer Res 82:12_Suppl.3327 (Abstr.)
    [Google Scholar]
  172. 172.
    Relay Ther 2020. Relay Therapeutics® announces a worldwide license and collaboration agreement with Genentech for RLY-1971 Press Release, Dec. 14. https://ir.relaytx.com/news-releases/news-release-details/relay-therapeutics-announces-worldwide-license-and-collaboration
  173. 173.
    Park JO, Wai Meng DT, Hollebecque A, Borad M, Goyal L et al. 2022. 76MO efficacy of RLY-4008, a highly selective FGFR2 inhibitor in patients (pts) with an FGFR2-fusion or rearrangement (f/r), FGFR inhibitor (FGFRi)-naïve cholangiocarcinoma (CCA): ReFocus trial. Ann. Oncol. 33:S1461–62
    [Google Scholar]
  174. 174.
    Subbiah V, Sahai V, Maglic D, Bruderek K, Toure BB et al. 2023. RLY-4008, the first highly selective FGFR2 inhibitor with activity across FGFR2 alterations and resistance mutations. Cancer Discov. 13:92012–31
    [Google Scholar]
  175. 175.
    King RD, Rowland J, Oliver SG, Young M, Aubrey W et al. 2009. The automation of science. Science 324:592385–89
    [Google Scholar]
  176. 176.
    Bilsland E, van Vliet L, Williams K, Feltham J, Carrasco MP et al. 2018. Plasmodium dihydrofolate reductase is a second enzyme target for the antimalarial action of triclosan. Sci. Rep. 8:11038
    [Google Scholar]
  177. 177.
    Schneider G. 2017. Automating drug discovery. Nat. Rev. Drug Discov. 17:297–113
    [Google Scholar]
  178. 178.
    Bohacek RS, McMartin C, Guida WC. 1996. The art and practice of structure-based drug design: a molecular modeling perspective. Med. Res. Rev. 16:13–50
    [Google Scholar]
  179. 179.
    Tropsha A. 2010. Best practices for QSAR model development, validation, and exploitation. Mol. Inform. 29:6–7476–88
    [Google Scholar]
  180. 180.
    Gramatica P, Sangion A. 2016. A historical excursus on the statistical validation parameters for QSAR models: a clarification concerning metrics and terminology. J. Chem. Inf. Model. 56:61127–31
    [Google Scholar]
  181. 181.
    Collins FS, Tabak LA. 2014. Policy: NIH plans to enhance reproducibility. Nature 505:7485612–13
    [Google Scholar]
  182. 182.
    Prinz F, Schlange T, Asadullah K. 2011. Believe it or not: How much can we rely on published data on potential drug targets?. Nat. Rev. Drug Discov. 10:9712
    [Google Scholar]
  183. 183.
    Begley CG, Ellis LM. 2012. Drug development: raise standards for preclinical cancer research. Nature 483:7391531–33
    [Google Scholar]
  184. 184.
    Ioannidis JPA. 2005. Why most published research findings are false. PLOS Med. 2:8e124
    [Google Scholar]
  185. 185.
    Rodgers P, Collings A. 2021. What have we learned?. eLife 10:e75830
    [Google Scholar]
  186. 186.
    Errington TM, Mathur M, Soderberg CK, Denis A, Perfito N et al. 2021. Investigating the replicability of preclinical cancer biology. eLife 10:e71601
    [Google Scholar]
  187. 187.
    Errington TM, Denis A, Perfito N, Iorns E, Nosek BA. 2021. Challenges for assessing replicability in preclinical cancer biology. eLife 10:e67995
    [Google Scholar]
  188. 188.
    Brainard J. 2018. Rethinking retractions. Science 362:6413390–93
    [Google Scholar]
  189. 189.
    Else H, Van Noorden R. 2021. The fight against fake-paper factories that churn out sham science. Nature 591:7851516–19
    [Google Scholar]
  190. 190.
    Green DVS. 2019. Using machine learning to inform decisions in drug discovery: an industry perspective. Machine Learning in Chemistry: Data-Driven Algorithms, Learning Systems, and Predictions EO Pyzer-Knapp, T Laino 81–101. Washington, DC: Am. Chem. Soc.
    [Google Scholar]
  191. 191.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. 1997. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23:1–33–25
    [Google Scholar]
  192. 192.
    Benet LZ, Hosey CM, Ursu O, Oprea TI. 2016. BDDCS, the rule of 5 and drugability. Adv. Drug Deliv. Rev. 101:89–98
    [Google Scholar]
  193. 193.
    O'Donovan DH, De Fusco C, Kuhnke L, Reichel A. 2023. Trends in molecular properties, bioavailability, and permeability across the Bayer compound collection. J. Med. Chem. 66:42347–60
    [Google Scholar]
  194. 194.
    van Dis EAM, Bollen J, Zuidema W, van Rooij R, Bockting CL. 2023. ChatGPT: five priorities for research. Nature 614:7947224–26
    [Google Scholar]
  195. 195.
    OpenAI 2023. GPT-4 technical report Rep. OpenAI San Francisco, CA: https://cdn.openai.com/papers/gpt-4.pdf
  196. 196.
    Bran AM, Cox S, White AD, Schwaller P. 2023. ChemCrow: augmenting large-language models with chemistry tools. arXiv:2304.05376 [physics.chem-ph]
/content/journals/10.1146/annurev-pharmtox-040323-040828
Loading
/content/journals/10.1146/annurev-pharmtox-040323-040828
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error