1932

Abstract

G protein–coupled receptors are the largest and pharmacologically most important receptor family and are involved in the regulation of most cell functions. Most of them reside exclusively at the cell surface, from where they signal via heterotrimeric G proteins to control the production of second messengers such as cAMP and IP as well as the activity of several ion channels. However, they may also internalize upon agonist stimulation or constitutively reside in various intracellular locations. Recent evidence indicates that their function differs depending on their precise cellular localization. This is because the signals they produce, notably cAMP and Ca2+, are mostly bound to cell proteins that significantly reduce their mobility, allowing the generation of steep concentration gradients. As a result, signals generated by the receptors remain confined to nanometer-sized domains. We propose that such nanometer-sized domains represent the basic signaling units in a cell and a new type of target for drug development.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-040623-115054
2024-01-23
2024-10-08
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/64/1/annurev-pharmtox-040623-115054.html?itemId=/content/journals/10.1146/annurev-pharmtox-040623-115054&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Schneggenburger R, Neher E. 2005. Presynaptic calcium and control of vesicle fusion. Curr. Opin. Neurobiol. 15:266–74
    [Google Scholar]
  2. 2.
    Colman MA, Alvarez-Lacalle E, Echebarria B, Sato D, Sutanto H, Heijman J. 2022. Multi-scale computational modeling of spatial calcium handling from nanodomain to whole-heart: overview and perspectives. Front. Physiol. 13:836622
    [Google Scholar]
  3. 3.
    Neher E, Augustine GJ. 1992. Calcium gradients and buffers in bovine chromaffin cells. J. Physiol. 450:273–301
    [Google Scholar]
  4. 4.
    Wang LY, Augustine GJ. 2014. Presynaptic nanodomains: a tale of two synapses. Front. Cell Neurosci. 8:455
    [Google Scholar]
  5. 5.
    Schwaller B. 2009. The continuing disappearance of “pure” Ca2+ buffers. Cell. Mol. Life Sci. 66:275–300
    [Google Scholar]
  6. 6.
    Kasai H, Petersen OH. 1994. Spatial dynamics of second messengers: IP3 and cAMP as long-range and associative messengers. Trends Neurosci. 17:95–101
    [Google Scholar]
  7. 7.
    Anton SE, Kayser C, Maiellaro I, Nemec K, Moller J et al. 2022. Receptor-associated independent cAMP nanodomains mediate spatiotemporal specificity of GPCR signaling. Cell 185:1130–42.e11
    [Google Scholar]
  8. 8.
    Bock A, Annibale P, Konrad C, Hannawacker A, Anton SE et al. 2020. Optical mapping of cAMP signaling at the nanometer scale. Cell 182:1519–30.e17
    [Google Scholar]
  9. 9.
    Walker-Gray R, Stengel F, Gold MG. 2017. Mechanisms for restraining cAMP-dependent protein kinase revealed by subunit quantitation and cross-linking approaches. PNAS 114:10414–19
    [Google Scholar]
  10. 10.
    Schleicher K, Zaccolo M. 2018. Using cAMP sensors to study cardiac nanodomains. J. Cardiovasc. Dev. Dis. 5:17
    [Google Scholar]
  11. 11.
    Zaccolo M, Pozzan T. 2002. Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295:1711–15
    [Google Scholar]
  12. 12.
    Bers DM, Xiang YK, Zaccolo M. 2019. Whole-cell cAMP and PKA activity are epiphenomena, nanodomain signaling matters. Physiology 34:240–49
    [Google Scholar]
  13. 13.
    von Zastrow M, Sorkin A. 2021. Mechanisms for regulating and organizing receptor signaling by endocytosis. Annu. Rev. Biochem. 90:709–37
    [Google Scholar]
  14. 14.
    Calebiro D, Nikolaev VO, Persani L, Lohse MJ. 2010. Signaling by internalized G-protein-coupled receptors. Trends Pharmacol. Sci. 31:221–28
    [Google Scholar]
  15. 15.
    Vilardaga J-P, Jean-Alphonse FG, Gardella TJ. 2014. Endosomal generation of cAMP in GPCR signaling. Nat. Chem. Biol. 10:700–6
    [Google Scholar]
  16. 16.
    Chitwood PJ, Juszkiewicz S, Guna A, Shao S, Hegde RS. 2018. EMC is required to initiate accurate membrane protein topogenesis. Cell 175:1507–19.e16
    [Google Scholar]
  17. 17.
    Guan XM, Kobilka TS, Kobilka BK. 1992. Enhancement of membrane insertion and function in a type IIIb membrane protein following introduction of a cleavable signal peptide. J. Biol. Chem. 267:21995–98
    [Google Scholar]
  18. 18.
    Schülein R, Gibert A, Rutz C. 2017. Functional significance of the signal peptides of corticotropin-releasing factor receptors. Curr. Mol. Pharmacol. 10:311–17
    [Google Scholar]
  19. 19.
    Kobilka BK. 1990. The role of cytosolic and membrane factors in processing of the human beta-2 adrenergic receptor following translocation and glycosylation in a cell-free system. J. Biol. Chem. 265:7610–18
    [Google Scholar]
  20. 20.
    Choi HK, Min D, Kang H, Shon MJ, Rah SH et al. 2019. Watching helical membrane proteins fold reveals a common N-to-C-terminal folding pathway. Science 366:1150–56
    [Google Scholar]
  21. 21.
    Patwardhan A, Cheng N, Trejo J. 2021. Post-translational modifications of G protein-coupled receptors control cellular signaling dynamics in space and time. Pharmacol. Rev. 73:120–51
    [Google Scholar]
  22. 22.
    Qanbar R, Bouvier M. 2003. Role of palmitoylation/depalmitoylation reactions in G-protein-coupled receptor function. Pharmacol. Ther. 97:1–33
    [Google Scholar]
  23. 23.
    Rands E, Candelore MR, Cheung AH, Hill WS, Strader CD, Dixon RA. 1990. Mutational analysis of β-adrenergic receptor glycosylation. J. Biol. Chem. 265:10759–64
    [Google Scholar]
  24. 24.
    He J, Xu J, Castleberry AM, Lau AG, Hall RA. 2002. Glycosylation of β1-adrenergic receptors regulates receptor surface expression and dimerization. Biochem. Biophys. Res. Commun. 297:565–72
    [Google Scholar]
  25. 25.
    McLatchie LM, Fraser NJ, Main MJ, Wise A, Brown J et al. 1998. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393:333–39
    [Google Scholar]
  26. 26.
    Hay DL, Pioszak AA. 2016. Receptor activity-modifying proteins (RAMPs): new insights and roles. Annu. Rev. Pharmacol. Toxicol. 56:469–87
    [Google Scholar]
  27. 27.
    Serafin DS, Harris NR, Nielsen NR, Mackie DI, Caron KM. 2020. Dawn of a new RAMPage. Trends Pharmacol. Sci. 41:249–65
    [Google Scholar]
  28. 28.
    Nemec K, Schihada H, Kleinau G, Zabel U, Grushevskyi EO et al. 2022. Functional modulation of PTH1R activation and signaling by RAMP2. PNAS 119:e2122037119
    [Google Scholar]
  29. 29.
    Berruien NNA, Smith CL. 2020. Emerging roles of melanocortin receptor accessory proteins (MRAP and MRAP2) in physiology and pathophysiology. Gene 757:144949
    [Google Scholar]
  30. 30.
    Naumann U, Cameroni E, Pruenster M, Mahabaleshwar H, Raz E et al. 2010. CXCR7 functions as a scavenger for CXCL12 and CXCL11. PLOS ONE 5:e9175
    [Google Scholar]
  31. 31.
    Hein L, Altman JD, Kobilka BK. 1999. Two functionally distinct α2-adrenergic receptors regulate sympathetic neurotransmission. Nature 402:181–84
    [Google Scholar]
  32. 32.
    Gilsbach R, Hein L. 2008. Presynaptic metabotropic receptors for acetylcholine and adrenaline/noradrenaline. Pharmacology of Neurotransmitter Release TC Südhof, K Starke 261–88. Berlin: Springer
    [Google Scholar]
  33. 33.
    Lovinger DM, Mateo Y, Johnson KA, Engi SA, Antonazzo M, Cheer JF. 2022. Local modulation by presynaptic receptors controls neuronal communication and behaviour. Nat. Rev. Neurosci. 23:191–203
    [Google Scholar]
  34. 34.
    Starke K. 2001. Presynaptic autoreceptors in the third decade: focus on α2-adrenoceptors. J. Neurochem. 78:685–93
    [Google Scholar]
  35. 35.
    Bathe-Peters M, Gmach P, Boltz H-H, Einsiedel J, Gotthardt M et al. 2021. Visualization of β-adrenergic receptor dynamics and differential localization in cardiomyocytes. PNAS 118:e2101119118
    [Google Scholar]
  36. 36.
    Fujiwara TK, Iwasawa K, Kalay Z, Tsunoyama TA, Watanabe Y et al. 2016. Confined diffusion of transmembrane proteins and lipids induced by the same actin meshwork lining the plasma membrane. Mol. Biol. Cell 27:1101–19
    [Google Scholar]
  37. 37.
    Tsunoyama TA, Watanabe Y, Goto J, Naito K, Kasai RS et al. 2018. Super-long single-molecule tracking reveals dynamic-anchorage-induced integrin function. Nat. Chem. Biol. 14:497–506
    [Google Scholar]
  38. 38.
    Calebiro D, Rieken F, Wagner J, Sungkaworn T, Zabel U et al. 2013. Single-molecule analysis of fluorescently labeled G-protein-coupled receptors reveals complexes with distinct dynamics and organization. PNAS 110:743–48
    [Google Scholar]
  39. 39.
    Treppiedi D, Jobin ML, Peverelli E, Giardino E, Sungkaworn T et al. 2018. Single-molecule microscopy reveals dynamic FLNA interactions governing SSTR2 clustering and internalization. Endocrinology 159:2953–65
    [Google Scholar]
  40. 40.
    Jobin ML, Siddig S, Koszegi Z, Lanoiselee Y, Khayenko V et al. 2023. Filamin A organizes γ-aminobutyric acid type B receptors at the plasma membrane. Nat. Commun. 14:34
    [Google Scholar]
  41. 41.
    Siddig S, Aufmkolk S, Doose S, Jobin ML, Werner C et al. 2020. Super-resolution imaging reveals the nanoscale organization of metabotropic glutamate receptors at presynaptic active zones. Sci. Adv. 6:eaay7193
    [Google Scholar]
  42. 42.
    Zimmerberg J, Kozlov MM. 2006. How proteins produce cellular membrane curvature. Nat. Rev. Mol. Cell Biol. 7:9–19
    [Google Scholar]
  43. 43.
    Hatzakis NS, Bhatia VK, Larsen J, Madsen KL, Bolinger PY et al. 2009. How curved membranes recruit amphipathic helices and protein anchoring motifs. Nat. Chem. Biol. 5:835–41
    [Google Scholar]
  44. 44.
    Rosholm KR, Leijnse N, Mantsiou A, Tkach V, Pedersen SL et al. 2017. Membrane curvature regulates ligand-specific membrane sorting of GPCRs in living cells. Nat. Chem. Biol. 13:724–29
    [Google Scholar]
  45. 45.
    Dawaliby R, Trubbia C, Delporte C, Masureel M, Van Antwerpen P et al. 2016. Allosteric regulation of G protein-coupled receptor activity by phospholipids. Nat. Chem. Biol. 12:35–39
    [Google Scholar]
  46. 46.
    Eichel K, von Zastrow M. 2018. Subcellular organization of GPCR signaling. Trends Pharmacol. Sci. 39:200–8
    [Google Scholar]
  47. 47.
    Patel HH, Murray F, Insel PA 2008. G-protein-coupled receptor-signaling components in membrane raft and caveolae microdomains. Protein-Protein Interactions as New Drug Targets E Klussmann, J Scott 167–84. Berlin: Springer
    [Google Scholar]
  48. 48.
    Suzuki K, Ritchie K, Kajikawa E, Fujiwara T, Kusumi A. 2005. Rapid hop diffusion of a G-protein-coupled receptor in the plasma membrane as revealed by single-molecule techniques. Biophys. J. 88:3659–80
    [Google Scholar]
  49. 49.
    Hern JA, Baig AH, Mashanov GI, Birdsall B, Corrie JE et al. 2010. Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. PNAS 107:2693–98
    [Google Scholar]
  50. 50.
    Kasai RS, Suzuki KG, Prossnitz ER, Koyama-Honda I, Nakada C et al. 2011. Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging. J. Cell Biol. 192:463–80
    [Google Scholar]
  51. 51.
    Dorsch S, Klotz KN, Engelhardt S, Lohse MJ, Bunemann M. 2009. Analysis of receptor oligomerization by FRAP microscopy. Nat. Methods 6:225–30
    [Google Scholar]
  52. 52.
    Asher WB, Geggier P, Holsey MD, Gilmore GT, Pati AK et al. 2021. Single-molecule FRET imaging of GPCR dimers in living cells. Nat. Methods 18:397–405
    [Google Scholar]
  53. 53.
    Kilpatrick LE, Hill SJ. 2021. The use of fluorescence correlation spectroscopy to characterise the molecular mobility of G protein-coupled receptors in membrane microdomains: an update. Biochem. Soc. Trans. 49:1547–54
    [Google Scholar]
  54. 54.
    Sungkaworn T, Jobin ML, Burnecki K, Weron A, Lohse MJ, Calebiro D. 2017. Single-molecule imaging reveals receptor–G protein interactions at cell surface hot spots. Nature 550:543–47
    [Google Scholar]
  55. 55.
    Moller J, Isbilir A, Sungkaworn T, Osberg B, Karathanasis C et al. 2020. Single-molecule analysis reveals agonist-specific dimer formation of micro-opioid receptors. Nat. Chem. Biol. 16:946–54
    [Google Scholar]
  56. 56.
    Isbilir A, Moller J, Arimont M, Bobkov V, Perpina-Viciano C et al. 2020. Advanced fluorescence microscopy reveals disruption of dynamic CXCR4 dimerization by subpocket-specific inverse agonists. PNAS 117:29144–54
    [Google Scholar]
  57. 57.
    Balakrishnan A, Hemmen K, Choudhury S, Krohn JH, Jansen K et al. 2022. Unraveling the hidden temporal range of fast β2-adrenergic receptor mobility by time-resolved fluorescence. Commun. Biol. 5:176
    [Google Scholar]
  58. 58.
    Jullie D, Stoeber M, Sibarita JB, Zieger HL, Bartol TM et al. 2020. A discrete presynaptic vesicle cycle for neuromodulator receptors. Neuron 105:663–77.e8
    [Google Scholar]
  59. 59.
    Palczewski K, Benovic JL. 1991. G-protein-coupled receptor kinases. Trends Biochem. Sci. 16:387–91
    [Google Scholar]
  60. 60.
    Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ. 1990. β-Arrestin: a protein that regulates β-adrenergic receptor function. Science 248:1547–50
    [Google Scholar]
  61. 61.
    Shukla AK, Xiao K, Lefkowitz RJ. 2011. Emerging paradigms of β-arrestin-dependent seven transmembrane receptor signaling. Trends Biochem. Sci. 36:457–69
    [Google Scholar]
  62. 62.
    Lohse MJ, Hoffmann C. 2014. Arrestin interactions with G protein-coupled receptors. Arrestins—Pharmacology and Therapeutic Potential VV Gurevich 15–56. Berlin: Springer
    [Google Scholar]
  63. 63.
    Shukla AK, Manglik A, Kruse AC, Xiao K, Reis RI et al. 2013. Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 497:137–41
    [Google Scholar]
  64. 64.
    Huang W, Masureel M, Qu Q, Janetzko J, Inoue A et al. 2020. Structure of the neurotensin receptor 1 in complex with β-arrestin 1. Nature 579:303–8
    [Google Scholar]
  65. 65.
    Lee MH, Appleton KM, Strungs EG, Kwon JY, Morinelli TA et al. 2016. The conformational signature of β-arrestin2 predicts its trafficking and signalling functions. Nature 531:665–68
    [Google Scholar]
  66. 66.
    Nuber S, Zabel U, Lorenz K, Nuber A, Milligan G et al. 2016. β-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle. Nature 531:661–64
    [Google Scholar]
  67. 67.
    Lohse MJ, Calebiro D. 2013. Receptor signals come in waves. Nature 495:457–58
    [Google Scholar]
  68. 68.
    Halls ML, Yeatman HR, Nowell CJ, Thompson GL, Gondin AB et al. 2016. Plasma membrane localization of the μ-opioid receptor controls spatiotemporal signaling. Sci. Signal. 9:ra16
    [Google Scholar]
  69. 69.
    Boucrot E, Ferreira AP, Almeida-Souza L, Debard S, Vallis Y et al. 2015. Endophilin marks and controls a clathrin-independent endocytic pathway. Nature 517:460–65
    [Google Scholar]
  70. 70.
    Calebiro D, Nikolaev VO, Gagliani MC, de Filippis T, Dees C et al. 2009. Persistent cAMP-signals triggered by internalized G-protein-coupled receptors. PLOS Biol. 7:e1000172
    [Google Scholar]
  71. 71.
    Godbole A, Lyga S, Lohse MJ, Calebiro D. 2017. Internalized TSH receptors en route to the TGN induce local Gs-protein signaling and gene transcription. Nat. Commun. 8:443
    [Google Scholar]
  72. 72.
    Nash CA, Wei W, Irannejad R, Smrcka AV. 2019. Golgi localized β1-adrenergic receptors stimulate Golgi PI4P hydrolysis by PLCε to regulate cardiac hypertrophy. eLife 8:e48167
    [Google Scholar]
  73. 73.
    Stoeber M, Jullie D, Lobingier BT, Laeremans T, Steyaert J et al. 2018. A genetically encoded biosensor reveals location bias of opioid drug action. Neuron 98:963–76.e5
    [Google Scholar]
  74. 74.
    Di Fiore PP, von Zastrow M. 2014. Endocytosis, signaling, and beyond. Cold Spring Harb. Perspect. Biol. 6:a016865
    [Google Scholar]
  75. 75.
    Pippig S, Andexinger S, Lohse MJ. 1995. Sequestration and recycling of beta 2-adrenergic receptors permit receptor resensitization. Mol. Pharmacol. 47:666–76
    [Google Scholar]
  76. 76.
    Krueger KM, Daaka Y, Pitcher JA, Lefkowitz RJ. 1997. The role of sequestration in G protein-coupled receptor resensitization: regulation of β2-adrenergic receptor dephosphorylation by vesicular acidification. J. Biol. Chem. 272:5–8
    [Google Scholar]
  77. 77.
    Fasciani I, Carli M, Petragnano F, Colaianni F, Aloisi G et al. 2022. GPCRs in intracellular compartments: new targets for drug discovery. Biomolecules 12:1343
    [Google Scholar]
  78. 78.
    Di Benedetto G, Lefkimmiatis K, Pozzan T. 2021. The basics of mitochondrial cAMP signalling: where, when, why. Cell Calcium 93:102320
    [Google Scholar]
  79. 79.
    Rizzuto R, De Stefani D, Raffaello A, Mammucari C. 2012. Mitochondria as sensors and regulators of calcium signalling. Nat. Rev. Mol. Cell Biol. 13:566–78
    [Google Scholar]
  80. 80.
    Lefkimmiatis K, Leronni D, Hofer AM. 2013. The inner and outer compartments of mitochondria are sites of distinct cAMP/PKA signaling dynamics. J. Cell Biol. 202:453–62
    [Google Scholar]
  81. 81.
    Monterisi S, Lobo MJ, Livie C, Castle JC, Weinberger M et al. 2017. PDE2A2 regulates mitochondria morphology and apoptotic cell death via local modulation of cAMP/PKA signalling. eLife 6:e21374
    [Google Scholar]
  82. 82.
    Lobo MJ, Reverte-Salisa L, Chao YC, Koschinski A, Gesellchen F et al. 2020. Phosphodiesterase 2A2 regulates mitochondria clearance through Parkin-dependent mitophagy. Commun. Biol. 3:596
    [Google Scholar]
  83. 83.
    Burdyga A, Surdo NC, Monterisi S, Di Benedetto G, Grisan F et al. 2018. Phosphatases control PKA-dependent functional microdomains at the outer mitochondrial membrane. PNAS 115:E6497–506
    [Google Scholar]
  84. 84.
    Benard G, Massa F, Puente N, Lourenco J, Bellocchio L et al. 2012. Mitochondrial CB1 receptors regulate neuronal energy metabolism. Nat. Neurosci. 15:558–64
    [Google Scholar]
  85. 85.
    Hebert-Chatelain E, Desprez T, Serrat R, Bellocchio L, Soria-Gomez E et al. 2016. A cannabinoid link between mitochondria and memory. Nature 539:555–59
    [Google Scholar]
  86. 86.
    Suofu Y, Li W, Jean-Alphonse FG, Jia J, Khattar NK et al. 2017. Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. PNAS 114:E7997–8006
    [Google Scholar]
  87. 87.
    Belous AE, Jones CM, Wakata A, Knox CD, Nicoud IB et al. 2006. Mitochondrial calcium transport is regulated by P2Y1- and P2Y2-like mitochondrial receptors. J. Cell. Biochem. 99:1165–74
    [Google Scholar]
  88. 88.
    Wang Q, Zhang H, Xu H, Guo D, Shi H et al. 2016. 5-HTR3 and 5-HTR4 located on the mitochondrial membrane and functionally regulated mitochondrial functions. Sci. Rep. 6:37336
    [Google Scholar]
  89. 89.
    Abadir PM, Foster DB, Crow M, Cooke CA, Rucker JJ et al. 2011. Identification and characterization of a functional mitochondrial angiotensin system. PNAS 108:14849–54
    [Google Scholar]
  90. 90.
    O'Malley KL, Jong YJ, Gonchar Y, Burkhalter A, Romano C. 2003. Activation of metabotropic glutamate receptor mGlu5 on nuclear membranes mediates intranuclear Ca2+ changes in heterologous cell types and neurons. J. Biol. Chem. 278:28210–19
    [Google Scholar]
  91. 91.
    Di Benedetto A, Sun L, Zambonin CG, Tamma R, Nico B et al. 2014. Osteoblast regulation via ligand-activated nuclear trafficking of the oxytocin receptor. PNAS 111:16502–7
    [Google Scholar]
  92. 92.
    von Zastrow M, Kobilka BK. 1992. Ligand-regulated internalization and recycling of human beta 2-adrenergic receptors between the plasma membrane and endosomes containing transferrin receptors. J. Biol. Chem. 267:3530–38
    [Google Scholar]
  93. 93.
    Lohse MJ. 1993. Molecular mechanisms of membrane receptor desensitization. Biochim. Biophys. Acta 1179:171–88
    [Google Scholar]
  94. 94.
    Roth NS, Campbell PT, Caron MG, Lefkowitz RJ, Lohse MJ. 1991. Comparative rates of desensitization of β-adrenergic receptors by the β-adrenergic receptor kinase and the cyclic AMP-dependent protein kinase. PNAS 88:6201–4
    [Google Scholar]
  95. 95.
    Krasel C, Bunemann M, Lorenz K, Lohse MJ. 2005. β-arrestin binding to the β2-adrenergic receptor requires both receptor phosphorylation and receptor activation. J. Biol. Chem. 280:9528–35
    [Google Scholar]
  96. 96.
    DeWire SM, Ahn S, Lefkowitz RJ, Shenoy SK. 2007. β-arrestins and cell signaling. Annu. Rev. Physiol. 69:483–510
    [Google Scholar]
  97. 97.
    Shenoy SK, Lefkowitz RJ. 2011. β-Arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol. Sci. 32:521–33
    [Google Scholar]
  98. 98.
    Luttrell LM, Ferguson SS, Daaka Y, Miller WE, Maudsley S et al. 1999. β-Arrestin-dependent formation of β2 adrenergic receptor-Src protein kinase complexes. Science 283:655–61
    [Google Scholar]
  99. 99.
    Imamura T, Huang J, Dalle S, Ugi S, Usui I et al. 2001. β-Arrestin-mediated recruitment of the Src family kinase Yes mediates endothelin-1-stimulated glucose transport. J. Biol. Chem. 276:43663–67
    [Google Scholar]
  100. 100.
    McDonald PH, Chow CW, Miller WE, Laporte SA, Field ME et al. 2000. β-Arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 290:1574–77
    [Google Scholar]
  101. 101.
    Beaulieu JM, Sotnikova TD, Marion S, Lefkowitz RJ, Gainetdinov RR, Caron MG. 2005. An Akt/β-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 122:261–73
    [Google Scholar]
  102. 102.
    Gong K, Li Z, Xu M, Du J, Lv Z, Zhang Y. 2008. A novel protein kinase A-independent, β-arrestin-1-dependent signaling pathway for p38 mitogen-activated protein kinase activation by β2-adrenergic receptors. J. Biol. Chem. 283:29028–36
    [Google Scholar]
  103. 103.
    Povsic TJ, Kohout TA, Lefkowitz RJ. 2003. β-Arrestin1 mediates insulin-like growth factor 1 (IGF-1) activation of phosphatidylinositol 3-kinase (PI3K) and anti-apoptosis. J. Biol. Chem. 278:51334–39
    [Google Scholar]
  104. 104.
    O'Hayre M, Eichel K, Avino S, Zhao X, Steffen DJ et al. 2017. Genetic evidence that β-arrestins are dispensable for the initiation of β2-adrenergic receptor signaling to ERK. Sci. Signal. 10:eaal3395
    [Google Scholar]
  105. 105.
    Grundmann M, Merten N, Malfacini D, Inoue A, Preis P et al. 2018. Lack of β-arrestin signaling in the absence of active G proteins. Nat. Commun. 9:341
    [Google Scholar]
  106. 106.
    Gutkind JS, Kostenis E. 2018. Arrestins as rheostats of GPCR signalling. Nat. Rev. Mol. Cell Biol. 19:615–16
    [Google Scholar]
  107. 107.
    Kwon Y, Mehta S, Clark M, Walters G, Zhong Y et al. 2022. Non-canonical β-adrenergic activation of ERK at endosomes. Nature 611:173–79
    [Google Scholar]
  108. 108.
    Willis MJ, Baillie GS. 2014. Arrestin-dependent localization of phosphodiesterases. Arrestins—Pharmacology and Therapeutic Potential VV Gurevich 293–307. Berlin: Springer
    [Google Scholar]
  109. 109.
    Martinez JM, Shen A, Xu B, Jovanovic A, de Chabot J et al. 2023. Arrestin-dependent nuclear export of phosphodiesterase 4D promotes GPCR-induced nuclear cAMP signaling required for learning and memory. Sci. Signal. 16:eade3380
    [Google Scholar]
  110. 110.
    Slessareva JE, Routt SM, Temple B, Bankaitis VA, Dohlman HG. 2006. Activation of the phosphatidyl-inositol 3-kinase Vps34 by a G protein α subunit at the endosome. Cell 126:191–203
    [Google Scholar]
  111. 111.
    Mullershausen F, Zecri F, Cetin C, Billich A, Guerini D, Seuwen K. 2009. Persistent signaling induced by FTY720-phosphate is mediated by internalized S1P1 receptors. Nat. Chem. Biol. 5:428–34
    [Google Scholar]
  112. 112.
    Ferrandon S, Feinstein TN, Castro M, Wang B, Bouley R et al. 2009. Sustained cyclic AMP production by parathyroid hormone receptor endocytosis. Nat. Chem. Biol. 5:734–42
    [Google Scholar]
  113. 113.
    Jalink K, Moolenaar WH. 2010. G protein-coupled receptors: the inside story. BioEssays 32:13–16
    [Google Scholar]
  114. 114.
    Werthmann RC, Volpe S, Lohse MJ, Calebiro D. 2012. Persistent cAMP signaling by internalized TSH receptors occurs in thyroid but not in HEK293 cells. FASEB J. 26:2043–48
    [Google Scholar]
  115. 115.
    Kotowski SJ, Hopf FW, Seif T, Bonci A, von Zastrow M. 2011. Endocytosis promotes rapid dopaminergic signaling. Neuron 71:278–90
    [Google Scholar]
  116. 116.
    Irannejad R, Tomshine JC, Tomshine JR, Chevalier M, Mahoney JP et al. 2013. Conformational biosensors reveal GPCR signalling from endosomes. Nature 495:534–38
    [Google Scholar]
  117. 117.
    Lyga S, Volpe S, Werthmann RC, Gotz K, Sungkaworn T et al. 2016. Persistent cAMP signaling by internalized LH receptors in ovarian follicles. Endocrinology 157:1613–21
    [Google Scholar]
  118. 118.
    Puri NM, Romano GR, Lin TY, Mai QN, Irannejad R. 2022. The organic cation transporter 2 regulates dopamine D1 receptor signaling at the Golgi apparatus. eLife 11:e75468
    [Google Scholar]
  119. 119.
    Irannejad R, Pessino V, Mika D, Huang B, Wedegaertner PB et al. 2017. Functional selectivity of GPCR-directed drug action through location bias. Nat. Chem. Biol. 13:799–806
    [Google Scholar]
  120. 120.
    Tsvetanova NG, von Zastrow M. 2014. Spatial encoding of cyclic AMP signaling specificity by GPCR endocytosis. Nat. Chem. Biol. 10:1061–65
    [Google Scholar]
  121. 121.
    Thomsen ARB, Plouffe B, Cahill TJ 3rd, Shukla AK, Tarrasch JT et al. 2016. GPCR-G protein-β-arrestin super-complex mediates sustained G protein signaling. Cell 166:907–19
    [Google Scholar]
  122. 122.
    Janetzko J, Kise R, Barsi-Rhyne B, Siepe DH, Heydenreich FM et al. 2022. Membrane phosphoinositides regulate GPCR-β-arrestin complex assembly and dynamics. Cell 185:4560–73.e19
    [Google Scholar]
  123. 123.
    White AD, Pena KA, Clark LJ, Maria CS, Liu S et al. 2021. Spatial bias in cAMP generation determines biological responses to PTH type 1 receptor activation. Sci. Signal. 14:eabc5944
    [Google Scholar]
  124. 124.
    Tsvetanova NG, Trester-Zedlitz M, Newton BW, Peng GE, Johnson JR et al. 2021. Endosomal cAMP production broadly impacts the cellular phosphoproteome. J. Biol. Chem. 297:100907
    [Google Scholar]
  125. 125.
    Jensen DD, Lieu T, Halls ML, Veldhuis NA, Imlach WL et al. 2017. Neurokinin 1 receptor signaling in endosomes mediates sustained nociception and is a viable therapeutic target for prolonged pain relief. Sci. Transl. Med. 9:eaal3447
    [Google Scholar]
  126. 126.
    Scott JD, Dessauer CW, Tasken K. 2013. Creating order from chaos: cellular regulation by kinase anchoring. Annu. Rev. Pharmacol. Toxicol. 53:187–210
    [Google Scholar]
  127. 127.
    Valentine CD, Haggie PM. 2011. Confinement of β1- and β2-adrenergic receptors in the plasma membrane of cardiomyocyte-like H9c2 cells is mediated by selective interactions with PDZ domain and A-kinase anchoring proteins but not caveolae. Mol. Biol. Cell 22:2970–82
    [Google Scholar]
  128. 128.
    Gardner LA, Naren AP, Bahouth SW. 2007. Assembly of an SAP97-AKAP79-cAMP-dependent protein kinase scaffold at the type 1 PSD-95/DLG/ZO1 motif of the human β1-adrenergic receptor generates a receptosome involved in receptor recycling and networking. J. Biol. Chem. 282:5085–99
    [Google Scholar]
  129. 129.
    Bauman AL, Soughayer J, Nguyen BT, Willoughby D, Carnegie GK et al. 2006. Dynamic regulation of cAMP synthesis through anchored PKA-adenylyl cyclase V/VI complexes. Mol. Cell 23:925–31
    [Google Scholar]
  130. 130.
    Dell'Acqua ML, Faux MC, Thorburn J, Thorburn A, Scott JD. 1998. Membrane-targeting sequences on AKAP79 bind phosphatidylinositol-4,5-bisphosphate. EMBO J. 17:2246–60
    [Google Scholar]
  131. 131.
    Dodge KL, Khouangsathiene S, Kapiloff MS, Mouton R, Hill EV et al. 2001. mAKAP assembles a protein kinase A/PDE4 phosphodiesterase cAMP signaling module. EMBO J. 20:1921–30
    [Google Scholar]
  132. 132.
    Annamdevula NS, Sweat R, Griswold JR, Trinh K, Hoffman C et al. 2018. Spectral imaging of FRET-based sensors reveals sustained cAMP gradients in three spatial dimensions. Cytometry A 93:1029–38
    [Google Scholar]
  133. 133.
    Maiellaro I, Lohse MJ, Kittel RJ, Calebiro D. 2016. cAMP signals in Drosophila motor neurons are confined to single synaptic boutons. Cell Rep. 17:1238–46
    [Google Scholar]
  134. 134.
    Agarwal SR, Miyashiro K, Latt H, Ostrom RS, Harvey RD. 2017. Compartmentalized cAMP responses to prostaglandin EP2 receptor activation in human airway smooth muscle cells. Br. J. Pharmacol. 174:2784–96
    [Google Scholar]
  135. 135.
    Hansen JN, Kaiser F, Leyendecker P, Stuven B, Krause JH et al. 2022. A cAMP signalosome in primary cilia drives gene expression and kidney cyst formation. EMBO Rep. 23:e54315
    [Google Scholar]
  136. 136.
    Monterisi S, Favia M, Guerra L, Cardone RA, Marzulli D et al. 2012. CFTR regulation in human airway epithelial cells requires integrity of the actin cytoskeleton and compartmentalized cAMP and PKA activity. J. Cell Sci. 125:1106–17
    [Google Scholar]
  137. 137.
    Zaccolo M, De Giorgi F, Cho CY, Feng L, Knapp T et al. 2000. A genetically encoded, fluorescent indicator for cyclic AMP in living cells. Nat. Cell Biol. 2:25–29
    [Google Scholar]
  138. 138.
    Nikolaev VO, Bunemann M, Hein L, Hannawacker A, Lohse MJ. 2004. Novel single chain cAMP sensors for receptor-induced signal propagation. J. Biol. Chem. 279:37215–18
    [Google Scholar]
  139. 139.
    DiPilato LM, Cheng X, Zhang J. 2004. Fluorescent indicators of cAMP and Epac activation reveal differential dynamics of cAMP signaling within discrete subcellular compartments. PNAS 101:16513–18
    [Google Scholar]
  140. 140.
    Ponsioen B, Zhao J, Riedl J, Zwartkruis F, van der Krogt G et al. 2004. Detecting cAMP-induced Epac activation by fluorescence resonance energy transfer: Epac as a novel cAMP indicator. EMBO Rep. 5:1176–80
    [Google Scholar]
  141. 141.
    Schrader J, Gerlach E. 1976. Compartmentation of cardiac adenine nucleotides and formation of adenosine. Pflugers Arch. 367:129–35
    [Google Scholar]
  142. 142.
    Corbin JD, Sugden PH, Lincoln TM, Keely SL. 1977. Compartmentalization of adenosine 3′:5′-monophosphate and adenosine 3′:5′-monophosphate-dependent protein kinase in heart tissue. J. Biol. Chem. 252:3854–61
    [Google Scholar]
  143. 143.
    Brunton LL, Hayes JS, Mayer SE. 1981. Functional compartmentation of cyclic AMP and protein kinase in heart. Adv. Cyclic Nucleotide Res. 14:391–97
    [Google Scholar]
  144. 144.
    Buxton IL, Brunton LL. 1983. Compartments of cyclic AMP and protein kinase in mammalian cardiomyocytes. J. Biol. Chem. 258:10233–39
    [Google Scholar]
  145. 145.
    Jurevičius J, Fischmeister R. 1996. cAMP compartmentation is responsible for a local activation of cardiac Ca2+ channels by β-adrenergic agonists. PNAS 93:295–99
    [Google Scholar]
  146. 146.
    Di Benedetto G, Zoccarato A, Lissandron V, Terrin A, Li X et al. 2008. Protein kinase A type I and type II define distinct intracellular signaling compartments. Circ. Res. 103:836–44
    [Google Scholar]
  147. 147.
    Surdo NC, Berrera M, Koschinski A, Brescia M, Machado MR et al. 2017. FRET biosensor uncovers cAMP nano-domains at β-adrenergic targets that dictate precise tuning of cardiac contractility. Nat. Commun. 8:15031
    [Google Scholar]
  148. 148.
    Smith FD, Esseltine JL, Nygren PJ, Veesler D, Byrne DP et al. 2017. Local protein kinase A action proceeds through intact holoenzymes. Science 356:1288–93
    [Google Scholar]
  149. 149.
    Mo GC, Ross B, Hertel F, Manna P, Yang X et al. 2017. Genetically encoded biosensors for visualizing live-cell biochemical activity at super-resolution. Nat. Methods 14:427–34
    [Google Scholar]
  150. 150.
    Nikolaev VO, Bunemann M, Schmitteckert E, Lohse MJ, Engelhardt S. 2006. Cyclic AMP imaging in adult cardiac myocytes reveals far-reaching β1-adrenergic but locally confined β2-adrenergic receptor-mediated signaling. Circ. Res. 99:1084–91
    [Google Scholar]
  151. 151.
    Conti M, Beavo J. 2007. Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu. Rev. Biochem. 76:481–511
    [Google Scholar]
  152. 152.
    Jiang JY, Falcone JL, Curci S, Hofer AM. 2017. Interrogating cyclic AMP signaling using optical approaches. Cell Calcium 64:47–56
    [Google Scholar]
  153. 153.
    Breckler M, Berthouze M, Laurent AC, Crozatier B, Morel E, Lezoualc'h F 2011. Rap-linked cAMP signaling Epac proteins: compartmentation, functioning and disease implications. Cell. Signal. 23:1257–66
    [Google Scholar]
  154. 154.
    Laudette M, Zuo H, Lezoualc'h F, Schmidt M. 2018. Epac function and cAMP scaffolds in the heart and lung. J. Cardiovasc. Dev. Dis. 5:9
    [Google Scholar]
  155. 155.
    Pereira L, Rehmann H, Lao DH, Erickson JR, Bossuyt J et al. 2015. Novel Epac fluorescent ligand reveals distinct Epac1 versus Epac2 distribution and function in cardiomyocytes. PNAS 112:3991–96
    [Google Scholar]
  156. 156.
    Mecca AA, Caprara GA, Peng AW. 2022. cAMP and voltage modulate rat auditory mechanotransduction by decreasing the stiffness of gating springs. PNAS 119:e2107567119
    [Google Scholar]
  157. 157.
    Froese A, Breher SS, Waldeyer C, Schindler RF, Nikolaev VO et al. 2012. Popeye domain containing proteins are essential for stress-mediated modulation of cardiac pacemaking in mice. J. Clin. Investig. 122:1119–30
    [Google Scholar]
  158. 158.
    Alcalay Y, Hochhauser E, Kliminski V, Dick J, Zahalka MA et al. 2013. Popeye domain containing 1 (Popdc1/Bves) is a caveolae-associated protein involved in ischemia tolerance. PLOS ONE 8:e71100
    [Google Scholar]
  159. 159.
    Eggermann E, Bucurenciu I, Goswami SP, Jonas P 2011. Nanodomain coupling between Ca2+ channels and sensors of exocytosis at fast mammalian synapses. Nat. Rev. Neurosci. 13:7–21
    [Google Scholar]
  160. 160.
    Naraghi M, Neher E. 1997. Linearized buffered Ca2+ diffusion in microdomains and its implications for calculation of [Ca2+] at the mouth of a calcium channel. J. Neurosci. 17:6961–73
    [Google Scholar]
  161. 161.
    Bacskai BJ, Hochner B, Mahaut-Smith M, Adams SR, Kaang BK et al. 1993. Spatially resolved dynamics of cAMP and protein kinase A subunits in Aplysia sensory neurons. Science 260:222–26
    [Google Scholar]
  162. 162.
    Chen C, Nakamura T, Koutalos Y. 1999. Cyclic AMP diffusion coefficient in frog olfactory cilia. Biophys. J. 76:2861–67
    [Google Scholar]
  163. 163.
    Lohse C, Bock A, Maiellaro I, Hannawacker A, Schad LR et al. 2017. Experimental and mathematical analysis of cAMP nanodomains. PLOS ONE 12:e0174856
    [Google Scholar]
  164. 164.
    Terrin A, Di Benedetto G, Pertegato V, Cheung YF, Baillie G et al. 2006. PGE1 stimulation of HEK293 cells generates multiple contiguous domains with different [cAMP]: role of compartmentalized phosphodiesterases. J. Cell Biol. 175:441–51
    [Google Scholar]
  165. 165.
    Houslay MD. 2010. Underpinning compartmentalised cAMP signalling through targeted cAMP breakdown. Trends Biochem. Sci. 35:91–100
    [Google Scholar]
  166. 166.
    Mika D, Leroy J, Vandecasteele G, Fischmeister R. 2012. PDEs create local domains of cAMP signaling. J. Mol. Cell. Cardiol. 52:323–29
    [Google Scholar]
  167. 167.
    Stangherlin A, Zaccolo M. 2012. Phosphodiesterases and subcellular compartmentalized cAMP signaling in the cardiovascular system. Am. J. Physiol. Heart Circ. Physiol. 302:H379–90
    [Google Scholar]
  168. 168.
    Nikolaev VO, Moshkov A, Lyon AR, Miragoli M, Novak P et al. 2010. β2-Adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science 327:1653–57
    [Google Scholar]
  169. 169.
    Bender AT, Beavo JA. 2006. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol. Rev. 58:488–520
    [Google Scholar]
  170. 170.
    Beltejar MG, Lau HT, Golkowski MG, Ong SE, Beavo JA. 2017. Analyses of PDE-regulated phosphoproteomes reveal unique and specific cAMP-signaling modules in T cells. PNAS 114:E6240–49
    [Google Scholar]
  171. 171.
    Mika D, Bobin P, Lindner M, Boet A, Hodzic A et al. 2019. Synergic PDE3 and PDE4 control intracellular cAMP and cardiac excitation-contraction coupling in a porcine model. J. Mol. Cell. Cardiol. 133:57–66
    [Google Scholar]
  172. 172.
    Swinnen JV, Tsikalas KE, Conti M. 1991. Properties and hormonal regulation of two structurally related cAMP phosphodiesterases from the rat Sertoli cell. J. Biol. Chem. 266:18370–77
    [Google Scholar]
  173. 173.
    Verghese MW, McConnell RT, Lenhard JM, Hamacher L, Jin SL. 1995. Regulation of distinct cyclic AMP-specific phosphodiesterase (phosphodiesterase type 4) isozymes in human monocytic cells. Mol. Pharmacol. 47:1164–71
    [Google Scholar]
  174. 174.
    Subramaniam G, Schleicher K, Kovanich D, Zerio A, Folkmanaite M et al. 2023. Integrated proteomics unveils nuclear PDE3A2 as a regulator of cardiac myocyte hypertrophy. Circ. Res. 132:828–48
    [Google Scholar]
  175. 175.
    Fields LA, Koschinski A, Zaccolo M. 2016. Sustained exposure to catecholamines affects cAMP/PKA compartmentalised signalling in adult rat ventricular myocytes. Cell. Signal. 28:725–32
    [Google Scholar]
  176. 176.
    Abi-Gerges A, Richter W, Lefebvre F, Mateo P, Varin A et al. 2009. Decreased expression and activity of cAMP phosphodiesterases in cardiac hypertrophy and its impact on β-adrenergic cAMP signals. Circ. Res. 105:784–92
    [Google Scholar]
  177. 177.
    Omar MH, Byrne DP, Jones KN, Lakey TM, Collins KB et al. 2022. Mislocalization of protein kinase A drives pathology in Cushing's syndrome. Cell Rep. 40:111073
    [Google Scholar]
  178. 178.
    Zhang JZ, Lu TW, Stolerman LM, Tenner B, Yang JR et al. 2020. Phase separation of a PKA regulatory subunit controls cAMP compartmentation and oncogenic signaling. Cell 182:1531–44.e15
    [Google Scholar]
  179. 179.
    Hyman AA, Weber CA, Jülicher F. 2014. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30:39–58
    [Google Scholar]
  180. 180.
    Zhang JZ, Mehta S, Zhang J. 2021. Liquid-liquid phase separation: a principal organizer of the cell's biochemical activity architecture. Trends Pharmacol. Sci. 42:845–56
    [Google Scholar]
  181. 181.
    Rockman HA, Koch WJ, Milano CA, Lefkowitz RJ. 1996. Myocardial β-adrenergic receptor signaling in vivo: insights from transgenic mice. J. Mol. Med. 74:489–95
    [Google Scholar]
  182. 182.
    Lohse MJ, Engelhardt S, Eschenhagen T. 2003. What is the role of β-adrenergic signaling in heart failure?. Circ. Res. 93:896–906
    [Google Scholar]
  183. 183.
    Klein F, Machado MR, Pantano S. 2022. Hitting the detection limit in cAMP signaling. Function 3:zqac038
    [Google Scholar]
  184. 184.
    Peng GE, Pessino V, Huang B, von Zastrow M. 2021. Spatial decoding of endosomal cAMP signals by a metastable cytoplasmic PKA network. Nat. Chem. Biol. 17:558–66
    [Google Scholar]
  185. 185.
    Shannon TR, Bare DJ, Van Dijk S, Raofi S, Huynh TN et al. 2022. Subcellular propagation of cardiomyocyte β-adrenergic activation of calcium uptake involves internal β-receptors and AKAP7. Function 3:zqac020
    [Google Scholar]
  186. 186.
    Quitterer U, Lohse MJ. 1999. Crosstalk between Gαi- and Gαq-coupled receptors is mediated by Gβγ exchange. PNAS 96:10626–31
    [Google Scholar]
  187. 187.
    Vilardaga JP, Clark LJ, White AD, Sutkeviciute I, Lee JY, Bahar I. 2023. Molecular mechanisms of PTH/PTHrP class B GPCR signaling and pharmacological implications. Endocr. Rev. 44:474–91
    [Google Scholar]
  188. 188.
    Cattaruzza F, Poole DP, Bunnett NW. 2013. Arresting inflammation: contributions of plasma membrane and endosomal signalling to neuropeptide-driven inflammatory disease. Biochem. Soc. Trans. 41:137–43
    [Google Scholar]
  189. 189.
    Thomsen ARB, Jensen DD, Hicks GA, Bunnett NW. 2018. Therapeutic targeting of endosomal G-protein-coupled receptors. Trends Pharmacol. Sci. 39:879–91
    [Google Scholar]
  190. 190.
    Oakley RH, Laporte SA, Holt JA, Caron MG, Barak LS. 2000. Differential affinities of visual arrestin, βarrestin1, and βarrestin2 for G protein-coupled receptors delineate two major classes of receptors. J. Biol. Chem. 275:17201–10
    [Google Scholar]
  191. 191.
    Jensen DD, Halls ML, Murphy JE, Canals M, Cattaruzza F et al. 2014. Endothelin-converting enzyme 1 and β-arrestins exert spatiotemporal control of substance P-induced inflammatory signals. J. Biol. Chem. 289:20283–94
    [Google Scholar]
  192. 192.
    Yarwood RE, Imlach WL, Lieu T, Veldhuis NA, Jensen DD et al. 2017. Endosomal signaling of the receptor for calcitonin gene-related peptide mediates pain transmission. PNAS 114:12309–14
    [Google Scholar]
  193. 193.
    Jimenez-Vargas NN, Gong J, Wisdom MJ, Jensen DD, Latorre R et al. 2020. Endosomal signaling of delta opioid receptors is an endogenous mechanism and therapeutic target for relief from inflammatory pain. PNAS 117:15281–92
    [Google Scholar]
  194. 194.
    Jimenez-Vargas NN, Pattison LA, Zhao P, Lieu T, Latorre R et al. 2018. Protease-activated receptor-2 in endosomes signals persistent pain of irritable bowel syndrome. PNAS 115:E7438–47
    [Google Scholar]
  195. 195.
    Griffin JH, Zlokovic BV, Mosnier LO. 2015. Activated protein C: biased for translation. Blood 125:2898–907
    [Google Scholar]
  196. 196.
    Zhao P, Lieu T, Barlow N, Sostegni S, Haerteis S et al. 2015. Neutrophil elastase activates protease-activated receptor-2 (PAR2) and transient receptor potential vanilloid 4 (TRPV4) to cause inflammation and pain. J. Biol. Chem. 290:13875–87
    [Google Scholar]
  197. 197.
    Bristow MR, Ginsburg R, Umans V, Fowler M, Minobe W et al. 1986. β1- and β2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective β1-receptor down-regulation in heart failure. Circ. Res. 59:297–309
    [Google Scholar]
  198. 198.
    Chruscinski AJ, Rohrer DK, Schauble E, Desai KH, Bernstein D, Kobilka BK. 1999. Targeted disruption of the β2 adrenergic receptor gene. J. Biol. Chem. 274:16694–700
    [Google Scholar]
  199. 199.
    Rohrer DK, Desai KH, Jasper JR, Stevens ME, Regula DP Jr. et al. 1996. Targeted disruption of the mouse β1-adrenergic receptor gene: developmental and cardiovascular effects. PNAS 93:7375–80
    [Google Scholar]
  200. 200.
    Communal C, Singh K, Sawyer DB, Colucci WS. 1999. Opposing effects of β1- and β2-adrenergic receptors on cardiac myocyte apoptosis: role of a pertussis toxin-sensitive G protein. Circulation 100:2210–12
    [Google Scholar]
  201. 201.
    Zhu WZ, Zheng M, Koch WJ, Lefkowitz RJ, Kobilka BK, Xiao RP. 2001. Dual modulation of cell survival and cell death by β2-adrenergic signaling in adult mouse cardiac myocytes. PNAS 98:1607–12
    [Google Scholar]
  202. 202.
    Wright PT, Nikolaev VO, O'Hara T, Diakonov I, Bhargava A et al. 2014. Caveolin-3 regulates compartmentation of cardiomyocyte beta2-adrenergic receptor-mediated cAMP signaling. J. Mol. Cell. Cardiol. 67:38–48
    [Google Scholar]
  203. 203.
    Bristow MR, Hershberger RE, Port JD, Gilbert EM, Sandoval A et al. 1990. Beta-adrenergic pathways in nonfailing and failing human ventricular myocardium. Circulation 82:Suppl. 2I12–25
    [Google Scholar]
  204. 204.
    Ungerer M, Bohm M, Elce JS, Erdmann E, Lohse MJ. 1993. Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart. Circulation 87:454–63
    [Google Scholar]
  205. 205.
    Bristow MR, Minobe WA, Raynolds MV, Port JD, Rasmussen R et al. 1993. Reduced beta 1 receptor messenger RNA abundance in the failing human heart. J. Clin. Investig. 92:2737–45
    [Google Scholar]
  206. 206.
    Engelhardt S, Bohm M, Erdmann E, Lohse MJ. 1996. Analysis of beta-adrenergic receptor mRNA levels in human ventricular biopsy specimens by quantitative polymerase chain reactions: progressive reduction of beta1-adrenergic receptor mRNA in heart failure. J. Am. Coll. Cardiol. 27:146–54
    [Google Scholar]
  207. 207.
    Engelhardt S, Hein L, Wiesmann F, Lohse MJ. 1999. Progressive hypertrophy and heart failure in β1-adrenergic receptor transgenic mice. PNAS 96:7059–64
    [Google Scholar]
  208. 208.
    Post SR, Hammond HK, Insel PA. 1999. β-Adrenergic receptors and receptor signaling in heart failure. Annu. Rev. Pharmacol. Toxicol. 39:343–60
    [Google Scholar]
  209. 209.
    Daaka Y, Luttrell LM, Lefkowitz RJ. 1997. Switching of the coupling of the β2-adrenergic receptor to different G proteins by protein kinase A. Nature 390:88–91
    [Google Scholar]
  210. 210.
    Plouffe B, Thomsen ARB, Irannejad R. 2020. Emerging role of compartmentalized G protein-coupled receptor signaling in the cardiovascular field. ACS Pharmacol. Transl. Sci. 3:221–36
    [Google Scholar]
  211. 211.
    Vaniotis G, Del Duca D, Trieu P, Rohlicek CV, Hebert TE, Allen BG. 2011. Nuclear β-adrenergic receptors modulate gene expression in adult rat heart. Cell. Signal. 23:89–98
    [Google Scholar]
  212. 212.
    Morisco C, Marrone C, Galeotti J, Shao D, Vatner DE et al. 2008. Endocytosis machinery is required for β-adrenergic receptor-induced hypertrophy in neonatal rat cardiac myocytes. Cardiovasc. Res. 78:36–44
    [Google Scholar]
  213. 213.
    Tachibana H, Naga Prasad SV, Lefkowitz RJ, Koch WJ, Rockman HA 2005. Level of β-adrenergic receptor kinase 1 inhibition determines degree of cardiac dysfunction after chronic pressure overload-induced heart failure. Circulation 111:591–97
    [Google Scholar]
  214. 214.
    Goldsmith SR. 2019. Arginine vasopressin antagonism in heart failure: current status and possible new directions. J. Cardiol. 74:49–52
    [Google Scholar]
  215. 215.
    Cahill TJ 3rd, Thomsen AR, Tarrasch JT, Plouffe B, Nguyen AH et al. 2017. Distinct conformations of GPCR-β-arrestin complexes mediate desensitization, signaling, and endocytosis. PNAS 114:2562–67
    [Google Scholar]
  216. 216.
    Feinstein TN, Yui N, Webber MJ, Wehbi VL, Stevenson HP et al. 2013. Noncanonical control of vasopressin receptor type 2 signaling by retromer and arrestin. J. Biol. Chem. 288:27849–60
    [Google Scholar]
  217. 217.
    Means CK, Brown JH. 2009. Sphingosine-1-phosphate receptor signalling in the heart. Cardiovasc. Res. 82:193–200
    [Google Scholar]
  218. 218.
    Keul P, van Borren MM, Ghanem A, Muller FU, Baartscheer A et al. 2016. Sphingosine-1-phosphate receptor 1 regulates cardiac function by modulating Ca2+ sensitivity and Na+/H+ exchange and mediates protection by ischemic preconditioning. J. Am. Heart Assoc. 5:e003393
    [Google Scholar]
  219. 219.
    Cannavo A, Rengo G, Liccardo D, Pagano G, Zincarelli C et al. 2013. β1-adrenergic receptor and sphingosine-1-phosphate receptor 1 (S1PR1) reciprocal downregulation influences cardiac hypertrophic response and progression to heart failure: protective role of S1PR1 cardiac gene therapy. Circulation 128:1612–22
    [Google Scholar]
  220. 220.
    Ahmed N, Linardi D, Muhammad N, Chiamulera C, Fumagalli G et al. 2017. Sphingosine 1-phosphate receptor modulator fingolimod (FTY720) attenuates myocardial fibrosis in post-heterotopic heart transplantation. Front. Pharmacol. 8:645
    [Google Scholar]
  221. 221.
    Santos-Gallego CG, Vahl TP, Goliasch G, Picatoste B, Arias T et al. 2016. Sphingosine-1-phosphate receptor agonist fingolimod increases myocardial salvage and decreases adverse postinfarction left ventricular remodeling in a porcine model of ischemia/reperfusion. Circulation 133:954–66
    [Google Scholar]
  222. 222.
    Tonello R, Anderson WB, Davidson S, Escriou V, Yang L et al. 2022. The contribution of endocytosis to sensitization of nociceptors and synaptic transmission in nociceptive circuits. Pain 164:61355–74
    [Google Scholar]
  223. 223.
    Spahn V, Del Vecchio G, Labuz D, Rodriguez-Gaztelumendi A, Massaly N et al. 2017. A nontoxic pain killer designed by modeling of pathological receptor conformations. Science 355:966–69
    [Google Scholar]
  224. 224.
    Vargas MV, Dunlap LE, Dong C, Carter SJ, Tombari RJ et al. 2023. Psychedelics promote neuroplasticity through the activation of intracellular 5-HT2A receptors. Science 379:700–6
    [Google Scholar]
  225. 225.
    Azimzadeh P, Talamantez-Lyburn SC, Chang KT, Inoue A, Balenga N. 2019. Spatial regulation of GPR64/ADGRG2 signaling by β-arrestins and GPCR kinases. Ann. N. Y. Acad. Sci. 1456:26–43
    [Google Scholar]
  226. 226.
    Wright SC, Lukasheva V, Le Gouill C, Kobayashi H, Breton B et al. 2021. BRET-based effector membrane translocation assay monitors GPCR-promoted and endocytosis-mediated Gq activation at early endosomes. PNAS 118:e2025846118
    [Google Scholar]
  227. 227.
    Andreassen KV, Hjuler ST, Furness SG, Sexton PM, Christopoulos A et al. 2014. Prolonged calcitonin receptor signaling by salmon, but not human calcitonin, reveals ligand bias. PLOS ONE 9:e92042
    [Google Scholar]
  228. 228.
    English EJ, Mahn SA, Marchese A. 2018. Endocytosis is required for CXC chemokine receptor type 4 (CXCR4)-mediated Akt activation and antiapoptotic signaling. J. Biol. Chem. 293:11470–80
    [Google Scholar]
  229. 229.
    Radoux-Mergault A, Oberhauser L, Aureli S, Gervasio FL, Stoeber M. 2023. Subcellular location defines GPCR signal transduction. Sci. Adv. 9:eadf6059
    [Google Scholar]
  230. 230.
    Kuna RS, Girada SB, Asalla S, Vallentyne J, Maddika S et al. 2013. Glucagon-like peptide-1 receptor-mediated endosomal cAMP generation promotes glucose-stimulated insulin secretion in pancreatic β-cells. Am. J. Physiol. Endocrinol. Metab. 305:E161–70
    [Google Scholar]
  231. 231.
    Kunselman JM, Gupta A, Gomes I, Devi LA, Puthenveedu MA. 2021. Compartment-specific opioid receptor signaling is selectively modulated by different dynorphin peptides. eLife 10:e60270
    [Google Scholar]
  232. 232.
    Merriam LA, Baran CN, Girard BM, Hardwick JC, May V, Parsons RL. 2013. Pituitary adenylate cyclase 1 receptor internalization and endosomal signaling mediate the pituitary adenylate cyclase activating polypeptide-induced increase in guinea pig cardiac neuron excitability. J. Neurosci. 33:4614–22
    [Google Scholar]
  233. 233.
    Missig G, Mei L, Vizzard MA, Braas KM, Waschek JA et al. 2017. Parabrachial pituitary adenylate cyclase-activating polypeptide activation of amygdala endosomal extracellular signal-regulated kinase signaling regulates the emotional component of pain. Biol. Psychiatry 81:671–82
    [Google Scholar]
  234. 234.
    May V, Johnson GC, Hammack SE, Braas KM, Parsons RL. 2021. PAC1 receptor internalization and endosomal MEK/ERK activation is essential for PACAP-mediated neuronal excitability. J. Mol. Neurosci. 71:1536–42
    [Google Scholar]
  235. 235.
    Alexander SP, Christopoulos A, Davenport AP, Kelly E, Mathie A et al. 2021. The Concise Guide To Pharmacology 2021/22: G protein-coupled receptors. Br. J. Pharmacol. 178:Suppl. 1S27–156
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-040623-115054
Loading
/content/journals/10.1146/annurev-pharmtox-040623-115054
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error