1932

Abstract

Since the spread of tobacco from the Americas hundreds of years ago, tobacco cigarettes and, more recently, alternative tobacco products have become global products of nicotine addiction. Within the evolving alternative tobacco product space, electronic cigarette (e-cigarette) vaping has surpassed conventional cigarette smoking among adolescents and young adults in the United States and beyond. This review describes the experimental and clinical evidence of e-cigarette toxicity and deleterious health effects. Adverse health effects related to e-cigarette aerosols are influenced by several factors, including e-liquid components, physical device factors, chemical changes related to heating, and health of the e-cigarette user (e.g., asthmatic). Federal, state, and local regulations have attempted to govern e-cigarette flavors, manufacturing, distribution, and availability, particularly to underaged youths. However, the evolving e-cigarette landscape continues to impede timely toxicological studies and hinder progress made toward our understanding of the long-term health consequence of e-cigarettes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-042921-084202
2022-01-06
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/62/1/annurev-pharmtox-042921-084202.html?itemId=/content/journals/10.1146/annurev-pharmtox-042921-084202&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    El-Toukhy S, Sabado M, Choi K. 2018. Trends in tobacco product use patterns among U.S. youth, 1999–2014. Nicotine Tob. Res. 20:690–97
    [Google Scholar]
  2. 2. 
    CDC (Cent. Dis. Control Prev.) 2018. Smoking is down, but almost 38 million American adults still smoke: Cigarette smoking remains high among certain groups Press Release Jan. 18. https://www.cdc.gov/media/releases/2018/p0118-smoking-rates-declining.html
    [Google Scholar]
  3. 3. 
    CDC (Cent. Dis. Control Prev.) 2019. Cigarette smoking among U.S. adults hits all-time low: 34.2 million adults still smoking and many using other tobacco products. Press Release Novemb. 14. https://www.cdc.gov/media/releases/2019/p1114-smoking-low.html
    [Google Scholar]
  4. 4. 
    Merianos AL, Mancuso TF, Gordon JS, Wood KJ, Cimperman KA, Mahabee-Gittens EM 2017. Dual- and polytobacco/nicotine product use trends in a national sample of high school students. Am. J. Health Promot. 32:1280–90
    [Google Scholar]
  5. 5. 
    Cornelius M, Wang T, Jamal A, Loretan C, Neff L 2020. Tobacco product use among adults—United States, 2019. MMWR Morb. Mortal. Wkly. Rep. 69:1736–42
    [Google Scholar]
  6. 6. 
    Wang T, Neff L, Park-Lee E, Ren C, Cullen K, King B. 2020. E-cigarette use among middle and high school students—United States, 2020. MMWR Morb. Mortal. Wkly. Rep. 69:1310–12
    [Google Scholar]
  7. 7. 
    Stanton CA, Halenar MJ. 2018. Patterns and correlates of multiple tobacco product use in the United States. Nicotine Tob. Res. 20:S1–4
    [Google Scholar]
  8. 8. 
    Dai H. 2018. Single, dual, and poly use of flavored tobacco products among youths. Prev. Chronic Dis. 15:170389
    [Google Scholar]
  9. 9. 
    Lee YO, Pepper JK, MacMonegle AJ, Nonnemaker JM, Duke JC, Porter L 2018. Examining youth dual and polytobacco use with e-cigarettes. Int. J. Environ. Res. Public Health 15:699
    [Google Scholar]
  10. 10. 
    Lik H. 2017. Opening speech Presented at First International Symposium on Nicotine Technology, Warsaw June 15. https://isontech.info/presentations-2017#
    [Google Scholar]
  11. 11. 
    Demick B. 2009. A high-tech approach to getting a nicotine fix. Los Angeles Times April 25. https://www.latimes.com/archives/la-xpm-2009-apr-25-fg-china-cigarettes25-story.html
    [Google Scholar]
  12. 12. 
    Leon RJ. 2010. Smoking Everywhere, Inc. v. U.S. Food and Drug Administration Memo. Opin. Civil Case 09-cv-0771 (RJL) US Dist. Court. https://law.justia.com/cases/federal/district-courts/district-of-columbia/dcdce/1:2009cv00771/136376/54/
    [Google Scholar]
  13. 13. 
    O'Connor SD. 2000. Food And Drug Administration et al. v. Brown & Williamson Tobacco Corp. et al. Petition 98–1152, US Supreme Court. https://www.justice.gov/osg/brief/fda-v-brown-williamson-tobacco-corp-petition
    [Google Scholar]
  14. 14. 
    Jeffrey D. 2010. FDA loses appeal, can't regulate e-cigarettes as drug. Bloomberg Dec. 7. https://www.bloomberg.com/news/articles/2010-12-07/fda-can-t-regulate-electronic-cigarettes-as-drug-u-s-appeals-court-rules
    [Google Scholar]
  15. 15. 
    FDA (US Food Drug Admin.) 2011. Applications for premarket review of new tobacco products Draft Guid., FDA, US Dep. Health Hum. Serv Silver Spring, MD:
    [Google Scholar]
  16. 16. 
    FDA (US Food Drug Admin.) 2017. FDA announces comprehensive regulatory plan to shift trajectory of tobacco-related disease, death News Release, July 27. https://www.fda.gov/news-events/press-announcements/fda-announces-comprehensive-regulatory-plan-shift-trajectory-tobacco-related-disease-death
    [Google Scholar]
  17. 17. 
    King BA, Jones CM, Baldwin GT, Briss PA. 2020. The EVALI and youth vaping epidemics—implications for public health. New Engl. J. Med. 382:689–91
    [Google Scholar]
  18. 18. 
    Yingst JM, Bordner CR, Hobkirk AL, Hoglen B, Allen SI et al. 2021. Response to flavored cartridge/pod-based product ban among adult JUUL users: “You get nicotine however you can get it. .” Int. J. Environ. Res. Public Health 18:207
    [Google Scholar]
  19. 19. 
    Stratton K, Kwan LY, Eaton DL 2018. Public health consequences of e-cigarettes Rep., Natl. Acad. Sci. Eng. Med Washington, DC:
    [Google Scholar]
  20. 20. 
    Craver R. 2019. Juul ends 2018 with 76 percent market share. Winston-Salem Journal Jan. 8. https://journalnow.com/business/juul-ends-2018-with-76-percent-market-share/article_6f50f427-19ec-50be-8b0c-d3df18d08759.html
    [Google Scholar]
  21. 21. 
    Bellafante G. 2018. Cool-looking and sweet, Juul is a vice teens can't resist. New York Times Febr 16: https://www.nytimes.com/2018/02/16/nyregion/juul-teenagers-vaping-ecigarettes-dangers.html
    [Google Scholar]
  22. 22. 
    Sidani JE, Colditz JB, Barrett EL, Shensa A, Chu K-H et al. 2019. I wake up and hit the JUUL: analyzing Twitter for JUUL nicotine effects and dependence. Drug Alcohol Depend. 204:107500
    [Google Scholar]
  23. 23. 
    Huang J, Duan Z, Kwok J, Binns S, Vera LE et al. 2019. Vaping versus JUULing: how the extraordinary growth and marketing of JUUL transformed the US retail e-cigarette market. Tob. Control 28:146–51
    [Google Scholar]
  24. 24. 
    Creswell J, Kaplan S. 2019. How Juul hooked a generation on nicotine. New York Times Novemb 24: https://www.nytimes.com/2019/11/23/health/juul-vaping-crisis.html
    [Google Scholar]
  25. 25. 
    Kaplan S. 2019. Juul suspends online sales of flavored e-cigarettes. New York Times Oct. 18. https://www.nytimes.com/2019/10/17/health/vaping-juul-e-cigarettes.html
    [Google Scholar]
  26. 26. 
    Williams R. 2020. The rise of disposable JUUL-type e-cigarette devices. Tob. Control 29:e134–35
    [Google Scholar]
  27. 27. 
    Sindelar JL. 2020. Regulating vaping—policies, possibilities, and perils. New Engl. J. Med. 382:e54
    [Google Scholar]
  28. 28. 
    Zhu S-H, Sun JY, Bonnevie E, Cummins SE, Gamst A et al. 2014. Four hundred and sixty brands of e-cigarettes and counting: implications for product regulation. Tob. Control 23:iii3–9
    [Google Scholar]
  29. 29. 
    Dinu V, Kilic A, Wang Q, Ayed C, Fadel A et al. 2020. Policy, toxicology and physicochemical considerations on the inhalation of high concentrations of food flavour. NPJ Sci. Food 4:15
    [Google Scholar]
  30. 30. 
    Hutzler C, Paschke M, Kruschinski S, Henkler F, Hahn J, Luch A. 2014. Chemical hazards present in liquids and vapors of electronic cigarettes. Arch. Toxicol. 88:1295–308
    [Google Scholar]
  31. 31. 
    Omaiye EE, McWhirter KJ, Luo W, Tierney PA, Pankow JF, Talbot P. 2019. High concentrations of flavor chemicals are present in electronic cigarette refill fluids. Sci. Rep. 9:2468
    [Google Scholar]
  32. 32. 
    Sassano MF, Davis ES, Keating JE, Zorn BT, Kochar TK et al. 2018. Evaluation of e-liquid toxicity using an open-source high-throughput screening assay. PLOS Biol 16:e2003904
    [Google Scholar]
  33. 33. 
    Behar RZ, Luo W, McWhirter KJ, Pankow JF, Talbot P. 2018. Analytical and toxicological evaluation of flavor chemicals in electronic cigarette refill fluids. Sci. Rep. 8:8288
    [Google Scholar]
  34. 34. 
    Clapp PW, Pawlak EA, Lackey JT, Keating JE, Reeber SL et al. 2017. Flavored e-cigarette liquids and cinnamaldehyde impair respiratory innate immune cell function. Am. J. Physiol. Lung Cell. Mol. Physiol. 313:L278–92
    [Google Scholar]
  35. 35. 
    Zahedi A, Phandthong R, Chaili A, Leung S, Omaiye E, Talbot P 2019. Mitochondrial stress response in neural stem cells exposed to electronic cigarettes. iScience 16:250–69
    [Google Scholar]
  36. 36. 
    Rickard BP, Ho H, Tiley JB, Jaspers I, Brouwer KLR 2021. E-cigarette flavoring chemicals induce cytotoxicity in HepG2 cells. ACS Omega 6:6708–13
    [Google Scholar]
  37. 37. 
    Hickman E, Herrera CA, Jaspers I. 2019. Common e-cigarette flavoring chemicals impair neutrophil phagocytosis and oxidative burst. Chem. Res. Toxicol. 32:982–85
    [Google Scholar]
  38. 38. 
    Gerloff J, Sundar IK, Freter R, Sekera ER, Friedman AE et al. 2017. Inflammatory response and barrier dysfunction by different e-cigarette flavoring chemicals identified by gas chromatography-mass spectrometry in e-liquids and e-vapors on human lung epithelial cells and fibroblasts. Appl. In Vitro Toxicol. 3:28–40
    [Google Scholar]
  39. 39. 
    Clapp PW, Lavrich KS, van Heusden CA, Lazarowski ER, Carson JL, Jaspers I 2019. Cinnamaldehyde in flavored e-cigarette liquids temporarily suppresses bronchial epithelial cell ciliary motility by dysregulation of mitochondrial function. Am. J. Physiol. Lung Cell. Mol. Physiol. 316:L470–86
    [Google Scholar]
  40. 40. 
    Clapp PW, Jaspers I. 2017. Electronic cigarettes: their constituents and potential links to asthma. Curr. Allergy Asthma Rep. 17:79
    [Google Scholar]
  41. 41. 
    Stefaniak AB, LeBouf RF, Ranpara AC, Leonard SS. 2021. Toxicology of flavoring- and cannabis-containing e-liquids used in electronic delivery systems. Pharmacol. Ther. 224:107838
    [Google Scholar]
  42. 42. 
    Hua M, Omaiye EE, Luo W, McWhirter KJ, Pankow JF, Talbot P. 2019. Identification of cytotoxic flavor chemicals in top-selling electronic cigarette refill fluids. Sci. Rep. 9:2782
    [Google Scholar]
  43. 43. 
    Escobar Y-NH, Nipp G, Cui T, Petters SS, Surratt JD, Jaspers I. 2020. In vitro toxicity and chemical characterization of aerosol derived from electronic cigarette humectants using a newly developed exposure system. Chem. Res. Toxicol. 33:1677–88
    [Google Scholar]
  44. 44. 
    Quinones Tavarez Z, Li D, Croft DP, Gill SR, Ossip DJ, Rahman I. 2020. The interplay between respiratory microbiota and innate immunity in flavor e-cigarette vaping induced lung dysfunction. Front. Microbiol. 11:589501
    [Google Scholar]
  45. 45. 
    Landry RL, Groom AL, Vu TT, Stokes AC, Berry KM et al. 2019. The role of flavors in vaping initiation and satisfaction among U.S. adults. Addict. Behav. 99:106077
    [Google Scholar]
  46. 46. 
    Cooper SY, Akers AT, Henderson BJ. 2021. Flavors enhance nicotine vapor self-administration in male mice. Nicotine Tob. Res. 23:566–72
    [Google Scholar]
  47. 47. 
    Goniewicz ML, Kuma T, Gawron M, Knysak J, Kosmider L 2013. Nicotine levels in electronic cigarettes. Nicotine Tob. Res. 15:158–66
    [Google Scholar]
  48. 48. 
    Etter J-F, Zäther E, Svensson S 2013. Analysis of refill liquids for electronic cigarettes. Addiction 108:1671–79
    [Google Scholar]
  49. 49. 
    Cameron JM, Howell DN, White JR, Andrenyak DM, Layton ME, Roll JM 2014. Variable and potentially fatal amounts of nicotine in e-cigarette nicotine solutions. Tob. Control 23:77–78
    [Google Scholar]
  50. 50. 
    Jackler RK, Ramamurthi D. 2019. Nicotine arms race: JUUL and the high-nicotine product market. Tob. Control 28:623–28
    [Google Scholar]
  51. 51. 
    Harvanko AM, Havel CM, Jacob P, Benowitz NL 2020. Characterization of nicotine salts in 23 electronic cigarette refill liquids. Nicotine Tob. Res. 22:1239–43
    [Google Scholar]
  52. 52. 
    Duell AK, Pankow JF, Peyton DH. 2020. Nicotine in tobacco product aerosols: ‘It's déjà vu all over again. ’. Tob. Control 29:656–62
    [Google Scholar]
  53. 53. 
    O'Connell G, Pritchard JD, Prue C, Thompson J, Verron T et al. 2019. A randomised, open-label, cross-over clinical study to evaluate the pharmacokinetic profiles of cigarettes and e-cigarettes with nicotine salt formulations in US adult smokers. Intern. Emerg. Med. 14:853–61
    [Google Scholar]
  54. 54. 
    Hahn J, Monakhova YB, Hengen J, Kohl-Himmelseher M, Schüssler J et al. 2014. Electronic cigarettes: overview of chemical composition and exposure estimation. Tob. Induced Dis. 12:23
    [Google Scholar]
  55. 55. 
    Quispe CAG, Coronado CJR, Carvalho JA Jr. 2013. Glycerol: production, consumption, prices, characterization and new trends in combustion. Renew. Sustain. Energy Rev. 27:475–93
    [Google Scholar]
  56. 56. 
    Lauridsen JB. 1976. Food emulsifiers: surface activity, edibility, manufacture, composition, and application. J. Am. Oil Chem. Soc. 53:400–7
    [Google Scholar]
  57. 57. 
    Fowles JR, Banton MI, Pottenger LH. 2013. A toxicological review of the propylene glycols. Crit. Rev. Toxicol. 43:363–90
    [Google Scholar]
  58. 58. 
    Becker LC, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD et al. 2019. Safety assessment of glycerin as used in cosmetics. Int. J. Toxicol. 38:6S–22S
    [Google Scholar]
  59. 59. 
    Woodall M, Jacob J, Kalsi KK, Schroeder V, Davis E et al. 2020. E-cigarette constituents propylene glycol and vegetable glycerin decrease glucose uptake and its metabolism in airway epithelial cells in vitro. Am. J. Physiol. Lung Cell. Mol. Physiol. 319:L957–67
    [Google Scholar]
  60. 60. 
    Zar T, Graeber C, Perazella MA. 2007. Recognition, treatment, and prevention of propylene glycol toxicity. Semin. Dial. 20:217–19
    [Google Scholar]
  61. 61. 
    McGowan MA, Scheman A, Jacob SE 2018. Propylene glycol in contact dermatitis: a systematic review. Dermatitis 29:6–12
    [Google Scholar]
  62. 62. 
    Varughese S, Teschke K, Brauer M, Chow Y, van Netten C, Kennedy SM. 2005. Effects of theatrical smokes and fogs on respiratory health in the entertainment industry. Am. J. Ind. Med. 47:411–18
    [Google Scholar]
  63. 63. 
    Baker RR, Bishop LJ. 2004. The pyrolysis of tobacco ingredients. J. Anal. Appl. Pyrolysis 71:223–311
    [Google Scholar]
  64. 64. 
    Laino T, Tuma C, Moor P, Martin E, Stolz S, Curioni A 2012. Mechanisms of propylene glycol and triacetin pyrolysis. J. Phys. Chem. A 116:4602–9
    [Google Scholar]
  65. 65. 
    Díaz E, Sad ME, Iglesia E. 2010. Homogeneous oxidation reactions of propanediols at low temperatures. ChemSusChem 3:1063–70
    [Google Scholar]
  66. 66. 
    Saliba NA, El Hellani A, Honein E, Salman R, Talih S et al. 2018. Surface chemistry of electronic cigarette electrical heating coils: effects of metal type on propylene glycol thermal decomposition. J. Anal. Appl. Pyrolysis 134:520–25
    [Google Scholar]
  67. 67. 
    Renne RA, Wehner AP, Greenspan BJ, Deford HS, Ragan HA et al. 1992. 2-Week and 13-week inhalation studies of aerosolized glycerol in rats. Inhal. Toxicol. 4:95–111
    [Google Scholar]
  68. 68. 
    Stein YS, Antal MJ, Jones M. 1983. A study of the gas-phase pyrolysis of glycerol. J. Anal. Appl. Pyrolysis 4:283–96
    [Google Scholar]
  69. 69. 
    Ogunwale MA, Li M, Ramakrishnam Raju MV, Chen Y, Nantz MH et al. 2017. Aldehyde detection in electronic cigarette aerosols. ACS Omega 2:1207–14
    [Google Scholar]
  70. 70. 
    Goniewicz ML, Knysak J, Gawron M, Kosmider L, Sobczak A et al. 2014. Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. Tob. Control 23:133–39
    [Google Scholar]
  71. 71. 
    Sleiman M, Logue JM, Montesinos VN, Russell ML, Litter MI et al. 2016. Emissions from electronic cigarettes: key parameters affecting the release of harmful chemicals. Environ. Sci. Technol. 50:9644–51
    [Google Scholar]
  72. 72. 
    Talih S, Salman R, Karaoghlanian N, El-Hellani A, Saliba N et al. 2017.. “ Juice monsters”: sub-ohm vaping and toxic volatile aldehyde emissions. Chem. Res. Toxicol. 30:1791–93
    [Google Scholar]
  73. 73. 
    Boulay ME, Henry C, Bosse Y, Boulet LP, Morissette MC. 2017. Acute effects of nicotine-free and flavour-free electronic cigarette use on lung functions in healthy and asthmatic individuals. Respir. Res. 18:33
    [Google Scholar]
  74. 74. 
    Palamidas A, Tsikrika S, Katsaounou PA, Vakali S, Gennimata S-A et al. 2017. Acute effects of short term use of e-cigarettes on airways physiology and respiratory symptoms in smokers with and without airways obstructive diseases and in healthy non smokers. Tob. Prev. Cessat. 3:5
    [Google Scholar]
  75. 75. 
    Suber RL, Deskin R, Nikiforov I, Fouillet X, Coggins CRE 1989. Subchronic nose-only inhalation study of propylene glycol in Sprague-Dawley rats. Food Chem. Toxicol. 27:573–83
    [Google Scholar]
  76. 76. 
    Phillips B, Titz B, Kogel U, Sharma D, Leroy P et al. 2017. Toxicity of the main electronic cigarette components, propylene glycol, glycerin, and nicotine, in Sprague-Dawley rats in a 90-day OECD inhalation study complemented by molecular endpoints. Food Chem. Toxicol. 109:315–32
    [Google Scholar]
  77. 77. 
    Williams M, Bozhilov KN, Talbot P. 2019. Analysis of the elements and metals in multiple generations of electronic cigarette atomizers. Environ. Res. 175:156–66
    [Google Scholar]
  78. 78. 
    Mulder HA, Stewart JB, Blue IP, Krakowiak RI, Patterson JL et al. 2020. Characterization of e-cigarette coil temperature and toxic metal analysis by infrared temperature sensing and scanning electron microscopy–energy-dispersive X-ray. Inhal. Toxicol. 32:447–55
    [Google Scholar]
  79. 79. 
    Chen W, Wang P, Ito K, Fowles J, Shusterman D et al. 2018. Measurement of heating coil temperature for e-cigarettes with a “top-coil” clearomizer. PLOS ONE 13:e0195925
    [Google Scholar]
  80. 80. 
    Olmedo P, Goessler W, Tanda S, Grau-Perez M, Jarmul S et al. Metal concentrations in e-cigarette liquid and aerosol samples: the contribution of metallic coils. Environ. Health Perspect. 126:027010
    [Google Scholar]
  81. 81. 
    Flach S, Maniam P, Manickavasagam J. 2019. E-cigarettes and head and neck cancers: a systematic review of the current literature. Clin. Otolaryngol. 44:749–56
    [Google Scholar]
  82. 82. 
    Menicagli R, Marotta O, Serra R. 2020. Free radical production in the smoking of e-cigarettes and their possible effects in human health. Int. J. Prev. Med. 11:53
    [Google Scholar]
  83. 83. 
    Tommasi S, Caliri AW, Caceres A, Moreno DE, Li M et al. 2019. Deregulation of biologically significant genes and associated molecular pathways in the oral epithelium of electronic cigarette users. Int. J. Mol. Sci. 20:738
    [Google Scholar]
  84. 84. 
    Hamad SH, Brinkman MC, Tsai YH, Mellouk N, Cross K et al. 2021. Pilot study to detect genes involved in DNA damage and cancer in humans: potential biomarkers of exposure to e-cigarette aerosols. Genes 12:448
    [Google Scholar]
  85. 85. 
    Sun YW, Kosinska W, Guttenplan JB. 2019. E-cigarette aerosol condensate enhances metabolism of benzo(a)pyrene to genotoxic products, and induces CYP1A1 and CYP1B1, likely by activation of the aryl hydrocarbon receptor. Int. J. Environ. Res. Public Health 16:142468
    [Google Scholar]
  86. 86. 
    Almeida-da-Silva CLC, Matshik Dakafay H, O'Brien K, Montierth D, Xiao N, Ojcius DM 2020. Effects of electronic cigarette aerosol exposure on oral and systemic health. Biomed. J. 44:252–59
    [Google Scholar]
  87. 87. 
    Pushalkar S, Paul B, Li Q, Yang J, Vasconcelos R et al. 2020. Electronic cigarette aerosol modulates the oral microbiome and increases risk of infection. iScience 23:100884
    [Google Scholar]
  88. 88. 
    Cackovic J, Reddy P, Ganesan R, Nair R. 2020. E-cigarette- or vaping-associated interstitial lung injury with superimposed legionella pneumonia. Chest 158:A563–64
    [Google Scholar]
  89. 89. 
    Ye D, Gajendra S, Lawyer G, Jadeja N, Pishey D et al. 2020. Inflammatory biomarkers and growth factors in saliva and gingival crevicular fluid of e-cigarette users, cigarette smokers, and dual smokers: a pilot study. J. Periodontol. 91:1274–83
    [Google Scholar]
  90. 90. 
    Atuegwu NC, Perez MF, Oncken C, Thacker S, Mead EL, Mortensen EM 2019. Association between regular electronic nicotine product use and self-reported periodontal disease status: population assessment of tobacco and health survey. Int. J. Environ. Res. Public Health 16:1263
    [Google Scholar]
  91. 91. 
    Jeong W, Choi D-W, Kim YK, Lee HJ, Lee SA et al. 2020. Associations of electronic and conventional cigarette use with periodontal disease in South Korean adults. J. Periodontol. 91:55–64
    [Google Scholar]
  92. 92. 
    Bardellini E, Amadori F, Conti G, Majorana A. 2018. Oral mucosal lesions in electronic cigarettes consumers versus former smokers. Acta Odontol. Scandinavica 76:226–28
    [Google Scholar]
  93. 93. 
    Martin EM, Clapp PW, Rebuli ME, Pawlak EA, Glista-Baker E et al. 2016. E-cigarette use results in suppression of immune and inflammatory-response genes in nasal epithelial cells similar to cigarette smoke. Am. J. Physiol. Lung Cell. Mol. Physiol. 311:L135–44
    [Google Scholar]
  94. 94. 
    Miyashita L, Suri R, Dearing E, Mudway I, Dove RE et al. 2018. E-cigarette vapour enhances pneumococcal adherence to airway epithelial cells. Eur. Respir. J. 51:1701592
    [Google Scholar]
  95. 95. 
    Rebuli ME, Glista-Baker E, Hoffman JR, Duffney PF, Robinette C et al. 2021. Electronic-cigarette use alters nasal mucosal immune response to live-attenuated influenza virus: a clinical trial. Am. J. Respir. Cell. Mol. Biol. 64:126–37
    [Google Scholar]
  96. 96. 
    Yang CX, Shi H, Ding I, Milne S, Hernandez Cordero AI et al. 2019. Widespread sexual dimorphism in the transcriptome of human airway epithelium in response to smoking. Sci. Rep. 9:17600
    [Google Scholar]
  97. 97. 
    Crotty Alexander LE, Ware LB, Calfee CS, Callahan SJ, Eissenberg T et al. 2020. E-cigarette or vaping product use-associated lung injury: developing a research agenda. An NIH workshop report. Am. J. Respir. Crit. Care Med 202:795–802
    [Google Scholar]
  98. 98. 
    Gordon T, Fine J 2020. Cornering the suspects in vaping-associated EVALI. N. Engl. J. Med. 382:755–56
    [Google Scholar]
  99. 99. 
    Price LR, Martinez J. 2019. Cardiovascular, carcinogenic and reproductive effects of nicotine exposure: a narrative review of the scientific literature. F1000Res 8: 1586.
    [Google Scholar]
  100. 100. 
    Whitehead AK, Erwin AP, Yue X. 2021. Nicotine and vascular dysfunction. Acta Physiol. 231:e13631
    [Google Scholar]
  101. 101. 
    Wang Z, May SM, Charoenlap S, Pyle R, Ott NL et al. 2015. Effects of secondhand smoke exposure on asthma morbidity and health care utilization in children: a systematic review and meta-analysis. Ann. Allergy Asthma Immunol. 115:396–401.e2
    [Google Scholar]
  102. 102. 
    Wills TA, Choi K, Pagano I. 2020. E-cigarette use associated with asthma independent of cigarette smoking and marijuana in a 2017 national sample of adolescents. J. Adolesc. Health 67:524–30
    [Google Scholar]
  103. 103. 
    Perez MF, Atuegwu NC, Oncken C, Mead EL, Mortensen EM 2019. Association between electronic cigarette use and asthma in never-smokers. Ann. Am. Thorac. Soc. 16:1453–56
    [Google Scholar]
  104. 104. 
    Xian S, Chen Y 2021. E-cigarette users are associated with asthma disease: a meta-analysis. Clin. Respir. J. 15:457–66
    [Google Scholar]
  105. 105. 
    Perez MF, Atuegwu NC, Mead EL, Oncken C, Mortensen EM 2019. Adult e-cigarettes use associated with a self-reported diagnosis of COPD. Int. J. Environ. Res. Public Health 16:3938
    [Google Scholar]
  106. 106. 
    Strong DR, Myers MG, Pulvers K, Noble M, Brikmanis K, Doran N. 2018. Marijuana use among US tobacco users: findings from wave 1 of the population assessment of tobacco health (PATH) study. Drug Alcohol Depend. 186:16–22
    [Google Scholar]
  107. 107. 
    Li D, Sundar IK, McIntosh S, Ossip DJ, Goniewicz ML et al. 2020. Association of smoking and electronic cigarette use with wheezing and related respiratory symptoms in adults: cross-sectional results from the Population Assessment of Tobacco and Health (PATH) study, wave 2. Tob. Control 29:140–47
    [Google Scholar]
  108. 108. 
    Larcombe AN, Janka MA, Mullins BJ, Berry LJ, Bredin A, Franklin PJ. 2017. The effects of electronic cigarette aerosol exposure on inflammation and lung function in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 313:L67–79
    [Google Scholar]
  109. 109. 
    Szafran BN, Pinkston R, Perveen Z, Ross MK, Morgan T et al. 2020. Electronic-cigarette vehicles and flavoring affect lung function and immune responses in a murine model. Int. J. Mol. Sci. 21:6022
    [Google Scholar]
  110. 110. 
    Glynos C, Bibli S-I, Katsaounou P, Pavlidou A, Magkou C et al. 2018. Comparison of the effects of e-cigarette vapor with cigarette smoke on lung function and inflammation in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 315:L662–72
    [Google Scholar]
  111. 111. 
    Chapman DG, Casey DT, Ather JL, Aliyeva M, Daphtary N et al. 2019. The effect of flavored e-cigarettes on murine allergic airways disease. Sci. Rep. 9:13671
    [Google Scholar]
  112. 112. 
    Wills TA, Soneji SS, Choi K, Jaspers I, Tam EK 2021. E-cigarette use and respiratory disorders: an integrative review of converging evidence from epidemiological and laboratory studies. Eur. Respir. J. 57:1901815
    [Google Scholar]
  113. 113. 
    Gaiha SM, Cheng J, Halpern-Felsher B. 2020. Association between youth smoking, electronic cigarette use, and COVID-19. J. Adolesc. Health 67:519–23
    [Google Scholar]
  114. 114. 
    Li D, Croft DP, Ossip DJ, Xie Z. 2020. The association between statewide vaping prevalence and COVID-19. Prev. Med. Rep. 20:101254
    [Google Scholar]
  115. 115. 
    Pushalkar S, Paul B, Li Q, Yang J, Vasconcelos R et al. 2020. Electronic cigarette aerosol modulates the oral microbiome and increases risk of infection. iScience 23:100884
    [Google Scholar]
  116. 116. 
    Gilpin DF, McGown K-A, Gallagher K, Bengoechea J, Dumigan A et al. 2019. Electronic cigarette vapour increases virulence and inflammatory potential of respiratory pathogens. Respir. Res. 20:267
    [Google Scholar]
  117. 117. 
    Hwang JH, Lyes M, Sladewski K, Enany S, McEachern E et al. 2016. Electronic cigarette inhalation alters innate immunity and airway cytokines while increasing the virulence of colonizing bacteria. J. Mol. Med. 94:667–79
    [Google Scholar]
  118. 118. 
    Corriden R, Moshensky A, Bojanowski CM, Meier A, Chien J et al. 2020. E-cigarette use increases susceptibility to bacterial infection by impairment of human neutrophil chemotaxis, phagocytosis, and NET formation. Am. J. Physiol. Cell. Physiol. 318:C205–14
    [Google Scholar]
  119. 119. 
    Clapp PW, Pawlak EA, Lackey JT, Keating JE, Reeber SL et al. 2017. Flavored e-cigarette liquids and cinnamaldehyde impair respiratory innate immune cell function. Am. J. Physiol. Lung Cell Mol. Physiol. 313:L278–92
    [Google Scholar]
  120. 120. 
    Pham K, Huynh D, Le L, Delitto D, Yang L et al. 2020. E-cigarette promotes breast carcinoma progression and lung metastasis: macrophage-tumor cells crosstalk and the role of CCL5 and VCAM-1. Cancer Lett 491:132–45
    [Google Scholar]
  121. 121. 
    Lee HW, Park SH, Weng MW, Wang HT, Huang WC et al. 2018. E-cigarette smoke damages DNA and reduces repair activity in mouse lung, heart, and bladder as well as in human lung and bladder cells. PNAS 115:E1560–69
    [Google Scholar]
  122. 122. 
    Tang M-S, Wu X-R, Lee H-W, Xia Y, Deng F-M et al. 2019. Electronic-cigarette smoke induces lung adenocarcinoma and bladder urothelial hyperplasia in mice. PNAS 116:21727
    [Google Scholar]
  123. 123. 
    Conklin DJ, Schick S, Blaha MJ, Carll A, DeFilippis A et al. 2019. Cardiovascular injury induced by tobacco products: assessment of risk factors and biomarkers of harm. A Tobacco Centers of Regulatory Science compilation. Am. J. Physiol. Heart Circ. Physiol. 316:H801–27
    [Google Scholar]
  124. 124. 
    Wang JB, Olgin JE, Nah G, Vittinghoff E, Cataldo JK et al. 2018. Cigarette and e-cigarette dual use and risk of cardiopulmonary symptoms in the Health eHeart Study. PLOS ONE 13:e0198681
    [Google Scholar]
  125. 125. 
    Alzahrani T, Pena I, Temesgen N, Glantz SA 2018. Association between electronic cigarette use and myocardial infarction. Am. J. Prev. Med. 55:455–61
    [Google Scholar]
  126. 126. 
    Farsalinos KE, Polosa R, Cibella F, Niaura R 2019. Is e-cigarette use associated with coronary heart disease and myocardial infarction? Insights from the 2016 and 2017 National Health Interview Surveys. Ther. Adv. Chronic. Dis 10:2040622319877741
    [Google Scholar]
  127. 127. 
    Osei AD, Mirbolouk M, Orimoloye OA, Dzaye O, Uddin SMI et al. 2019. Association between e-cigarette use and cardiovascular disease among never and current combustible-cigarette smokers. Am. J. Med. 132:949–54.e2
    [Google Scholar]
  128. 128. 
    Parekh T, Pemmasani S, Desai R 2020. Risk of stroke with e-cigarette and combustible cigarette use in young adults. Am. J. Prev. Med. 58:446–52
    [Google Scholar]
  129. 129. 
    Cooke WH, Pokhrel A, Dowling C, Fogt DL, Rickards CA. 2015. Acute inhalation of vaporized nicotine increases arterial pressure in young non-smokers: a pilot study. Clin. Auton. Res. 25:267–70
    [Google Scholar]
  130. 130. 
    Fogt DL, Levi MA, Rickards CA, Stelly SP, Cooke WH. 2016. Effects of acute vaporized nicotine in non-tobacco users at rest and during exercise. Int. J. Exerc. Sci. 9:607–15
    [Google Scholar]
  131. 131. 
    Antoniewicz L, Bosson JA, Kuhl J, Abdel-Halim SM, Kiessling A et al. 2016. Electronic cigarettes increase endothelial progenitor cells in the blood of healthy volunteers. Atherosclerosis 255:179–85
    [Google Scholar]
  132. 132. 
    Antoniewicz L, Brynedal A, Hedman L, Lundback M, Bosson JA 2019. Acute effects of electronic cigarette inhalation on the vasculature and the conducting airways. Cardiovasc. Toxicol. 19:441–50
    [Google Scholar]
  133. 133. 
    Caporale A, Langham MC, Guo W, Johncola A, Chatterjee S, Wehrli FW 2019. Acute effects of electronic cigarette aerosol inhalation on vascular function detected at quantitative MRI. Radiology 293:97–106
    [Google Scholar]
  134. 134. 
    Moheimani RS, Bhetraratana M, Peters KM, Yang BK, Yin F et al. 2017. Sympathomimetic effects of acute e-cigarette use: role of nicotine and non-nicotine constituents. J. Am. Heart Assoc. 6:e006579
    [Google Scholar]
  135. 135. 
    Moheimani RS, Bhetraratana M, Yin F, Peters KM, Gornbein J et al. 2017. Increased cardiac sympathetic activity and oxidative stress in habitual electronic cigarette users: implications for cardiovascular risk. JAMA Cardiol 2:278–84
    [Google Scholar]
  136. 136. 
    Chatterjee S, Caporale A, Tao JQ, Guo W, Johncola A et al. 2020. Acute e-cig inhalation impacts vascular health: a study in smoking naïve subjects. Am. J. Physiol. Heart Circ. Physiol. 320:H144–58
    [Google Scholar]
  137. 137. 
    Farsalinos KE, Tsiapras D, Kyrzopoulos S, Savvopoulou M, Voudris V. 2014. Acute effects of using an electronic nicotine-delivery device (electronic cigarette) on myocardial function: comparison with the effects of regular cigarettes. BMC Cardiovasc. Disord. 14:78
    [Google Scholar]
  138. 138. 
    Szoltysek-Boldys I, Sobczak A, Zielinska-Danch W, Barton A, Koszowski B, Kosmider L 2014. Influence of inhaled nicotine source on arterial stiffness. Przegl. Lek. 71:572–75
    [Google Scholar]
  139. 139. 
    Kerr DMI, Brooksbank KJM, Taylor RG, Pinel K, Rios FJ et al. 2019. Acute effects of electronic and tobacco cigarettes on vascular and respiratory function in healthy volunteers: a cross-over study. J. Hypertens. 37:154–66
    [Google Scholar]
  140. 140. 
    Carnevale R, Sciarretta S, Violi F, Nocella C, Loffredo L et al. 2016. Acute impact of tobacco versus electronic cigarette smoking on oxidative stress and vascular function. Chest 150:606–12
    [Google Scholar]
  141. 141. 
    Nocella C, Biondi-Zoccai G, Sciarretta S, Peruzzi M, Pagano F et al. 2018. Impact of tobacco versus electronic cigarette smoking on platelet function. Am. J. Cardiol. 122:1477–81
    [Google Scholar]
  142. 142. 
    Vlachopoulos C, Ioakeimidis N, Abdelrasoul M, Terentes-Printzios D, Georgakopoulos C et al. 2016. Electronic cigarette smoking increases aortic stiffness and blood pressure in young smokers. J. Am. Coll. Cardiol. 67:2802–3
    [Google Scholar]
  143. 143. 
    Olfert IM, DeVallance E, Hoskinson H, Branyan KW, Clayton S et al. 2018. Chronic exposure to electronic cigarettes results in impaired cardiovascular function in mice. J. Appl. Physiol. 124:573–82
    [Google Scholar]
  144. 144. 
    Szostak J, Wong ET, Titz B, Lee T, Wong SK et al. 2020. A 6-month systems toxicology inhalation study in ApoE−/− mice demonstrates reduced cardiovascular effects of E-vapor aerosols compared with cigarette smoke. Am. J. Physiol. Heart Circ. Physiol. 318:H604–31
    [Google Scholar]
  145. 145. 
    Keith R, Bhatnagar A 2021. Cardiorespiratory and immunologic effects of electronic cigarettes. Curr. Addict. Rep. 5:1–11
    [Google Scholar]
  146. 146. 
    Qasim H, Karim ZA, Silva-Espinoza JC, Fadi TK, Rivera JO et al. 2018. Short-term e-cigarette exposure increases the risk of thrombogenesis and enhances platelet function in mice. J. Am. Heart Assoc. 7:e009264
    [Google Scholar]
  147. 147. 
    Ramirez JEM, Karim ZA, Alarabi AB, Hernandez KR, Taleb ZB et al. 2020. The JUUL e-cigarette elevates the risk of thrombosis and potentiates platelet activation. J. Cardiovasc. Pharmacol. Ther. 25:578–86
    [Google Scholar]
  148. 148. 
    Abouassali O, Chang M, Chidipi B, Martinez JL, Reiser M et al. 2021. In vitro and in vivo cardiac toxicity of flavored electronic nicotine delivery systems. Am. J. Physiol. Heart Circ. Physiol. 320:H133–43
    [Google Scholar]
  149. 149. 
    Sumartiningsih S, Lin HF, Lin JC 2019. Cigarette smoking blunts exercise-induced heart rate response among young adult male smokers. Int. J. Environ. Res. Public Health 16:1032
    [Google Scholar]
  150. 150. 
    Espinoza-Derout J, Hasan KM, Shao XM, Jordan MC, Sims C et al. 2019. Chronic intermittent electronic cigarette exposure induces cardiac dysfunction and atherosclerosis in apolipoprotein-E knockout mice. Am. J. Physiol. Heart Circ. Physiol. 317:H445–59
    [Google Scholar]
  151. 151. 
    Rodriguez-Bolanos R, Arillo-Santillan E, Barrientos-Gutierrez I, Zavala-Arciniega L, Ntansah CA, Thrasher JF. 2019. Sex differences in becoming a current electronic cigarette user, current smoker and current dual user of both products: a longitudinal study among Mexican adolescents. Int. J. Environ. Res. Public Health 17:196
    [Google Scholar]
  152. 152. 
    Yimsaard P, McNeill A, Yong H-H, Cummings KM, Chung-Hall J et al. 2021. Gender differences in reasons for using electronic cigarettes and product characteristics: findings from the 2018 ITC Four Country Smoking and Vaping Survey. Nicotine Tob. Res. 23:678–86
    [Google Scholar]
  153. 153. 
    Duan Z, Wang Y, Huang J 2021. Sex difference in the association between electronic cigarette use and subsequent cigarette smoking among U.S. adolescents: findings from the PATH study waves 1–4. Int. J. Environ. Res. Public Health 18:1695
    [Google Scholar]
  154. 154. 
    Schweizer C, Edwards RD, Bayer-Oglesby L, Gauderman WJ, Ilacqua V et al. 2007. Indoor time–microenvironment–activity patterns in seven regions of Europe. J. Exp. Sci. Environ. Epidemiol. 17:170–81
    [Google Scholar]
  155. 155. 
    Zhang Y, Sumner W, Chen D-R. 2013. In vitro particle size distributions in electronic and conventional cigarette aerosols suggest comparable deposition patterns. Nicotine Tob. Res. 15:501–8
    [Google Scholar]
  156. 156. 
    Chen R, Aherrera A, Isichei C, Olmedo P, Jarmul S et al. 2018. Assessment of indoor air quality at an electronic cigarette (vaping) convention. J. Expo. Sci. Environ. Epidemiol. 28:522–29
    [Google Scholar]
  157. 157. 
    Amalia B, Liu X, Lugo A, Fu M, Odone A et al. 2021. Exposure to secondhand aerosol of electronic cigarettes in indoor settings in 12 European countries: data from the TackSHS survey. Tob. Control 30:49–56
    [Google Scholar]
  158. 158. 
    Agaku IT, Perks SN, Odani S, Glover-Kudon R. 2020. Associations between public e-cigarette use and tobacco-related social norms among youth. Tob. Control 29:332–40
    [Google Scholar]
  159. 159. 
    Quintana PJE, Hoh E, Dodder NG, Matt GE, Zakarian JM et al. 2019. Nicotine levels in silicone wristband samplers worn by children exposed to secondhand smoke and electronic cigarette vapor are highly correlated with child's urinary cotinine. J. Expo. Sci. Environ. Epidemiol. 29:733–41
    [Google Scholar]
  160. 160. 
    Quintana PJE, Lopez-Galvez N, Dodder NG, Hoh E, Matt GE et al. 2021. Nicotine, cotinine, and tobacco-specific nitrosamines measured in children's silicone wristbands in relation to secondhand smoke and e-cigarette vapor exposure. Nicotine Tob. Res. 23:592–99
    [Google Scholar]
  161. 161. 
    Tzortzi A, Teloniatis S, Matiampa G, Bakelas G, Tzavara C et al. 2020. Passive exposure of non-smokers to E-cigarette aerosols: sensory irritation, timing and association with volatile organic compounds. Environ. Res. 182:108963
    [Google Scholar]
  162. 162. 
    Strombotne K, Buckell J, Sindelar JL. 2021. Do JUUL and e-cigarette flavours change risk perceptions of adolescents? Evidence from a national survey. Tob. Control 30:199–205
    [Google Scholar]
  163. 163. 
    Romijnders KAGJ, Van Osch L, De Vries H, Talhout R. 2018. Perceptions and reasons regarding e-cigarette use among users and non-users: a narrative literature review. Int. J. Environ. Res. Public Health 15:1190
    [Google Scholar]
  164. 164. 
    Peruzzi M, Biondi-Zoccai G, Carnevale R, Cavarretta E, Frati G, Versaci F 2020. Vaping cardiovascular health risks: an updated umbrella review. Curr. Emerg. Hosp. Med. Rep. 8:103–9
    [Google Scholar]
  165. 165. 
    Solinas A, Paoletti G, Firinu D, Di Pino M, Tusconi M et al. 2020. Vaping effects on asthma: results from a web survey and clinical investigation. Int. Emerg. Med. 15:663–71
    [Google Scholar]
  166. 166. 
    Mulder HA, Patterson JL, Halquist MS, Kosmider L, Turner JBM et al. 2019. The effect of electronic cigarette user modifications and e-liquid adulteration on the particle size profile of an aerosolized product. Sci. Rep. 9:10221
    [Google Scholar]
  167. 167. 
    Shao XM, Friedman TC. 2019. Pod-mod versus conventional e-cigarettes: nicotine chemistry, pH, and health effects. J. Appl. Physiol. 128:1056–58
    [Google Scholar]
  168. 168. 
    Smets J, Baeyens F, Chaumont M, Adriaens K, Van Gucht D 2019. When less is more: vaping low-nicotine versus high-nicotine e-liquid is compensated by increased wattage and higher liquid consumption. Int. J. Environ. Res. Public Health 16:723
    [Google Scholar]
  169. 169. 
    Beauval N, Verrièle M, Garat A, Fronval I, Dusautoir R et al. 2019. Influence of puffing conditions on the carbonyl composition of e-cigarette aerosols. Int. J. Hyg. Environ. Health 222:136–46
    [Google Scholar]
  170. 170. 
    Corriden R, Moshensky A, Bojanowski CM, Meier A, Chien J et al. 2019. E-cigarette use increases susceptibility to bacterial infection by impairment of human neutrophil chemotaxis, phagocytosis, and NET formation. Am. J. Physiol. Cell Physiol. 318:C205–14
    [Google Scholar]
  171. 171. 
    Wills TA, Pagano I, Williams RJ, Tam EK 2019. E-cigarette use and respiratory disorder in an adult sample. Drug Alcohol Depend 194:363–70
    [Google Scholar]
  172. 172. 
    Polosa R, Cibella F, Caponnetto P, Maglia M, Prosperini U et al. 2017. Health impact of E-cigarettes: a prospective 3.5-year study of regular daily users who have never smoked. Sci. Rep. 7:13825
    [Google Scholar]
  173. 173. 
    Blount BC, Karwowski MP, Shields PG, Morel-Espinosa M, Valentin-Blasini L et al. 2019. Vitamin E acetate in bronchoalveolar-lavage fluid associated with EVALI. New Engl. J. Med. 382:697–705
    [Google Scholar]
  174. 174. 
    Borland R, Murray K, Gravely S, Fong GT, Thompson ME et al. 2019. A new classification system for describing concurrent use of nicotine vaping products alongside cigarettes (so-called ‘dual use’): findings from the ITC-4 Country Smoking and Vaping wave 1 survey. Addiction 114:24–34
    [Google Scholar]
  175. 175. 
    Pokhrel P, Herzog TA, Muranaka N, Regmi S, Fagan P 2015. Contexts of cigarette and e-cigarette use among dual users: a qualitative study. BMC Public Health 15:859
    [Google Scholar]
  176. 176. 
    Adriaens K, Van Gucht D, Baeyens F. 2018. Differences between dual users and switchers center around vaping behavior and its experiences rather than beliefs and attitudes. Int. J. Environ. Res. Public Health 15:12
    [Google Scholar]
  177. 177. 
    Baig SA, Giovenco DP. 2020. Behavioral heterogeneity among cigarette and e-cigarette dual-users and associations with future tobacco use: Findings from the Population Assessment of Tobacco and Health Study. Addict. Behav. 104:106263
    [Google Scholar]
  178. 178. 
    Owusu D, Huang J, Weaver SR, Pechacek TF, Ashley DL et al. 2019. Patterns and trends of dual use of e-cigarettes and cigarettes among U.S. adults, 2015–2018. Prev. Med. Rep. 16:101009
    [Google Scholar]
  179. 179. 
    Maglia M, Caponnetto P, Di Piazza J, La Torre D, Polosa R 2018. Dual use of electronic cigarettes and classic cigarettes: a systematic review. Addict. Res. Theory 26:330–38
    [Google Scholar]
  180. 180. 
    Persoskie A, O'Brien EK, Poonai K. 2019. Perceived relative harm of using e-cigarettes predicts future product switching among US adult cigarette and e-cigarette dual users. Addiction 114:2197–205
    [Google Scholar]
  181. 181. 
    Martínez Ú, Martínez-Loredo V, Simmons VN, Meltzer LR, Drobes DJ et al. 2020. How does smoking and nicotine dependence change after onset of vaping? A retrospective analysis of dual users. Nicotine Tob. Res. 22:764–70
    [Google Scholar]
  182. 182. 
    Kim C-Y, Paek Y-J, Seo HG, Cheong YS, Lee CM et al. 2020. Dual use of electronic and conventional cigarettes is associated with higher cardiovascular risk factors in Korean men. Sci. Rep. 10:5612
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-042921-084202
Loading
/content/journals/10.1146/annurev-pharmtox-042921-084202
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error