The human microbiome contains a vast source of genetic and biochemical variation, and its impacts on therapeutic responses are just beginning to be understood. This expanded understanding is especially important because the human microbiome differs far more among different people than does the human genome, and it is also dramatically easier to change. Here, we describe some of the major factors driving differences in the human microbiome among individuals and populations. We then describe some of the many ways in which gut microbes modify the action of specific chemotherapeutic agents, including nonsteroidal anti-inflammatory drugs and cardiac glycosides, and outline the potential of fecal microbiota transplant as a therapeutic. Intriguingly, microbes also alter how hosts respond to therapeutic agents through various pathways acting at distal sites. Finally, we discuss some of the computational and practical issues surrounding use of the microbiome to stratify individuals for drug response, and we envision a future where the microbiome will be modified to increase everyone's potential to benefit from therapy.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Savage DC. 1.  1977. Microbial ecology of the gastrointestinal tract. Annu. Rev. Microbiol. 31:107–33 [Google Scholar]
  2. Sender R, Fuchs S, Milo R. 2.  2016. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164:337–40 [Google Scholar]
  3. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. 3.  2007. The human microbiome project. Nature 449:804–10 [Google Scholar]
  4. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS. 4.  et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65 [Google Scholar]
  5. 5. Hum. Microbiome Proj. Consort. 2012. Structure, function and diversity of the healthy human microbiome. Nature 486:207–14 [Google Scholar]
  6. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC. 6.  et al. 2001. Initial sequencing and analysis of the human genome. Nature 409:860–921 [Google Scholar]
  7. Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. 7.  2009. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 1:6ra14 [Google Scholar]
  8. Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA. 8.  et al. 2016. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature 533:543–46 [Google Scholar]
  9. Pace NR. 9.  1997. A molecular view of microbial diversity and the biosphere. Science 276:734–40 [Google Scholar]
  10. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L. 10.  et al. 2005. Diversity of the human intestinal microbial flora. Science 308:1635–38 [Google Scholar]
  11. Hamady M, Walker JJ, Harris JK, Gold NJ, Knight R. 11.  2008. Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nat. Methods 5:235–37 [Google Scholar]
  12. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD. 12.  et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7:335–36 [Google Scholar]
  13. Kim D, Song L, Breitwieser FP, Salzberg SL. 13.  2016. Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res 26:1721–29 [Google Scholar]
  14. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. 14.  2017. metaSPAdes: a new versatile metagenomic assembler. Genome Res 27:824–34 [Google Scholar]
  15. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ. 15.  et al. 2006. Metagenomic analysis of the human distal gut microbiome. Science 312:1355–59 [Google Scholar]
  16. Debelius J, Song SJ, Vazquez-Baeza Y, Xu ZZ, Gonzalez A, Knight R. 16.  2016. Tiny microbes, enormous impacts: What matters in gut microbiome studies?. Genome Biol 17:217 [Google Scholar]
  17. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG. 17.  et al. 2012. Human gut microbiome viewed across age and geography. Nature 486:222–27 [Google Scholar]
  18. Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M. 18.  et al. 2016. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352:565–69 [Google Scholar]
  19. Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y. 19.  et al. 2016. Population-level analysis of gut microbiome variation. Science 352:560–64 [Google Scholar]
  20. 20. Am. Gut. Proj. 2017. American Gut Project http://americangut.org/ [Google Scholar]
  21. Lozupone CA, Stombaugh J, Gonzalez A, Ackermann G, Wendel D. 21.  et al. 2013. Meta-analyses of studies of the human microbiota. Genome Res 23:1704–14 [Google Scholar]
  22. Vázquez-Baeza Y, Gonzalez A, Smarr L, McDonald D, Morton JT. 22.  et al. 2017. Bringing the dynamic microbiome to life with animations. Cell Host Microbe 21:7–10 [Google Scholar]
  23. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. 23.  2009. Bacterial community variation in human body habitats across space and time. Science 326:1694–97 [Google Scholar]
  24. Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI. 24.  2008. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat. Rev. Microbiol. 6:776–88 [Google Scholar]
  25. Andersson AF, Lindberg M, Jakobsson H, Bäckhed F, Nyrén P, Engstrand L. 25.  2008. Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLOS ONE 3:e2836 [Google Scholar]
  26. Zhang Z, Geng J, Tang X, Fan H, Xu J. 26.  et al. 2014. Spatial heterogeneity and co-occurrence patterns of human mucosal-associated intestinal microbiota. ISME J 8:881–93 [Google Scholar]
  27. Amieva M, Peek RM Jr. 27.  2016. Pathobiology of Helicobacter pylori–induced gastric cancer. Gastroenterology 150:64–78 [Google Scholar]
  28. Zoetendal EG, Raes J, van den Bogert B, Arumugam M, Booijink CGM. 28.  et al. 2012. The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J 6:1415–26 [Google Scholar]
  29. Marteau P, Pochart P, Doré J, Béra-Maillet C, Bernalier A, Corthier G. 29.  2001. Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl. Environ. Microbiol. 67:4939–42 [Google Scholar]
  30. Smirnov IP. 30.  1978. [Case of multiple race congenital abnormalities]. Vrach. Delo 5:130–31 [Google Scholar]
  31. Gevers D, Kugathasan S, Denson LA, Vázquez-Baeza Y, Van Treuren W. 31.  et al. 2014. The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe 15:382–92 [Google Scholar]
  32. Azad MB, Konya T, Maughan H, Guttman DS, Field CJ. 32.  et al. 2013. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. CMAJ 185:385–94 [Google Scholar]
  33. Chu DM, Ma J, Prince AL, Antony KM, Seferovic MD, Aagaard KM. 33.  2017. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat. Med. 23:314–26 [Google Scholar]
  34. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G. 34.  et al. 2010. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. PNAS 107:11971–75 [Google Scholar]
  35. Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J. 35.  et al. 2011. Succession of microbial consortia in the developing infant gut microbiome. PNAS 108:Suppl. 14578–85 [Google Scholar]
  36. Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. 36.  2007. Development of the human infant intestinal microbiota. PLOS Biol 5:e177 [Google Scholar]
  37. Hamady M, Knight R. 37.  2009. Microbial community profiling for human microbiome projects: tools, techniques, and challenges. Genome Res 19:1141–52 [Google Scholar]
  38. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY. 38.  et al. 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–8 [Google Scholar]
  39. Pickrell JK, Pritchard JK. 39.  2012. Inference of population splits and mixtures from genome-wide allele frequency data. PLOS Genet 8:e1002967 [Google Scholar]
  40. Clemente JC, Pehrsson EC, Blaser MJ, Sandhu K, Gao Z. 40.  et al. 2015. The microbiome of uncontacted Amerindians. Sci. Adv. 1:e1500183 [Google Scholar]
  41. Schnorr SL, Candela M, Rampelli S, Centanni M, Consolandi C. 41.  et al. 2014. Gut microbiome of the Hadza hunter-gatherers. Nat. Commun. 5:3654 [Google Scholar]
  42. Turroni S, Fiori J, Rampelli S, Schnorr SL, Consolandi C. 42.  et al. 2016. Fecal metabolome of the Hadza hunter-gatherers: a host-microbiome integrative view. Sci. Rep. 6:32826 [Google Scholar]
  43. Blaser MJ, Falkow S. 43.  2009. What are the consequences of the disappearing human microbiota?. Nat. Rev. Microbiol. 7:887–94 [Google Scholar]
  44. Gilbert JA, Quinn RA, Debelius J, Xu ZZ, Morton J. 44.  et al. 2016. Microbiome-wide association studies link dynamic microbial consortia to disease. Nature 535:94–103 [Google Scholar]
  45. Dunn RR, Fierer N, Henley JB, Leff JW, Menninger HL. 45.  2013. Home life: factors structuring the bacterial diversity found within and between homes. PLOS ONE 8:e64133 [Google Scholar]
  46. Song SJ, Lauber C, Costello EK, Lozupone CA, Humphrey G. 46.  et al. 2013. Cohabiting family members share microbiota with one another and with their dogs. eLife 2:e00458 [Google Scholar]
  47. Spanogiannopoulos P, Bess EN, Carmody RN, Turnbaugh PJ. 47.  2016. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat. Rev. Microbiol. 14:273–87 [Google Scholar]
  48. Enright EF, Gahan CG, Joyce SA, Griffin BT. 48.  2016. The impact of the gut microbiota on drug metabolism and clinical outcome. Yale J. Biol. Med. 89:375–82 [Google Scholar]
  49. Otani K, Tanigawa T, Watanabe T, Shimada S, Nadatani Y. 49.  et al. 2017. Microbiota plays a key role in non-steroidal anti-inflammatory drug-induced small intestinal damage. Digestion 95:22–28 [Google Scholar]
  50. Yoshikawa K, Kurihara C, Furuhashi H, Takajo T, Maruta K. 50.  et al. 2017. Psychological stress exacerbates NSAID-induced small bowel injury by inducing changes in intestinal microbiota and permeability via glucocorticoid receptor signaling. J. Gastroenterol. 52:61–71 [Google Scholar]
  51. Scarpignato C, Dolak W, Lanas A, Matzneller P, Renzulli C. 51.  et al. 2017. Rifaximin reduces the number and severity of intestinal lesions associated with use of nonsteroidal anti-inflammatory drugs in humans. Gastroenterology 152:980–82 e983 [Google Scholar]
  52. Kim IS, Yoo DH, Jung IH, Lim S, Jeong JJ. 52.  et al. 2016. Reduced metabolic activity of gut microbiota by antibiotics can potentiate the antithrombotic effect of aspirin. Biochem. Pharmacol. 122:72–79 [Google Scholar]
  53. Xiao X, Nakatsu G, Jin Y, Wong S, Yu J, Lau JY. 53.  2017. Gut microbiota mediates protection against enteropathy induced by indomethacin. Sci. Rep. 7:40317 [Google Scholar]
  54. Suzuki T, Masui A, Nakamura J, Shiozawa H, Aoki J. 54.  et al. 2017. Yogurt containing Lactobacillus gasseri mitigates aspirin-induced small bowel injuries: a prospective, randomized, double-blind, placebo-controlled trial. Digestion 95:49–54 [Google Scholar]
  55. Sousa T, Paterson R, Moore V, Carlsson A, Abrahamsson B, Basit AW. 55.  2008. The gastrointestinal microbiota as a site for the biotransformation of drugs. Int. J. Pharm. 363:1–25 [Google Scholar]
  56. Peppercorn MA, Goldman P. 56.  1972. The role of intestinal bacteria in the metabolism of salicylazosulfapyridine. J. Pharmacol. Exp. Ther. 181:555–62 [Google Scholar]
  57. Rafii F, Cerniglia CE. 57.  1995. Reduction of azo dyes and nitroaromatic compounds by bacterial enzymes from the human intestinal tract. Environ. Health Perspect. 103:Suppl. 517–19 [Google Scholar]
  58. Maurice CF, Haiser HJ, Turnbaugh PJ. 58.  2013. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 152:39–50 [Google Scholar]
  59. Novo DJ, Perlmutter NG, Hunt RH, Shapiro HM. 59.  2000. Multiparameter flow cytometric analysis of antibiotic effects on membrane potential, membrane permeability, and bacterial counts of Staphylococcus aureus and Micrococcus luteus. Antimicrob. Agents Chemother. 44:827–34 [Google Scholar]
  60. Raymond F, Ouameur AA, Déraspe M, Iqbal N, Gingras H. 60.  et al. 2016. The initial state of the human gut microbiome determines its reshaping by antibiotics. ISME J 10:707–20 [Google Scholar]
  61. Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. 61.  2015. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13:42–51 [Google Scholar]
  62. Lindenbaum J, Rund DG, Butler VP Jr., Tse-Eng D, Saha JR. 62.  1981. Inactivation of digoxin by the gut flora: reversal by antibiotic therapy. N. Engl. J. Med. 305:789–94 [Google Scholar]
  63. Haiser HJ, Gootenberg DB, Chatman K, Sirasani G, Balskus EP, Turnbaugh PJ. 63.  2013. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 341:295–98 [Google Scholar]
  64. Maruthur NM, Tseng E, Hutfless S, Wilson LM, Suarez-Cuervo C. 64.  et al. 2016. Diabetes medications as monotherapy or metformin-based combination therapy for type 2 diabetes: a systematic review and meta-analysis. Ann. Intern. Med. 164:740–51 [Google Scholar]
  65. Kirpichnikov D, McFarlane SI, Sowers JR. 65.  2002. Metformin: an update. Ann. Intern. Med. 137:25–33 [Google Scholar]
  66. Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R. 66.  et al. 2017. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 23:850–58 [Google Scholar]
  67. McCreight LJ, Bailey CJ, Pearson ER. 67.  2016. Metformin and the gastrointestinal tract. Diabetologia 59:426–35 [Google Scholar]
  68. van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG. 68.  et al. 2013. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368:407–15 [Google Scholar]
  69. Weingarden A, González A, Vázquez-Baeza Y, Weiss S, Humphry G. 69.  et al. 2015. Dynamic changes in short- and long-term bacterial composition following fecal microbiota transplantation for recurrent Clostridium difficile infection. Microbiome 3:10 [Google Scholar]
  70. Bashan A, Gibson TE, Friedman J, Carey VJ, Weiss ST. 70.  et al. 2016. Universality of human microbial dynamics. Nature 534:259–62 [Google Scholar]
  71. Alang N, Kelly CR. 71.  2015. Weight gain after fecal microbiota transplantation. Open. Forum Infect. Dis. 2:ofv004 [Google Scholar]
  72. Ishikawa D, Sasaki T, Osada T, Kuwahara-Arai K, Haga K. 72.  et al. 2017. Changes in intestinal microbiota following combination therapy with fecal microbial transplantation and antibiotics for ulcerative colitis. Inflamm. Bowel Dis. 23:116–25 [Google Scholar]
  73. Keshteli AH, Millan B, Madsen KL. 73.  2017. Pretreatment with antibiotics may enhance the efficacy of fecal microbiota transplantation in ulcerative colitis: a meta-analysis. Mucosal Immunol 10:565–66 [Google Scholar]
  74. Nakatsuji T, Chen TH, Narala S, Chun KA, Two AM. 74.  et al. 2017. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci. Transl. Med. 9:eaah4680 [Google Scholar]
  75. Scott TA, Quintaneiro LM, Norvaisas P, Lui PP, Wilson MP. 75.  et al. 2017. Host-microbe co-metabolism dictates cancer drug efficacy in C. elegans. Cell 169:442–56.e418 [Google Scholar]
  76. García-González AP, Ritter AD, Shrestha S, Andersen EC, Yilmaz LS, Walhout AJM. 76.  2017. Bacterial metabolism affects the C. elegans response to cancer chemotherapeutics. Cell 169:431–41.e438 [Google Scholar]
  77. Van den Abbeele P, Grootaert C, Marzorati M, Possemiers S, Verstraete W. 77.  et al. 2010. Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for Bacteroidetes and Clostridium cluster IX. Appl. Environ. Microbiol. 76:5237–46 [Google Scholar]
  78. Martz SL, Guzman-Rodriguez M, He SM, Noordhof C, Hurlbut DJ. 78.  et al. 2017. A human gut ecosystem protects against C. difficile disease by targeting TcdA. J. Gastroenterol. 52:452–65 [Google Scholar]
  79. Hullar MA, Burnett-Hartman AN, Lampe JW. 79.  2014. Gut microbes, diet, and cancer. Cancer Treat. Res. 159:377–99 [Google Scholar]
  80. Diaz Heijtz R, Wang S, Anuar F, Qian Y, Björkholm B. 80.  et al. 2011. Normal gut microbiota modulates brain development and behavior. PNAS 108:3047–52 [Google Scholar]
  81. Lupton JR. 81.  2004. Microbial degradation products influence colon cancer risk: the butyrate controversy. J. Nutr. 134:479–82 [Google Scholar]
  82. Zanger UM, Schwab M. 82.  2013. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 138:103–41 [Google Scholar]
  83. Kelly SL, Kelly DE. 83.  2013. Microbial cytochromes P450: biodiversity and biotechnology. Where do cytochromes P450 come from, what do they do and what can they do for us?. Philos. Trans. R. Soc. B 368:20120476 [Google Scholar]
  84. Björkholm B, Bok CM, Lundin A, Rafter J, Hibberd ML, Pettersson S. 84.  2009. Intestinal microbiota regulate xenobiotic metabolism in the liver. PLOS ONE 4:e6958 [Google Scholar]
  85. Haiser HJ, Seim KL, Balskus EP, Turnbaugh PJ. 85.  2014. Mechanistic insight into digoxin inactivation by Eggerthella lenta augments our understanding of its pharmacokinetics. Gut Microbes 5:233–38 [Google Scholar]
  86. Mataki C, Magnier BC, Houten SM, Annicotte JS, Argmann C. 86.  et al. 2007. Compromised intestinal lipid absorption in mice with a liver-specific deficiency of liver receptor homolog 1. Mol. Cell. Biol. 27:8330–39 [Google Scholar]
  87. Faustino C, Serafim C, Rijo P, Reis CP. 87.  2016. Bile acids and bile acid derivatives: use in drug delivery systems and as therapeutic agents. Expert Opin. Drug Deliv. 13:1133–48 [Google Scholar]
  88. Ridlon JM, Kang DJ, Hylemon PB. 88.  2006. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47:241–59 [Google Scholar]
  89. Sayin SI, Wahlström A, Felin J, Jäntti S, Marschall HU. 89.  et al. 2013. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 17:225–35 [Google Scholar]
  90. McGarr SE, Ridlon JM, Hylemon PB. 90.  2005. Diet, anaerobic bacterial metabolism, and colon cancer: a review of the literature. J. Clin. Gastroenterol. 39:98–109 [Google Scholar]
  91. Magee EA, Richardson CJ, Hughes R, Cummings JH. 91.  2000. Contribution of dietary protein to sulfide production in the large intestine: an in vitro and a controlled feeding study in humans. Am. J. Clin. Nutr. 72:1488–94 [Google Scholar]
  92. Shen W, Gaskins HR, McIntosh MK. 92.  2014. Influence of dietary fat on intestinal microbes, inflammation, barrier function and metabolic outcomes. J. Nutr. Biochem. 25:270–80 [Google Scholar]
  93. Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW. 93.  et al. 2006. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439:484–89 [Google Scholar]
  94. Kurdi P, Tanaka H, Van Veen HW, Asano K, Tomita F, Yokota A. 94.  2003. Cholic acid accumulation and its diminution by short-chain fatty acids in bifidobacteria. Microbiology 149:2031–37 [Google Scholar]
  95. Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI. 95.  et al. 2013. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10:57–59 [Google Scholar]
  96. Edgar RC. 96.  2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–61 [Google Scholar]
  97. Kuczynski J, Liu Z, Lozupone C, McDonald D, Fierer N, Knight R. 97.  2010. Microbial community resemblance methods differ in their ability to detect biologically relevant patterns. Nat. Methods 7:813–19 [Google Scholar]
  98. Lozupone C, Knight R. 98.  2005. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71:8228–35 [Google Scholar]
  99. Reeder J, Knight R. 99.  2010. Rapidly denoising pyrosequencing amplicon reads by exploiting rank-abundance distributions. Nat. Methods 7:668–69 [Google Scholar]
  100. Glass EM, Wilkening J, Wilke A, Antonopoulos D, Meyer F. 100.  2010. Using the metagenomics RAST server (MG-RAST) for analyzing shotgun metagenomes. Cold Spring Harb. Protoc 2010:pdb.prot5368 [Google Scholar]
  101. Dhariwal A, Chong J, Habib S, King IL, Agellon LB, Xia J. 101.  2017. MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res 45:W180–88 [Google Scholar]
  102. Huse SM, Welch DBM, Voorhis A, Shipunova A, Morrison HG. 102.  et al. 2014. VAMPS: a website for visualization and analysis of microbial population structures. BMC Bioinform 15:41 [Google Scholar]
  103. Sartor RB. 103.  2008. Microbial influences in inflammatory bowel diseases. Gastroenterology 134:577–94 [Google Scholar]
  104. Willing BP, Dicksved J, Halfvarson J, Andersson AF, Lucio M. 104.  et al. 2010. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology 139:1844–54 e1841 [Google Scholar]
  105. Jacobs JP, Goudarzi M, Singh N, Tong M, McHardy IH. 105.  et al. 2016. A disease-associated microbial and metabolomics state in relatives of pediatric inflammatory bowel disease patients. Cell Mol. Gastroenterol. Hepatol. 2:750–66 [Google Scholar]
  106. Konikoff MR, Denson LA. 106.  2006. Role of fecal calprotectin as a biomarker of intestinal inflammation in inflammatory bowel disease. Inflamm. Bowel Dis. 12:524–34 [Google Scholar]
  107. Vazquez-Baeza Y, Hyde ER, Suchodolski JS, Knight R. 107.  2016. Dog and human inflammatory bowel disease rely on overlapping yet distinct dysbiosis networks. Nat. Microbiol. 1:16177 [Google Scholar]
  108. Hill-Burns EM, Debelius JW, Morton JT, Wissemann WT, Lewis MR. 108.  et al. 2017. Parkinson's disease and Parkinson's disease medications have distinct signatures of the gut microbiome. Mov. Disord. 32:739–49 [Google Scholar]
  109. Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D. 109.  et al. 2015. Personalized nutrition by prediction of glycemic responses. Cell 163:1079–94 [Google Scholar]
  110. Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N. 110.  et al. 2016. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34:828–37 [Google Scholar]
  111. Watrous J, Roach P, Alexandrov T, Heath BS, Yang JY. 111.  et al. 2012. Mass spectral molecular networking of living microbial colonies. PNAS 109:E1743–52 [Google Scholar]
  112. Quinn RA, Nothias LF, Vining O, Meehan M, Esquenazi E, Dorrestein PC. 112.  2017. Molecular networking as a drug discovery, drug metabolism, and precision medicine strategy. Trends Pharmacol. Sci. 38:143–54 [Google Scholar]
  113. Weiss S, Van Treuren W Lozupone C, Faust K, Friedman J. 113.  et al. 2016. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J 10:1669–81 [Google Scholar]
  114. Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. 114.  2015. Sparse and compositionally robust inference of microbial ecological networks. PLOS Comput. Biol. 11:e1004226 [Google Scholar]
  115. Vrolix R, Mensink RP. 115.  2010. Variability of the glycemic response to single food products in healthy subjects. Contemp. Clin. Trials 31:5–11 [Google Scholar]
  116. Vega-Lopez S, Ausman LM, Griffith JL, Lichtenstein AH. 116.  2007. Interindividual variability and intra-individual reproducibility of glycemic index values for commercial white bread. Diabetes Care 30:1412–17 [Google Scholar]
  117. Korem T, Zeevi D, Zmora N, Weissbrod O, Bar N. 117.  et al. 2017. Bread affects clinical parameters and induces gut microbiome-associated personal glycemic responses. Cell Metab 25:1243–53 e1245 [Google Scholar]
  118. Arumugam M, Raes J, Pelletier E, Le Paslier D Yamada T. 118.  et al. 2011. Enterotypes of the human gut microbiome. Nature 473:174–80 [Google Scholar]
  119. Knights D, Ward TL, McKinlay CE, Miller H, Gonzalez A. 119.  et al. 2014. Rethinking “enterotypes.”. Cell Host Microbe 16:433–37 [Google Scholar]
  120. Koren O, Knights D, Gonzalez A, Waldron L, Segata N. 120.  et al. 2013. A guide to enterotypes across the human body: meta-analysis of microbial community structures in human microbiome datasets. PLOS Comput. Biol. 9:e1002863 [Google Scholar]
  121. Halfvarson J, Brislawn CJ, Lamendella R, Vázquez-Baeza Y, Walters WA. 121.  et al. 2017. Dynamics of the human gut microbiome in inflammatory bowel disease. Nat. Microbiol. 2:17004 [Google Scholar]
  122. Matuskova Z, Anzenbacherova E, Vecera R, Tlaskalova-Hogenova H, Kolar M, Anzenbacher P. 122.  2014. Administration of a probiotic can change drug pharmacokinetics: effect of E. coli Nissle 1917 on amidarone absorption in rats. PLOS ONE 9:e87150 [Google Scholar]
  123. Lu L, Wu Y, Zuo L, Luo X, Large PJ. 123.  2014. Intestinal microbiome and digoxin inactivation: meal plan for digoxin users?. World J. Microbiol. Biotechnol. 30:791–99 [Google Scholar]
  124. Clauset A, Larremore DB, Sinatra R. 124.  2017. Data-driven predictions in the science of science. Science 355:477–80 [Google Scholar]
  125. Nomura A, Stemmermann GN, Chyou PH, Kato I, Perez-Perez GI, Blaser MJ. 125.  1991. Helicobacter pylori infection and gastric carcinoma among Japanese Americans in Hawaii. N. Engl. J. Med. 325:1132–36 [Google Scholar]
  126. Reber SO, Siebler PH, Donner NC, Morton JT, Smith DG. 126.  et al. 2016. Immunization with a heat-killed preparation of the environmental bacterium Mycobacterium vaccae promotes stress resilience in mice. PNAS 113:E3130–39 [Google Scholar]
  127. Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG. 127.  et al. 2016. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson's disease. Cell 167:1469–80.e1412 [Google Scholar]
  128. Weinstein L. 128.  1961. Bacteriologic aspects of ulcerative colitis. Gastroenterology 40:323–30 [Google Scholar]
  129. Wacklin P, Kaukinen K, Tuovinen E, Collin P, Lindfors K. 129.  et al. 2013. The duodenal microbiota composition of adult celiac disease patients is associated with the clinical manifestation of the disease. Inflamm. Bowel Dis. 19:934–41 [Google Scholar]
  130. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE. 130.  et al. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–63 [Google Scholar]
  131. Leone V, Gibbons SM, Martinez K, Hutchison AL, Huang EY. 131.  et al. 2015. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe 17:681–89 [Google Scholar]
  132. Scheperjans F, Aho V, Pereira PA, Koskinen K, Paulin L. 132.  et al. 2015. Gut microbiota are related to Parkinson's disease and clinical phenotype. Mov. Disord. 30:350–58 [Google Scholar]
  133. Frank DN, St. Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. 133.  2007. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. PNAS 104:13780–85 [Google Scholar]
  134. Conn HO, Leevy CM, Vlahcevic ZR, Rodgers JB, Maddrey WC. 134.  et al. 1977. Comparison of lactulose and neomycin in the treatment of chronic portal-systemic encephalopathy. A double blind controlled trial. Gastroenterology 72:573–83 [Google Scholar]
  135. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. 135.  2005. Obesity alters gut microbial ecology. PNAS 102:11070–75 [Google Scholar]
  136. Montassier E, Al-Ghalith GA, Ward T, Corvec S, Gastinne T. 136.  et al. 2017. Pretreatment gut microbiome predicts chemotherapy-related bloodstream infection. Genome Med 8:149 [Google Scholar]
  137. Nakayama H, Okumichi T, Nakashima S, Kimura A, Ikeda M, Kajihara H. 137.  1997. Papillary adenocarcinoma of the sigmoid colon associated with psammoma bodies and hyaline globules: report of a case. Jpn. J. Clin. Oncol. 27:193–96 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error