1932

Abstract

Lysosomes play fundamental roles in material digestion, cellular clearance, recycling, exocytosis, wound repair, Ca2+ signaling, nutrient signaling, and gene expression regulation. The organelle also serves as a hub for important signaling networks involving the mTOR and AKT kinases. Electrophysiological recording and molecular and structural studies in the past decade have uncovered several unique lysosomal ion channels and transporters, including TPCs, TMEM175, TRPMLs, CLN7, and CLC-7. They underlie the organelle's permeability to major ions, including K+, Na+, H+, Ca2+, and Cl. The channels are regulated by numerous cellular factors, ranging from H+ in the lumen and voltage across the lysosomal membrane to ATP in the cytosol to growth factors outside the cell. Genetic variations in the channel/transporter genes are associated with diseases that include lysosomal storage diseases and neurodegenerative diseases. Recent studies with human genetics and channel activators suggest that lysosomal channels may be attractive targets for the development of therapeutics for the prevention of and intervention in human diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-051921-013755
2023-01-20
2024-05-10
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/63/1/annurev-pharmtox-051921-013755.html?itemId=/content/journals/10.1146/annurev-pharmtox-051921-013755&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Xu H, Ren D. 2015. Lysosomal physiology. Annu. Rev. Physiol. 77:57–80
    [Google Scholar]
  2. 2.
    Galione A. 2011. NAADP receptors. Cold Spring Harb. Perspect. Biol. 3:a004036
    [Google Scholar]
  3. 3.
    Sivaramakrishnan V, Bidula S, Campwala H, Katikaneni D, Fountain SJ. 2012. Constitutive lysosome exocytosis releases ATP and engages P2Y receptors in human monocytes. J. Cell Sci. 125:4567–75
    [Google Scholar]
  4. 4.
    Jaiswal JK, Fix M, Takano T, Nedergaard M, Simon SM. 2007. Resolving vesicle fusion from lysis to monitor calcium-triggered lysosomal exocytosis in astrocytes. PNAS 104:14151–56
    [Google Scholar]
  5. 5.
    Li D, Ropert N, Koulakoff A, Giaume C, Oheim M. 2008. Lysosomes are the major vesicular compartment undergoing Ca2+-regulated exocytosis from cortical astrocytes. J. Neurosci. 28:7648–58
    [Google Scholar]
  6. 6.
    Zhang Z, Chen G, Zhou W, Song A, Xu T et al. 2007. Regulated ATP release from astrocytes through lysosome exocytosis. Nat. Cell Biol. 9:945–53
    [Google Scholar]
  7. 7.
    Reddy A, Caler EV, Andrews NW. 2001. Plasma membrane repair is mediated by Ca2+-regulated exocytosis of lysosomes. Cell 106:157–69
    [Google Scholar]
  8. 8.
    Andrews NW. 2000. Regulated secretion of conventional lysosomes. Trends Cell Biol. 10:316–21
    [Google Scholar]
  9. 9.
    Papadopoulos C, Meyer H. 2017. Detection and clearance of damaged lysosomes by the endo-lysosomal damage response and lysophagy. Curr. Biol. 27:R1330–41
    [Google Scholar]
  10. 10.
    Arias E, Koga H, Diaz A, Mocholi E, Patel B, Cuervo AM. 2015. Lysosomal mTORC2/PHLPP1/Akt regulate chaperone-mediated autophagy. Mol. Cell 59:270–84
    [Google Scholar]
  11. 11.
    Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM 2010. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141:290–303
    [Google Scholar]
  12. 12.
    Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM. 2011. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H+-ATPase. Science 334:678–83
    [Google Scholar]
  13. 13.
    Sabatini DM. 2017. Twenty-five years of mTOR: uncovering the link from nutrients to growth. PNAS 114:11818–25
    [Google Scholar]
  14. 14.
    Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S et al. 2012. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31:1095–108
    [Google Scholar]
  15. 15.
    Saxton RA, Sabatini DM. 2017. mTOR signaling in growth, metabolism, and disease. Cell 169:361–71
    [Google Scholar]
  16. 16.
    Ballabio A, Gieselmann V. 2009. Lysosomal disorders: from storage to cellular damage. Biochim. Biophys. Acta 1793:684–96
    [Google Scholar]
  17. 17.
    Platt FM, Boland B, van der Spoel AC. 2012. The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction. J. Cell Biol. 199:723–34
    [Google Scholar]
  18. 18.
    Burbulla LF, Song P, Mazzulli JR, Zampese E, Wong YC et al. 2017. Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson's disease. Science 357:1255–61
    [Google Scholar]
  19. 19.
    Lie PPY, Nixon RA. 2018. Lysosome trafficking and signaling in health and neurodegenerative diseases. Neurobiol. Dis. 122:94–105
    [Google Scholar]
  20. 20.
    Bose A, Beal MF. 2016. Mitochondrial dysfunction in Parkinson's disease. J. Neurochem. 139:Suppl. 1216–31
    [Google Scholar]
  21. 21.
    Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. 2013. The hallmarks of aging. Cell 153:1194–217
    [Google Scholar]
  22. 22.
    Rubinsztein DC, Marino G, Kroemer G. 2011. Autophagy and aging. Cell 146:682–95
    [Google Scholar]
  23. 23.
    Christensen KA, Myers JT, Swanson JA. 2002. pH-dependent regulation of lysosomal calcium in macrophages. J. Cell Sci. 115:599–607
    [Google Scholar]
  24. 24.
    Stauber T, Jentsch TJ. 2013. Chloride in vesicular trafficking and function. Annu. Rev. Physiol. 75:453–77
    [Google Scholar]
  25. 25.
    Saha S, Prakash V, Halder S, Chakraborty K, Krishnan Y. 2015. A pH-independent DNA nanodevice for quantifying chloride transport in organelles of living cells. Nat. Nanotechnol. 10:645–51
    [Google Scholar]
  26. 26.
    Bouhamdani N, Comeau D, Turcotte S. 2021. A compendium of information on the lysosome. Front. Cell Dev. Biol. 9:798262
    [Google Scholar]
  27. 27.
    Steinberg BE, Huynh KK, Brodovitch A, Jabs S, Stauber T et al. 2010. A cation counterflux supports lysosomal acidification. J. Cell Biol. 189:1171–86
    [Google Scholar]
  28. 28.
    Wang X, Zhang X, Dong XP, Samie M, Li X et al. 2012. TPC proteins are phosphoinositide-activated sodium-selective ion channels in endosomes and lysosomes. Cell 151:372–83
    [Google Scholar]
  29. 29.
    Henning R. 1975. pH gradient across the lysosomal membrane generated by selective cation permeability and Donnan equilibrium. Biochim. Biophys. Acta 401:307–16
    [Google Scholar]
  30. 30.
    Casey RP, Hollemans M, Tager JM. 1978. The permeability of the lysosomal membrane to small ions. Biochim. Biophys. Acta 508:15–26
    [Google Scholar]
  31. 31.
    Klemm AR, Pell KL, Anderson LM, Andrew CL, Lloyd JB. 1998. Lysosome membrane permeability to anions. Biochim. Biophys. Acta 1373:17–26
    [Google Scholar]
  32. 32.
    Cang C, Bekele B, Ren D. 2014. The voltage-gated sodium channel TPC1 confers endolysosomal excitability. Nat. Chem. Biol. 10:463–69
    [Google Scholar]
  33. 33.
    Cao Q, Zhong XZ, Zou Y, Zhang Z, Toro L, Dong XP. 2015. BK channels alleviate lysosomal storage diseases by providing positive feedback regulation of lysosomal Ca2+ release. Dev. Cell 33:427–41
    [Google Scholar]
  34. 34.
    Koivusalo M, Steinberg BE, Mason D, Grinstein S. 2011. In situ measurement of electrical potential across the lysosomal membrane using FRET. Traffic 12:972–82
    [Google Scholar]
  35. 35.
    Saminathan A, Devany J, Veetil AT, Suresh B, Pillai KS et al. 2021. A DNA-based voltmeter for organelles. Nat. Nanotechnol. 16:96–103
    [Google Scholar]
  36. 36.
    Cang C, Zhou Y, Navarro B, Seo Y-J, Aranda K et al. 2013. mTOR regulates lysosomal ATP-sensitive two-pore Na+ channels to adapt to metabolic state. Cell 152:778–90
    [Google Scholar]
  37. 37.
    Cang C, Aranda K, Seo YJ, Gasnier B, Ren D. 2015. TMEM175 is an organelle K+ channel regulating lysosomal function. Cell 162:1101–12
    [Google Scholar]
  38. 38.
    Matamala E, Castillo C, Vivar JP, Rojas PA, Brauchi SE. 2021. Imaging the electrical activity of organelles in living cells. Commun. Biol. 4:389
    [Google Scholar]
  39. 39.
    Schieder M, Rotzer K, Bruggemann A, Biel M, Wahl-Schott CA. 2010. Characterization of two-pore channel 2 (TPCN2)-mediated Ca2+ currents in isolated lysosomes. J. Biol. Chem. 285:21219–22
    [Google Scholar]
  40. 40.
    Brailoiu E, Hooper R, Cai X, Brailoiu GC, Keebler MV et al. 2010. An ancestral deuterostome family of two-pore channels mediates nicotinic acid adenine dinucleotide phosphate-dependent calcium release from acidic organelles. J. Biol. Chem. 285:2897–901
    [Google Scholar]
  41. 41.
    Calcraft PJ, Ruas M, Pan Z, Cheng X, Arredouani A et al. 2009. NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature 459:596–600
    [Google Scholar]
  42. 42.
    Gerndt S, Chen CC, Chao YK, Yuan Y, Burgstaller S et al. 2020. Agonist-mediated switching of ion selectivity in TPC2 differentially promotes lysosomal function. eLife 9:e54712
    [Google Scholar]
  43. 43.
    Ren D. 2011. Sodium leak channels in neuronal excitability and rhythmic behaviors. Neuron 72:899–911
    [Google Scholar]
  44. 44.
    She J, Guo J, Chen Q, Zeng W, Jiang Y, Bai XC. 2018. Structural insights into the voltage and phospholipid activation of the mammalian TPC1 channel. Nature 556:130–34
    [Google Scholar]
  45. 45.
    She J, Zeng W, Guo J, Chen Q, Bai XC, Jiang Y. 2019. Structural mechanisms of phospholipid activation of the human TPC2 channel. eLife 8:e45222
    [Google Scholar]
  46. 46.
    Oh S, Paknejad N, Hite RK. 2020. Gating and selectivity mechanisms for the lysosomal K+ channel TMEM175. eLife 9:e53430
    [Google Scholar]
  47. 47.
    Lee C, Guo J, Zeng W, Kim S, She J et al. 2017. The lysosomal potassium channel TMEM175 adopts a novel tetrameric architecture. Nature 547:472–75
    [Google Scholar]
  48. 48.
    Clapham DE. 2003. TRP channels as cellular sensors. Nature 426:517–24
    [Google Scholar]
  49. 49.
    Chen Q, She J, Zeng W, Guo J, Xu H et al. 2017. Structure of mammalian endolysosomal TRPML1 channel in nanodiscs. Nature 550:415–18
    [Google Scholar]
  50. 50.
    Schmiege P, Fine M, Blobel G, Li X. 2017. Human TRPML1 channel structures in open and closed conformations. Nature 550:366–70
    [Google Scholar]
  51. 51.
    Fine M, Schmiege P, Li X. 2018. Structural basis for PtdInsP2-mediated human TRPML1 regulation. Nat. Commun. 9:4192
    [Google Scholar]
  52. 52.
    Vergarajauregui S, Puertollano R. 2006. Two di-leucine motifs regulate trafficking of mucolipin-1 to lysosomes. Traffic 7:337–53
    [Google Scholar]
  53. 53.
    Kousi M, Siintola E, Dvorakova L, Vlaskova H, Turnbull J et al. 2009. Mutations in CLN7/MFSD8 are a common cause of variant late-infantile neuronal ceroid lipofuscinosis. Brain 132:810–19
    [Google Scholar]
  54. 54.
    Siintola E, Topcu M, Aula N, Lohi H, Minassian BA et al. 2007. The novel neuronal ceroid lipofuscinosis gene MFSD8 encodes a putative lysosomal transporter. Am. J. Hum. Genet. 81:136–46
    [Google Scholar]
  55. 55.
    Wang Y, Zeng W, Lin B, Yao Y, Li C et al. 2021. CLN7 is an organellar chloride channel regulating lysosomal function. Sci. Adv. 7:eabj9608
    [Google Scholar]
  56. 56.
    Steenhuis P, Herder S, Gelis S, Braulke T, Storch S. 2010. Lysosomal targeting of the CLN7 membrane glycoprotein and transport via the plasma membrane require a dileucine motif. Traffic 11:987–1000
    [Google Scholar]
  57. 57.
    Jentsch TJ, Pusch M. 2018. CLC chloride channels and transporters: structure, function, physiology, and disease. Physiol. Rev. 98:1493–590
    [Google Scholar]
  58. 58.
    Leisle L, Ludwig CF, Wagner FA, Jentsch TJ, Stauber T. 2011. ClC-7 is a slowly voltage-gated 2Cl/1H+-exchanger and requires Ostm1 for transport activity. EMBO J. 30:2140–52
    [Google Scholar]
  59. 59.
    Lange PF, Wartosch L, Jentsch TJ, Fuhrmann JC. 2006. ClC-7 requires Ostm1 as a β-subunit to support bone resorption and lysosomal function. Nature 440:220–23
    [Google Scholar]
  60. 60.
    Stauber T, Jentsch TJ. 2010. Sorting motifs of the endosomal/lysosomal CLC chloride transporters. J. Biol. Chem. 285:34537–48
    [Google Scholar]
  61. 61.
    Leray X, Hilton J, Nwangwu K, Becerril A, Mikusevic V et al. 2021. Tonic inhibition of the chloride/proton antiporter ClC-7 by PI(3,5)P2 is crucial for lysosomal pH maintenance. bioRxiv 2021.10.07.463477. https://doi.org/10.1101/2021.10.07.463477
    [Crossref]
  62. 62.
    Sumoza-Toledo A, Penner R. 2011. TRPM2: a multifunctional ion channel for calcium signalling. J. Physiol. 589:1515–25
    [Google Scholar]
  63. 63.
    Lange I, Yamamoto S, Partida-Sanchez S, Mori Y, Fleig A, Penner R. 2009. TRPM2 functions as a lysosomal Ca2+-release channel in β cells. Sci. Signal. 2:ra23
    [Google Scholar]
  64. 64.
    Di A, Brown ME, Deriy LV, Li C, Szeto FL et al. 2006. CFTR regulates phagosome acidification in macrophages and alters bactericidal activity. Nat. Cell Biol. 8:933–44
    [Google Scholar]
  65. 65.
    Li P, Hu M, Wang C, Feng X, Zhao Z et al. 2020. LRRC8 family proteins within lysosomes regulate cellular osmoregulation and enhance cell survival to multiple physiological stresses. PNAS 117:29155–65
    [Google Scholar]
  66. 66.
    Sun X, Xu M, Cao Q, Huang P, Zhu X, Dong XP. 2020. A lysosomal K+ channel regulates large particle phagocytosis by facilitating lysosome Ca2+ release. Sci. Rep. 10:1038
    [Google Scholar]
  67. 67.
    Wang W, Zhang X, Gao Q, Lawas M, Yu L et al. 2017. A voltage-dependent K+ channel in the lysosome is required for refilling lysosomal Ca2+ stores. J. Cell Biol. 216:1715–30
    [Google Scholar]
  68. 68.
    Huang P, Zou Y, Zhong XZ, Cao Q, Zhao K et al. 2014. P2X4 forms functional ATP-activated cation channels on lysosomal membranes regulated by luminal pH. J. Biol. Chem. 289:17658–67
    [Google Scholar]
  69. 69.
    Sheppard DN, Welsh MJ. 1999. Structure and function of the CFTR chloride channel. Physiol. Rev. 79:S23–45
    [Google Scholar]
  70. 70.
    Strange K, Yamada T, Denton JS. 2019. A 30-year journey from volume-regulated anion currents to molecular structure of the LRRC8 channel. J. Gen. Physiol. 151:100–17
    [Google Scholar]
  71. 71.
    North RA. 2002. Molecular physiology of P2X receptors. Physiol. Rev. 82:1013–67
    [Google Scholar]
  72. 72.
    Latorre R, Castillo K, Carrasquel-Ursulaez W, Sepulveda RV, Gonzalez-Nilo F et al. 2017. Molecular determinants of BK channel functional diversity and functioning. Physiol. Rev. 97:39–87
    [Google Scholar]
  73. 73.
    Miao Y, Li G, Zhang X, Xu H, Abraham SN. 2015. A TRP channel senses lysosome neutralization by pathogens to trigger their expulsion. Cell 161:1306–19
    [Google Scholar]
  74. 74.
    Garrity AG, Wang W, Collier CM, Levey SA, Gao Q, Xu H. 2016. The endoplasmic reticulum, not the pH gradient, drives calcium refilling of lysosomes. eLife 5:e15887
    [Google Scholar]
  75. 75.
    Jha A, Ahuja M, Patel S, Brailoiu E, Muallem S. 2014. Convergent regulation of the lysosomal two-pore channel-2 by Mg2+, NAADP, PI(3,5)P2 and multiple protein kinases. EMBO J. 33:501–11
    [Google Scholar]
  76. 76.
    Hilgemann DW, Feng S, Nasuhoglu C. 2001. The complex and intriguing lives of PIP2 with ion channels and transporters. Sci. STKE 2001:re19
    [Google Scholar]
  77. 77.
    Zhang X, Li X, Xu H. 2012. Phosphoinositide isoforms determine compartment-specific ion channel activity. PNAS 109:11384–89
    [Google Scholar]
  78. 78.
    McCartney AJ, Zhang Y, Weisman LS. 2014. Phosphatidylinositol 3,5-bisphosphate: low abundance, high significance. BioEssays 36:52–64
    [Google Scholar]
  79. 79.
    Zolov SN, Bridges D, Zhang Y, Lee WW, Riehle E et al. 2012. In vivo, Pikfyve generates PI(3,5)P2, which serves as both a signaling lipid and the major precursor for PI5P. PNAS 109:17472–77
    [Google Scholar]
  80. 80.
    Cao Q, Zhong XZ, Zou Y, Murrell-Lagnado R, Zhu MX, Dong XP. 2015. Calcium release through P2X4 activates calmodulin to promote endolysosomal membrane fusion. J. Cell Biol. 209:879–94
    [Google Scholar]
  81. 81.
    Vergarajauregui S, Connelly PS, Daniels MP, Puertollano R. 2008. Autophagic dysfunction in mucolipidosis type IV patients. Hum. Mol. Genet. 17:2723–37
    [Google Scholar]
  82. 82.
    Zhang X, Cheng X, Yu L, Yang J, Calvo R et al. 2016. MCOLN1 is a ROS sensor in lysosomes that regulates autophagy. Nat. Commun. 7:12109
    [Google Scholar]
  83. 83.
    Laplante M, Sabatini DM. 2012. mTOR signaling. Cold Spring Harb. Perspect. Biol. 4:a011593
    [Google Scholar]
  84. 84.
    Ogunbayo OA, Duan J, Xiong J, Wang Q, Feng X et al. 2018. mTORC1 controls lysosomal Ca2+ release through the two-pore channel TPC2. Sci. Signal. 11:eaao5775
    [Google Scholar]
  85. 85.
    Sun X, Yang Y, Zhong XZ, Cao Q, Zhu XH et al. 2018. A negative feedback regulation of MTORC1 activity by the lysosomal Ca2+ channel MCOLN1 (mucolipin 1) using a CALM (calmodulin)-dependent mechanism. Autophagy 14:38–52
    [Google Scholar]
  86. 86.
    Li RJ, Xu J, Fu C, Zhang J, Zheng YG et al. 2016. Regulation of mTORC1 by lysosomal calcium and calmodulin. eLife 5:e19360
    [Google Scholar]
  87. 87.
    Wie J, Liu Z, Song H, Tropea TF, Yang L et al. 2021. A growth-factor-activated lysosomal K+ channel regulates Parkinson's pathology. Nature 591:431–37
    [Google Scholar]
  88. 88.
    Zheng W, Shen C, Wang L, Rawson S, Xie WJ et al. 2022. pH regulates potassium conductance and drives a constitutive proton current in human TMEM175. Sci. Adv. 8:eabm1568
    [Google Scholar]
  89. 89.
    Mindell JA. 2012. Lysosomal acidification mechanisms. Annu. Rev. Physiol. 74:69–86
    [Google Scholar]
  90. 90.
    Graves AR, Curran PK, Smith CL, Mindell JA. 2008. The Cl/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes. Nature 453:788–92
    [Google Scholar]
  91. 91.
    Jinn S, Drolet RE, Cramer PE, Wong AH, Toolan DM et al. 2017. TMEM175 deficiency impairs lysosomal and mitochondrial function and increases α-synuclein aggregation. PNAS 114:2389–94
    [Google Scholar]
  92. 92.
    Wartosch L, Fuhrmann JC, Schweizer M, Stauber T, Jentsch TJ. 2009. Lysosomal degradation of endocytosed proteins depends on the chloride transport protein ClC-7. FASEB J. 23:4056–68
    [Google Scholar]
  93. 93.
    Freeman SA, Uderhardt S, Saric A, Collins RF, Buckley CM et al. 2020. Lipid-gated monovalent ion fluxes regulate endocytic traffic and support immune surveillance. Science 367:301–5
    [Google Scholar]
  94. 94.
    Chen CC, Krogsaeter E, Butz ES, Li Y, Puertollano R et al. 2020. TRPML2 is an osmo/mechanosensitive cation channel in endolysosomal organelles. Sci. Adv. 6:abb5064
    [Google Scholar]
  95. 95.
    Scotto Rosato A, Montefusco S, Soldati C, Di Paola S, Capuozzo A et al. 2019. TRPML1 links lysosomal calcium to autophagosome biogenesis through the activation of the CaMKKβ/VPS34 pathway. Nat. Commun. 10:5630
    [Google Scholar]
  96. 96.
    Medina DL, Di Paola S, Peluso I, Armani A, De Stefani D et al. 2015. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat. Cell Biol. 17:288–99
    [Google Scholar]
  97. 97.
    Churchill GC, Okada Y, Thomas JM, Genazzani AA, Patel S, Galione A. 2002. NAADP mobilizes Ca2+ from reserve granules, lysosome-related organelles, in sea urchin eggs. Cell 111:703–8
    [Google Scholar]
  98. 98.
    Galione A. 2019. NAADP receptors. Cold Spring Harb. Perspect. Biol. 11:a035071
    [Google Scholar]
  99. 99.
    Guse AH, Lee HC. 2008. NAADP: a universal Ca2+ trigger. Sci. Signal. 1:re10
    [Google Scholar]
  100. 100.
    Zhu MX, Ma J, Parrington J, Calcraft PJ, Galione A, Evans AM. 2010. Calcium signaling via two-pore channels: local or global, that is the question. Am. J. Physiol. Cell Physiol. 298:C430–41
    [Google Scholar]
  101. 101.
    Kilpatrick BS, Yates E, Grimm C, Schapira AH, Patel S 2016. Endo-lysosomal TRP mucolipin-1 channels trigger global ER Ca2+ release and Ca2+ influx. J. Cell Sci. 129:3859–67
    [Google Scholar]
  102. 102.
    Brailoiu E, Churamani D, Cai X, Schrlau MG, Brailoiu GC et al. 2009. Essential requirement for two-pore channel 1 in NAADP-mediated calcium signaling. J. Cell Biol. 186:201–9
    [Google Scholar]
  103. 103.
    Roggenkamp HG, Khansahib I, Hernandez CL, Zhang Y, Lodygin D et al. 2021. HN1L/JPT2: a signaling protein that connects NAADP generation to Ca2+ microdomain formation. Sci. Signal. 14:eabd5647
    [Google Scholar]
  104. 104.
    Zhang J, Guan X, Shah K, Yan J 2021. Lsm12 is an NAADP receptor and a two-pore channel regulatory protein required for calcium mobilization from acidic organelles. Nat. Commun. 12:4739
    [Google Scholar]
  105. 105.
    Gunaratne GS, Brailoiu E, He S, Unterwald EM, Patel S et al. 2021. Essential requirement for JPT2 in NAADP-evoked Ca2+ signaling. Sci. Signal. 14:eabd5605
    [Google Scholar]
  106. 106.
    Nakamura S, Shigeyama S, Minami S, Shima T, Akayama S et al. 2020. LC3 lipidation is essential for TFEB activation during the lysosomal damage response to kidney injury. Nat. Cell Biol. 22:1252–63
    [Google Scholar]
  107. 107.
    Li X, Rydzewski N, Hider A, Zhang X, Yang J et al. 2016. A molecular mechanism to regulate lysosome motility for lysosome positioning and tubulation. Nat. Cell Biol. 18:404–17
    [Google Scholar]
  108. 108.
    LaPlante JM, Sun M, Falardeau J, Dai D, Brown EM et al. 2006. Lysosomal exocytosis is impaired in mucolipidosis type IV. Mol. Genet. Metab. 89:339–48
    [Google Scholar]
  109. 109.
    Samie M, Wang X, Zhang X, Goschka A, Li X et al. 2013. A TRP channel in the lysosome regulates large particle phagocytosis via focal exocytosis. Dev. Cell 26:511–24
    [Google Scholar]
  110. 110.
    Tsunemi T, Perez-Rosello T, Ishiguro Y, Yoroisaka A, Jeon S et al. 2019. Increased lysosomal exocytosis induced by lysosomal Ca2+ channel agonists protects human dopaminergic neurons from α-synuclein toxicity. J. Neurosci. 39:5760–72
    [Google Scholar]
  111. 111.
    Cheng X, Zhang X, Gao Q, Samie MA, Azar M et al. 2014. The intracellular Ca2+ channel MCOLN1 is required for sarcolemma repair to prevent muscular dystrophy. Nat. Med. 20:1187–92
    [Google Scholar]
  112. 112.
    Griffin CS, Alvarado MG, Yamasaki E, Drumm BT, Krishnan V et al. 2020. The intracellular Ca2+ release channel TRPML1 regulates lower urinary tract smooth muscle contractility. PNAS 117:30775–86
    [Google Scholar]
  113. 113.
    Peng W, Wong YC, Krainc D. 2020. Mitochondria-lysosome contacts regulate mitochondrial Ca2+ dynamics via lysosomal TRPML1. PNAS 117:19266–75
    [Google Scholar]
  114. 114.
    Tian X, Gala U, Zhang Y, Shang W, Nagarkar Jaiswal S et al. 2015. A voltage-gated calcium channel regulates lysosomal fusion with endosomes and autophagosomes and is required for neuronal homeostasis. PLOS Biol. 13:e1002103
    [Google Scholar]
  115. 115.
    Kornak U, Kasper D, Bosl MR, Kaiser E, Schweizer M et al. 2001. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 104:205–15
    [Google Scholar]
  116. 116.
    Chalhoub N, Benachenhou N, Rajapurohitam V, Pata M, Ferron M et al. 2003. Grey-lethal mutation induces severe malignant autosomal recessive osteopetrosis in mouse and human. Nat. Med. 9:399–406
    [Google Scholar]
  117. 117.
    Ramirez A, Faupel J, Goebel I, Stiller A, Beyer S et al. 2004. Identification of a novel mutation in the coding region of the grey-lethal gene OSTM1 in human malignant infantile osteopetrosis. Hum. Mutat. 23:471–76
    [Google Scholar]
  118. 118.
    Bose S, He H, Stauber T. 2021. Neurodegeneration upon dysfunction of endosomal/lysosomal CLC chloride transporters. Front. Cell Dev. Biol. 9:639231
    [Google Scholar]
  119. 119.
    Nicoli ER, Weston MR, Hackbarth M, Becerril A, Larson A et al. 2019. Lysosomal storage and albinism due to effects of a de novo CLCN7 variant on lysosomal acidification. Am. J. Hum. Genet. 104:1127–38
    [Google Scholar]
  120. 120.
    van Veen S, Martin S, Van den Haute C, Benoy V, Lyons J et al. 2020. ATP13A2 deficiency disrupts lysosomal polyamine export. Nature 578:419–24
    [Google Scholar]
  121. 121.
    Vrijsen S, Besora-Casals L, van Veen S, Zielich J, Van den Haute C et al. 2020. ATP13A2-mediated endo-lysosomal polyamine export counters mitochondrial oxidative stress. PNAS 117:31198–207
    [Google Scholar]
  122. 122.
    Brandenstein L, Schweizer M, Sedlacik J, Fiehler J, Storch S. 2016. Lysosomal dysfunction and impaired autophagy in a novel mouse model deficient for the lysosomal membrane protein Cln7. Hum. Mol. Genet. 25:777–91
    [Google Scholar]
  123. 123.
    von Kleist L, Ariunbat K, Braren I, Stauber T, Storch S, Danyukova T. 2019. A newly generated neuronal cell model of CLN7 disease reveals aberrant lysosome motility and impaired cell survival. Mol. Genet. Metab. 126:196–205
    [Google Scholar]
  124. 124.
    Jankowiak W, Brandenstein L, Dulz S, Hagel C, Storch S, Bartsch U. 2016. Retinal degeneration in mice deficient in the lysosomal membrane protein CLN7. Investig. Ophthalmol. Vis. Sci. 57:4989–98
    [Google Scholar]
  125. 125.
    Sun M, Goldin E, Stahl S, Falardeau JL, Kennedy JC et al. 2000. Mucolipidosis type IV is caused by mutations in a gene encoding a novel transient receptor potential channel. Hum. Mol. Genet. 9:2471–78
    [Google Scholar]
  126. 126.
    Bargal R, Avidan N, Ben-Asher E, Olender Z, Zeigler M et al. 2000. Identification of the gene causing mucolipidosis type IV. Nat. Genet. 26:118–23
    [Google Scholar]
  127. 127.
    Chen CC, Keller M, Hess M, Schiffmann R, Urban N et al. 2014. A small molecule restores function to TRPML1 mutant isoforms responsible for mucolipidosis type IV. Nat. Commun. 5:4681
    [Google Scholar]
  128. 128.
    Venugopal B, Browning MF, Curcio-Morelli C, Varro A, Michaud N et al. 2007. Neurologic, gastric, and opthalmologic pathologies in a murine model of mucolipidosis type IV. Am. J. Hum. Genet. 81:1070–83
    [Google Scholar]
  129. 129.
    Micsenyi MC, Dobrenis K, Stephney G, Pickel J, Vanier MT et al. 2009. Neuropathology of the Mcoln1−/− knockout mouse model of mucolipidosis type IV. J. Neuropathol. Exp. Neurol. 68:125–35
    [Google Scholar]
  130. 130.
    Sulem P, Gudbjartsson DF, Stacey SN, Helgason A, Rafnar T et al. 2008. Two newly identified genetic determinants of pigmentation in Europeans. Nat. Genet. 40:835–37
    [Google Scholar]
  131. 131.
    Chao YK, Schludi V, Chen CC, Butz E, Nguyen ONP et al. 2017. TPC2 polymorphisms associated with a hair pigmentation phenotype in humans result in gain of channel function by independent mechanisms. PNAS 114:E8595–602
    [Google Scholar]
  132. 132.
    Ambrosio AL, Boyle JA, Aradi AE, Christian KA, Di Pietro SM. 2016. TPC2 controls pigmentation by regulating melanosome pH and size. PNAS 113:5622–27
    [Google Scholar]
  133. 133.
    Bellono NW, Escobar IE, Oancea E. 2016. A melanosomal two-pore sodium channel regulates pigmentation. Sci. Rep. 6:26570
    [Google Scholar]
  134. 134.
    Ruas M, Galione A, Parrington J. 2015. Two-pore channels: lessons from mutant mouse models. Messenger 4:4–22
    [Google Scholar]
  135. 135.
    Grimm C, Holdt LM, Chen CC, Hassan S, Muller C et al. 2014. High susceptibility to fatty liver disease in two-pore channel 2–deficient mice. Nat. Commun. 5:4699
    [Google Scholar]
  136. 136.
    Hamilton A, Zhang Q, Salehi A, Willems M, Knudsen JG et al. 2018. Adrenaline stimulates glucagon secretion by Tpc2-dependent Ca2+ mobilization from acidic stores in pancreatic α-cells. Diabetes 67:1128–39
    [Google Scholar]
  137. 137.
    Lear PV, Gonzalez-Touceda D, Porteiro Couto B, Viano P, Guymer V et al. 2015. Absence of intracellular ion channels TPC1 and TPC2 leads to mature-onset obesity in male mice, due to impaired lipid availability for thermogenesis in brown adipose tissue. Endocrinology 156:975–86
    [Google Scholar]
  138. 138.
    Durlu-Kandilci NT, Ruas M, Chuang KT, Brading A, Parrington J, Galione A. 2010. TPC2 proteins mediate nicotinic acid adenine dinucleotide phosphate (NAADP)- and agonist-evoked contractions of smooth muscle. J. Biol. Chem. 285:24925–32
    [Google Scholar]
  139. 139.
    Lin PH, Duann P, Komazaki S, Park KH, Li H et al. 2015. Lysosomal two-pore channel subtype 2 (TPC2) regulates skeletal muscle autophagic signaling. J. Biol. Chem. 290:3377–89
    [Google Scholar]
  140. 140.
    Garcia-Rua V, Feijoo-Bandin S, Rodriguez-Penas D, Mosquera-Leal A, Abu-Assi E et al. 2016. Endolysosomal two-pore channels regulate autophagy in cardiomyocytes. J. Physiol. 594:3061–77
    [Google Scholar]
  141. 141.
    Nguyen ON, Grimm C, Schneider LS, Chao YK, Atzberger C et al. 2017. Two-pore channel function is crucial for the migration of invasive cancer cells. Cancer Res. 77:1427–38
    [Google Scholar]
  142. 142.
    Sakurai Y, Kolokoltsov AA, Chen CC, Tidwell MW, Bauta WE et al. 2015. Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment. Science 347:995–98
    [Google Scholar]
  143. 143.
    Moccia F, Negri S, Faris P, Perna A, De Luca A et al. 2021. Targeting endolysosomal two-pore channels to treat cardiovascular disorders in the novel coronavirus disease 2019. Front. Physiol. 12:629119
    [Google Scholar]
  144. 144.
    Chang D, Nalls MA, Hallgrimsdottir IB, Hunkapiller J, van der Brug M et al. 2017. A meta-analysis of genome-wide association studies identifies 17 new Parkinson's disease risk loci. Nat. Genet. 49:1511–16
    [Google Scholar]
  145. 145.
    Nalls MA, Blauwendraat C, Vallerga CL, Heilbron K, Bandres-Ciga S et al. 2019. Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 18:1091–102
    [Google Scholar]
  146. 146.
    Chia R, Sabir MS, Bandres-Ciga S, Saez-Atienzar S, Reynolds RH et al. 2021. Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture. Nat. Genet. 53:294–303
    [Google Scholar]
  147. 147.
    Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC. 2003. α-Synuclein is degraded by both autophagy and the proteasome. J. Biol. Chem. 278:25009–13
    [Google Scholar]
  148. 148.
    Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D. 2004. Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy. Science 305:1292–95
    [Google Scholar]
  149. 149.
    Yu L, Zhang X, Yang Y, Li D, Tang K et al. 2020. Small-molecule activation of lysosomal TRP channels ameliorates Duchenne muscular dystrophy in mouse models. Sci. Adv. 6:eaaz2736
    [Google Scholar]
  150. 150.
    Bertl A, Blumwald E, Coronado R, Eisenberg R, Findlay G et al. 1992. Electrical measurements on endomembranes. Science 258:873–74
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-051921-013755
Loading
/content/journals/10.1146/annurev-pharmtox-051921-013755
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error