1932

Abstract

The use of artificial intelligence (AI) and machine learning (ML) in pharmaceutical research and development has to date focused on research: target identification; docking-, fragment-, and motif-based generation of compound libraries; modeling of synthesis feasibility; rank-ordering likely hits according to structural and chemometric similarity to compounds having known activity and affinity to the target(s); optimizing a smaller library for synthesis and high-throughput screening; and combining evidence from screening to support hit-to-lead decisions. Applying AI/ML methods to lead optimization and lead-to-candidate (L2C) decision-making has shown slower progress, especially regarding predicting absorption, distribution, metabolism, excretion, and toxicology properties. The present review surveys reasons why this is so, reports progress that has occurred in recent years, and summarizes some of the issues that remain. Effective AI/ML tools to derisk L2C and later phases of development are important to accelerate the pharmaceutical development process, ameliorate escalating development costs, and achieve greater success rates.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-051921-023255
2023-01-20
2024-05-10
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/63/1/annurev-pharmtox-051921-023255.html?itemId=/content/journals/10.1146/annurev-pharmtox-051921-023255&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Wong C, Siah K, Lo A. 2019. Estimation of clinical trial success rates and related parameters. Biostatistics 20:273–86
    [Google Scholar]
  2. 2.
    Siah K, Kelley N, Ballerstedt S, Holzhauer B, Lyu T et al. 2021. Predicting drug approvals: the Novartis data science and artificial intelligence challenge. Patterns 2:100312
    [Google Scholar]
  3. 3.
    Katsuno K, Burrows J, Duncan K, van Huijsduijnen R, Kaneko T et al. 2015. Hit and lead criteria in drug discovery for infectious diseases of the developing world. Nat. Rev. Drug Discov. 14:751–59
    [Google Scholar]
  4. 4.
    Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E et al. 2019. Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov. 18:463–77
    [Google Scholar]
  5. 5.
    Stokes J, Yang K, Swanson K, Jin W, Cubillos-Ruiz A et al. 2020. A deep learning approach to antibiotic discovery. Cell 180:688–702
    [Google Scholar]
  6. 6.
    Griffen E, Dossetter A, Leach A. 2020. Chemists: AI is here; unite to get the benefits. J. Med. Chem. 63:8695–704
    [Google Scholar]
  7. 7.
    Agamah F, Mazandu G, Hassan R, Bope C, Thomford N et al. 2020. Computational/in silico methods in drug target and lead prediction. Brief. Bioinform. 21:1663–75
    [Google Scholar]
  8. 8.
    Borrel A, Regad L, Xhaard H, Petitjean M, Camproux A. 2015. PockDrug: a model for predicting pocket druggability that overcomes pocket estimation uncertainties. J. Chem. Inform. Model. 55:882–95
    [Google Scholar]
  9. 9.
    Che J, Chen L, Guo Z, Wang S, Aorigele A et al. 2020. Drug target group prediction with multiple drug networks. Comb. Chem. High Throughput Screen. 23:274–84
    [Google Scholar]
  10. 10.
    Ji X, Freudenberg J, Agarwal P. 2019. Integrating biological networks for drug target prediction and prioritization. Methods Mol. Biol. 1903:203–18
    [Google Scholar]
  11. 11.
    Li L, Koh C, Reker D, Brown J, Wang H et al. 2019. Predicting protein-ligand interactions based on bow-pharmacological space and Bayesian additive regression trees. Sci. Rep. 9:7703–14
    [Google Scholar]
  12. 12.
    Madhukar N, Khade P, Huang L, Gayvert K, Galletti G et al. 2019. A Bayesian machine learning approach for drug target identification using diverse data types. Nat. Commun. 10:5221 https://doi.org/10.1038/s41467-019-12928-6
    [Crossref] [Google Scholar]
  13. 13.
    Nogueira M, Koch O. 2019. The development of target-specific machine learning models as scoring functions for docking-based target prediction. J. Chem. Inform. Model. 59:1238–52
    [Google Scholar]
  14. 14.
    Piazza I, Beaton N, Bruderer R, Knobloch T, Barbisan C et al. 2020. A machine learning-based chemoproteomic approach to identify drug targets and binding sites in complex proteomes. Nat. Commun. 11:4200
    [Google Scholar]
  15. 15.
    Wang Q, Feng Y, Huang J, Wang T, Cheng G. 2017. A novel framework for the identification of drug target proteins: combining stacked auto-encoders with a biased support vector machine. PLOS ONE 12:e0176486
    [Google Scholar]
  16. 16.
    Xu T, Wu L, Xia M, Simeonov A, Huang R. 2021. Systematic identification of molecular targets and pathways related to human organ level toxicity. Chem. Res. Toxicol. 34:412–21
    [Google Scholar]
  17. 17.
    Berishvili V, Kuimov A, Voronkov A, Radchenko E, Kumar P et al. 2020. Discovery of novel tankyrase inhibitors through molecular docking-based virtual screening and molecular dynamics simulation studies. Molecules 25:3171–85
    [Google Scholar]
  18. 18.
    Cichonska A, Rousu J, Aittokallio T. 2015. Identification of drug candidates and repurposing opportunities through compound-target interaction networks. Expert Opin. Drug Discov. 10:1333–45
    [Google Scholar]
  19. 19.
    Ding Y, Tang J, Guo F. 2020. The computational models of drug-target interaction prediction. Protein Pept. Lett. 27:348–58
    [Google Scholar]
  20. 20.
    Li Y, Huang Y, You Z, Li L, Wang Z 2019. Drug-target interaction prediction based on drug fingerprint information and protein sequence. Molecules 24:2999–3011
    [Google Scholar]
  21. 21.
    Pliakos K, Vens C. 2020. Drug-target interaction prediction with tree-ensemble learning and output space reconstruction. BMC Bioinform. 21:49–59
    [Google Scholar]
  22. 22.
    Singh N, Shah P, Dwivedi H, Mishra S, Tripathi R et al. 2016. Integrated machine learning molecular docking and 3D-QSAR based approach for identification of potential inhibitors of trypanosomal N-myristoyltransferase. Mol. Biosyst. 12:3711–23
    [Google Scholar]
  23. 23.
    Thafar M, Olayan R, Ashoor H, Albaradei S, Bajic V et al. 2020. DTiGEMS+: drug-target interaction prediction using graph embedding, graph mining, and similarity-based techniques. J. Cheminform. 12:44–60
    [Google Scholar]
  24. 24.
    Yan X, Zhang S, He C. 2019. Prediction of drug-target interaction by integrating diverse heterogeneous information source with multiple kernel learning and clustering methods. Comput. Biol. Chem. 78:460–67
    [Google Scholar]
  25. 25.
    Zhang W, Lin W, Zhang D, Wang S, Shi J, Niu Y. 2019. Recent advances in the machine learning-based drug-target interaction prediction. Curr. Drug Metab. 20:194–202
    [Google Scholar]
  26. 26.
    Zhang Y, Wang X, Kaushik A, Chu Y, Shan X et al. 2020. SPVec: a Word2vec-inspired feature representation method for drug-target interaction prediction. Front. Chem. 7:895–905
    [Google Scholar]
  27. 27.
    Ghanakota P, Bos P, Konze K, Staker J, Marques G et al. 2020. Combining cloud-based free-energy calculations synthetically aware enumerations and goal-directed generative machine learning for rapid large-scale chemical exploration and optimization. J. Chem. Inform. Model. 60:4311–25
    [Google Scholar]
  28. 28.
    Thakkar A, Johansson S, Jorner K, Buttar D, Reymond J, Enkvist O. 2021. Artificial intelligence and automation in computer aided synthesis planning. React. Chem. Eng. 6:27–51
    [Google Scholar]
  29. 29.
    Wei L, Wen W, Rao L, Huang Y, Lei M et al. 2020. Cov_FB3D: a de novo covalent drug design protocol integrating the BA-SAMP strategy and machine-learning-based synthetic tractability evaluation. J. Chem. Inform. Model. 60:4388–402
    [Google Scholar]
  30. 30.
    Arus-Pous J, Patronov A, Bjerrum E, Tyrchan C, Reymond J et al. 2020. SMILES-based deep generative scaffold decorator for de-novo drug design. J. Cheminform. 12:38
    [Google Scholar]
  31. 31.
    Bai L, Dai H, Xu Q, Junaid M, Peng S et al. 2018. Prediction of effective drug combinations by an improved naive Bayesian algorithm. Int. J. Mol. Sci. 19:467–80
    [Google Scholar]
  32. 32.
    Carracedo-Reboredo P, Liñares-Blanco J, Rodríguez-Fernández N, Cedrón F, Novoa F et al. 2021. A review on machine learning approaches and trends in drug discovery. Comput. Struct. Biotechnol. J. 19:4538–58
    [Google Scholar]
  33. 33.
    Cavasotto C, Di Filippo J. 2021. Artificial intelligence in the early stages of drug discovery. Arch. Biochem. Biophysics. 698:108730
    [Google Scholar]
  34. 34.
    Walters W, Barzilay R. 2021. Applications of deep learning in molecule generation and molecular property prediction. Acc. Chem. Res. 54:263–70
    [Google Scholar]
  35. 35.
    Bruno A, Costantino G, Sartori L, Radi M. 2019. The in silico drug discovery toolbox: applications in lead discovery and optimization. Curr. Med. Chem. 26:3838–73
    [Google Scholar]
  36. 36.
    Karki N, Verma N, Trozzi F, Tao P, Kraka E, Zoltowski B 2021. Predicting potential SARS-COV-2 drugs: in-depth drug database screening using deep neural network framework SSnet, classical virtual screening and docking. Int. J. Mol. Sci. 22:1573–89
    [Google Scholar]
  37. 37.
    Li H, Sze K, Lu G, Ballester P. 2021. Machine-learning scoring functions for structure-based virtual screening. WIREs Comput. Mol. Sci. 11:e1478
    [Google Scholar]
  38. 38.
    Lin S, Schorpp K, Rothenaigner I, Hadian K. 2020. Image-based high-content screening in drug discovery. Drug Discov. Today 25:1348–61
    [Google Scholar]
  39. 39.
    Walters W, Barzilay R. 2021. Critical assessment of AI in drug discovery. Expert Opin. Drug Discov. 16:937–47
    [Google Scholar]
  40. 40.
    Ashenden S 2021. The Era of Artificial Intelligence Machine Learning and Data Science in the Pharmaceutical Industry New York: Academic
  41. 41.
    Kim H, Kim E, Lee I, Bae B, Park M, Nam H 2020. Artificial intelligence in drug discovery: a comprehensive review of data-driven and machine learning approaches. Biotechnol. Bioprocess Eng. 25:895–930
    [Google Scholar]
  42. 42.
    Trosset J, Cavé C. 2019. In silico drug-target profiling. Methods Mol. Biol. 1953:89–103
    [Google Scholar]
  43. 43.
    Velmurugan D, Pachaiappan R, Ramakrishnan C. 2020. Recent trends in drug design and discovery. Curr. Top. Med. Chem. 20:1761–70
    [Google Scholar]
  44. 44.
    Zhu H. 2020. Big data and artificial intelligence modeling for drug discovery. Annu. Rev. Pharmacol. Toxicol. 60:573–89
    [Google Scholar]
  45. 45.
    Bhhatarai B, Walters W, Hop C, Lanza G, Ekins S. 2019. Opportunities and challenges using artificial intelligence in ADME/Tox. Nat. Mater. 18:418–22
    [Google Scholar]
  46. 46.
    Chen E, Bondi R, Michalski P. 2021. Model-based target pharmacology assessment (mTPA): an approach using PBPK/PD modeling and machine learning to design medicinal chemistry and DMPK strategies in early drug discovery. J. Med. Chem. 64:3185–96
    [Google Scholar]
  47. 47.
    Ciallella H, Zhu H. 2019. Advancing computational toxicology in the big data era by artificial intelligence: data-driven and mechanism-driven modeling for chemical toxicity. Chem. Res. Toxicol. 32:536–47
    [Google Scholar]
  48. 48.
    Ferreira L, Andricopulo A. 2019. ADMET modeling approaches in drug discovery. Drug Discov. Today 24:1157–65
    [Google Scholar]
  49. 49.
    Gonzalez E, Jain S, Shah P, Torimoto-Katori N, Zakharov A et al. 2021. Development of robust quantitative structure-activity relationship models for CYP2C9, CYP2D6, and CYP3A4 catalysis and inhibition. Drug Metab. Dispos. 49:822–32
    [Google Scholar]
  50. 50.
    Ietswaart R, Arat S, Chen A, Farahmand S, Kim B et al. 2020. Machine learning guided association of adverse drug reactions with in vitro target-based pharmacology. EBioMedicine 57:102837
    [Google Scholar]
  51. 51.
    Kumar A, Kini S, Rathi E. 2021. A recent appraisal of artificial intelligence and in silico ADMET prediction in the early stages of drug discovery. Mini Rev. Med. Chem. 21:2788–800
    [Google Scholar]
  52. 52.
    Lucas A, Sproston J, Barton P, Riley R. 2019. Estimating human ADME properties, pharmacokinetic parameters and likely clinical dose in drug discovery. Expert Opin. Drug Discov. 14:1313–27
    [Google Scholar]
  53. 53.
    Madden J, Pawar G, Cronin M, Webb S, Tan Y, Paini A. 2019. In silico resources to assist in the development and evaluation of physiologically-based kinetic models. Comput. Toxicol. 11:33–49
    [Google Scholar]
  54. 54.
    Madhavaram M, Nampally V, Gangadhari S, Palnati M, Tigulla P. 2019. High-throughput virtual screening, ADME analysis, and estimation of MM/GBSA binding-free energies of azoles as potential inhibitors of Mycobacterium tuberculosis H37Rv. J. Recept. Signal Transduct. Res. 39:312–20
    [Google Scholar]
  55. 55.
    Rácz A, Bajusz D, Miranda-Quintana R, Héberger K 2021. Machine learning models for classification tasks related to drug safety. Mol. Divers. 25:1409–24
    [Google Scholar]
  56. 56.
    Song D, Chen Y, Min Q, Sun Q, Ye K et al. 2019. Similarity-based machine learning support vector machine predictor of drug-drug interactions with improved accuracies. J. Clin. Pharm. Ther. 44:268–75
    [Google Scholar]
  57. 57.
    Zientek M, Stoner C, Ayscue R, Klug-McLeod J, Jiang Y et al. 2010. Integrated in silico-in vitro strategy for addressing cytochrome P450 3A4 time-dependent inhibition. Chem. Res. Toxicol. 23:664–76
    [Google Scholar]
  58. 58.
    Bresso E, Grisoni R, Marchetti G, Karaboga A, Souchet M et al. 2013. Integrative relational machine-learning for understanding drug side-effect profiles. BMC Bioinform. 14:207–17
    [Google Scholar]
  59. 59.
    Lim H, Poleksic A, Yao Y, Tong H, He D et al. 2016. Large-scale off-target identification using fast and accurate dual regularized one-class collaborative filtering and its application to drug repurposing. PLOS Comput. Biol. 12:e1005135
    [Google Scholar]
  60. 60.
    Pollinger J, Schierle S, Neumann S, Ohrndorf J, Kaiser A, Merk D. 2019. Computer-assisted selective optimization of side-activities—from cinalukast to a PPARα modulator. ChemMedChem 14:1343–48
    [Google Scholar]
  61. 61.
    Rao M, Gupta R, Liguori M, Hu M, Huang X et al. 2019. Novel computational approach to predict off-target interactions for small molecules. Front. Big Data 2:25
    [Google Scholar]
  62. 62.
    Zheng Y, Peng H, Ghosh S, Lan C, Li J. 2019. Inverse similarity and reliable negative samples for drug side-effect prediction. BMC Bioinform. 19:Suppl. 13554–67
    [Google Scholar]
  63. 63.
    Page K. 2016. Validation of early human dose prediction: a key metric for compound progression in drug discovery. Mol. Pharm. 13:609–20
    [Google Scholar]
  64. 64.
    Wang Z, Yang H, Wu Z, Wang T, Li W et al. 2018. In silico prediction of blood-brain barrier permeability of compounds by machine learning and resampling methods. ChemMedChem 13:2189–201
    [Google Scholar]
  65. 65.
    Wolfe J, Fadzen C, Choo Z, Holden R, Yao M et al. 2018. Machine learning to predict cell-penetrating peptides for antisense delivery. ACS Central Sci 4:512–20
    [Google Scholar]
  66. 66.
    Zhavoronkov A, Vanhaelen Q, Oprea T. 2020. Will artificial intelligence for drug discovery impact clinical pharmacology?. Clin. Pharmacol. Ther. 107:780–85
    [Google Scholar]
  67. 67.
    Kiriiri G, Mjogu P, Mwangi A. 2020. Exploring different approaches to improve the success of drug discovery and development projects: a review. Futur. . J. Pharm. Sci. 6:27–38
    [Google Scholar]
  68. 68.
    Mathai N, Chen Y, Kirchmair J. 2020. Validation strategies for target prediction methods. Brief. Bioinform. 21:791–802
    [Google Scholar]
  69. 69.
    Wu Z, Ramsundar B, Feinberg E, Gomes J, Geniesse C et al. 2018. MoleculeNet: a benchmark for molecular machine learning. Chem. Sci. 9:513–30
    [Google Scholar]
  70. 70.
    Arabi A. 2021. Artificial intelligence in drug design: algorithms, applications, challenges and ethics. Futur. Drug Discov. 3: https://doi.org/10.4155/fdd-2020-0028
    [Crossref] [Google Scholar]
  71. 71.
    Spetzler C, Winter H, Meyer J. 2016. Decision Quality: Value Creation from Better Business Decisions New York: Wiley
  72. 72.
    Dai W, Li L, Guo D. 2020. Integrating bioassay data for improved prediction of drug-target interaction. Biophys. Chem. 266:106455
    [Google Scholar]
  73. 73.
    Sturm N, Sun J, Vandriessche Y, Mayr A, Klambauer G et al. 2019. Application of bioactivity profile-based fingerprints for building machine learning models. J. Chem. Inform. Model. 59:962–72
    [Google Scholar]
  74. 74.
    Nuzzo A, Saha S, Berg E, Jayawickreme C, Tocker J, Brown J. 2021. Expanding the drug discovery space with predicted metabolite-target interactions. Commun. Biol. 4:288–98
    [Google Scholar]
  75. 75.
    FDA (US Food Drug Admin.) 2021. Assessing the credibility of computational modeling and simulation in regulatory submissions: draft guidance for industry and Food and Drug Administration staff Draft Guid. FDA Silver Spring, MD: https://www.fda.gov/media/154985/download
  76. 76.
    Ekert J, Deakyne J, Pribul-Allen P, Terry R, Schofield C et al. 2020. Recommended guidelines for developing, qualifying, and implementing complex in vitro models (CIVMs) for drug discovery. SLAS Discov 25:1174–90
    [Google Scholar]
  77. 77.
    Mousaei M, Kudaibergenova M, MacKerell A, Noskov S. 2020. Assessing hERG1 blockade from Bayesian machine-learning-optimized site identification by ligand competitive saturation simulations. J. Chem. Inform. Model. 60:6489–501
    [Google Scholar]
  78. 78.
    Zhang H, Chen Q, Ziang M, Ma C, Huang Q, Yang S 2009. In silico prediction of mitochondrial toxicity by using GA-CG-SVM approach. Toxicol. Vitro 23:134–40
    [Google Scholar]
  79. 79.
    Brigato L, Iocchi L. 2020. A close look at deep learning with small data. arXiv:2003.12843 [cs.LG]
  80. 80.
    Gorban A, Tyukin I. 2018. Blessing of dimensionality: mathematical foundations of the statistical physics of data. Phil. Trans. R. Soc. Ser. A 376:20170237
    [Google Scholar]
  81. 81.
    Chakravarti S, Alla S 2019. Descriptor free QSAR modeling using deep learning with long short-term memory neural networks. Front. . Artif. Intell. 2:17
    [Google Scholar]
  82. 82.
    Chen H, Engkvist O, Wang Y, Olivecrona M, Blaschke T. 2018. The rise of deep learning in drug discovery. Drug Discov. Today 23:1241–50
    [Google Scholar]
  83. 83.
    Chu Y, Kaushik A, Wang X, Wang W, Zhang Y et al. 2021. DTI-CDF: a cascade deep forest model towards the prediction of drug-target interactions based on hybrid features. Brief. Bioinform. 22:451–62
    [Google Scholar]
  84. 84.
    DeepChem Consort 2016. Democratizing deep-learning models for drug discovery and quantum chemistry. DeepChem Consortium https://github.com/deepchem/deepchem
    [Google Scholar]
  85. 85.
    Grebner C, Matter H, Kofink D, Wenzel J, Schmidt F, Hessler G. 2021. Application of deep neural network models in drug discovery programs. ChemMedChem 16:3772–86
    [Google Scholar]
  86. 86.
    Iqbal J, Vogt M, Bajorath J. 2020. Activity landscape image analysis using convolutional neural networks. J. Cheminform. 12:34
    [Google Scholar]
  87. 87.
    Korotkov A, Tkachenko V, Russo D, Ekins S. 2017. Comparison of deep learning with multiple machine learning methods and metrics using diverse drug discovery datasets. Mol. Pharm. 14:4462–75
    [Google Scholar]
  88. 88.
    Lee I, Keum J, Nam H 2019. DeepConv-DTI: prediction of drug-target interactions via deep learning with convolution on protein sequences. PLOS Comput. Biol. 15:e1007129
    [Google Scholar]
  89. 89.
    Öztürk H, Özgür A, Ozkirimli E. 2018. DeepDTA: deep drug-target binding affinity prediction. Bioinformatics 34:i821–29
    [Google Scholar]
  90. 90.
    Ramsundar B, Eastman P, Walters P, Pande V. 2019. Deep Learning for the Life Sciences Sebastopol, CA: O'Reilly
  91. 91.
    Rifaioglu A, Atas H, Martin M, Cetin-Atalay R, Atalay V, Doğan T. 2019. Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases. Brief. Bioinform. 20:1878–912
    [Google Scholar]
  92. 92.
    Wan F, Zhu Y, Hu H, Dai A, Cai X et al. 2019. DeepCPI: a deep learning-based framework for large-scale in silico drug screening. Genom. Proteom. Bioinform. 17:478–95
    [Google Scholar]
  93. 93.
    Woo G, Fernandez M, Hsing M, Lack N, Cavga A, Cherkasov A. 2020. DeepCOP: deep learning-based approach to predict gene regulating effects of small molecules. Bioinformatics 36:813–18
    [Google Scholar]
  94. 94.
    Zhou D, Miao L, He Y. 2018. Position-aware deep multi-task learning for drug-drug interaction extraction. Artif. Intell. Med. 87:1–8
    [Google Scholar]
  95. 95.
    Kipf T, Welling M. 2017. Semi-supervised classification with graph convolutional networks. arXiv:1609.02907 [cs.LG]
  96. 96.
    Mercado R, Rastemo T, Lindelof E, Klambauer G, Engkvist O et al. 2021. Graph networks for molecular design. Mach. Learn. Sci. Technol. 2: 025023
    [Google Scholar]
  97. 97.
    Son J, Kim D. 2021. Development of a graph convolutional neural network model for efficient prediction of protein-ligand binding affinities. PLOS ONE 16:e0249404
    [Google Scholar]
  98. 98.
    Zhao T, Hu Y, Valsdottir L, Zang T, Peng J. 2021. Identifying drug-target interactions based on graph convolutional network and deep neural network. Brief. Bioinform. 22:2141–50
    [Google Scholar]
  99. 99.
    Winkler D. 2021. Use of artificial intelligence and machine learning for discovery of drugs for neglected tropical diseases. Front. Chem. 9:614073
    [Google Scholar]
  100. 100.
    Andrade C, Neves B, Melo-Filho C, Rodrigues J, Silva D et al. 2019. In silico chemogenomics drug repositioning strategies for neglected tropical diseases. Curr. Med. Chem. 26:4355–79
    [Google Scholar]
  101. 101.
    Arshadi A, Salem M, Collins J, Yuan J, Chakrabarti D. 2020. DeepMalaria: artificial intelligence driven discovery of potent antiplasmodials. Front. Pharmacol. 10:1526
    [Google Scholar]
  102. 102.
    de Albuquerque S, Cianni L, de Vita D, Duque C, Gomes A et al. 2020. Molecular design aided by random forests and synthesis of potent trypanocidal agents as cruzain inhibitors for Chagas disease treatment. Chem. Biol. Drug Design 96:948–60
    [Google Scholar]
  103. 103.
    Dixit S, Singla D. 2017. CAPi: computational model for apicoplast inhibitors prediction against Plasmodium parasite. Curr. Comput. Aided Drug Design. 13:303–10
    [Google Scholar]
  104. 104.
    Ekins S, Madrid P, Sarker M, Li S, Mittal N et al. 2015. Combining metabolite-based pharmacophores with Bayesian machine learning models for Mycobacterium tuberculosis drug discovery. PLOS ONE 10:e0141076
    [Google Scholar]
  105. 105.
    Halder A, Dias Soeiro Cordeiro M. 2020. Advanced in silico methods for the development of anti-leishmaniasis and anti-trypanosomiasis agents. Curr. Med. Chem. 27:697–718
    [Google Scholar]
  106. 106.
    Lima MNN, Borba JVB, Cassiano GC, Mottin M, Mendonca SS et al. 2021. Artificial intelligence applied to the rapid identification of new antimalarial candidates with dual-stage activity. ChemMedChem 16:1093–103
    [Google Scholar]
  107. 107.
    Lima M, Cassiano G, Tomaz K, Silva A, Sousa B et al. 2019. Integrative multi-kinase approach for the identification of potent antiplasmodial hits. Front. Chem. 7:773
    [Google Scholar]
  108. 108.
    Macalino S, Billones J, Organo V, Carrillo M. 2020. In silico strategies in tuberculosis drug discovery. Molecules 25:665–96
    [Google Scholar]
  109. 109.
    Munir A, Kumar N, Ramalingam S, Tamilzhalagan S, Shanmugam S et al. 2019. Identification and characterization of genetic determinants of isoniazid and rifampicin resistance in Mycobacterium tuberculosis in southern India. Sci. Rep. 9:10283–95
    [Google Scholar]
  110. 110.
    Tiwari K, Jamal S, Grover S, Goyal S, Singh A, Grover A. 2016. Cheminformatics based machine learning approaches for assessing glycolytic pathway antagonists of Mycobacterium tuberculosis. Comb. Chem. High Throughput Screen. 19:667–75
    [Google Scholar]
  111. 111.
    van Oosten L, Klein C. 2020. Machine learning in mass spectrometry: a MALDI-TOF MS approach to phenotypic antibacterial screening. J. Med. Chem. 63:8849–56
    [Google Scholar]
  112. 112.
    Ferraz W, Gomes R, Novaes A, Trossini G. 2020. Ligand and structure-based virtual screening applied to the SARS-CoV-2 main protease: an in silico repurposing study. Futur. Med. Chem. 12:1815–28
    [Google Scholar]
  113. 113.
    Gupta A, Müller A, Huisman B, Fuchs J, Schneider P, Schneider G. 2018. Generative recurrent networks for de novo drug design. Mol. Inform. 37:1700111
    [Google Scholar]
  114. 114.
    Walters W, Murcko M. 2020. Assessing the impact of generative AI on medicinal chemistry. Nat. Biotechnol. 38:143–45
    [Google Scholar]
  115. 115.
    Kuang R, Gu J, Cai H, Wang Y. 2008. Improved prediction of malaria degradomes by supervised learning with SVM and profile kernel. Genetica 136:189–209
    [Google Scholar]
  116. 116.
    Periwal V, Rajappan J, Jaleel A, Scaria V et al. 2011. Predictive models for anti-tubercular molecules using machine learning on high-throughput biological screening datasets. BMC Res. Notes 4:504–13
    [Google Scholar]
  117. 117.
    Withnall M, Lindelof E, Engkvist O, Chen H. 2020. Building attention and edge message passing neural networks for bioactivity and physical-chemical property prediction. J. Cheminform. 12:1
    [Google Scholar]
  118. 118.
    Irwin B, Levell J, Whitehead T, Segall M, Conduit G. 2020. Practical applications of deep learning to impute heterogeneous drug discovery data. J. Chem. Inf. Model. 60:2848–57
    [Google Scholar]
  119. 119.
    Nascimento A, Prudêncio R, Costa I. 2019. A drug-target network-based supervised machine learning repurposing method allowing the use of multiple heterogeneous information sources. Methods Mol. Biol. 1903:281–89
    [Google Scholar]
  120. 120.
    Zhao X, Chen L, Lu J 2018. A similarity-based method for prediction of drug side effects with heterogeneous information. Math. Biosci. 306:136–44
    [Google Scholar]
  121. 121.
    Zheng Y, Peng H, Zhang X, Zhao Z, Yin J, Li J. 2018. Predicting adverse drug reactions of combined medication from heterogeneous pharmacologic databases. BMC Bioinform. 19:Suppl. 19517–27
    [Google Scholar]
  122. 122.
    Blaschke T, Engkvist O, Bajorath J, Chen H. 2020. Memory-assisted reinforcement learning for diverse molecular de novo design. J. Cheminform. 12:68
    [Google Scholar]
  123. 123.
    Olivecrona M, Blaschke T, Engkvist O, Chen H. 2017. Molecular de-novo design through deep reinforcement learning. J. Cheminform. 9:48–64
    [Google Scholar]
  124. 124.
    Ritchie T, McLay I. 2012. Should medicinal chemists do molecular modelling?. Drug Discov. Today 17:534–37
    [Google Scholar]
  125. 125.
    Skuta C, Cortes-Ciriano I, Dehaen W, Kříž P, van Westen G et al. 2020. QSAR-derived affinity fingerprints (Part 1): fingerprint construction and modeling performance for similarity searching, bioactivity classification and scaffold hopping. J. Cheminform. 12:39
    [Google Scholar]
  126. 126.
    Li X, Fourches D. 2020. Inductive transfer learning for molecular activity prediction: next-gen QSAR models with MolPMoFiT. J. Cheminform. 12:27
    [Google Scholar]
  127. 127.
    Prykhodko O, Johansson S, Kotsias P, Arús-Pous J, Bjerrum E et al. 2019. A de novo molecular generation method using latent vector based generative adversarial network. J. Cheminform. 11:74
    [Google Scholar]
  128. 128.
    Srinivas R, Klimovich P, Larson E. 2018. Implicit-descriptor ligand-based virtual screening by means of collaborative filtering. J. Cheminform. 10:56
    [Google Scholar]
  129. 129.
    Zhou W, Huang C, Li Y, Wang Y, Yang L 2013. A systematic identification of multiple toxin-target interactions based on chemical genomic and toxicological data. Toxicology 304:173–84
    [Google Scholar]
  130. 130.
    Hanser T, Barber C, Guesné S, Marchaland J, Werner S 2019. Applicability domain: towards a more formal framework to express the applicability of a model and the confidence in individual predictions. Advances in Computational Toxicology H Hong 215–32 Berlin: Springer
    [Google Scholar]
  131. 131.
    Klingspohn W, Mathea M, Ter Laak A, Heinrich N, Baumann K 2017. Efficiency of different measures for defining the applicability domain of classification models. J. Cheminform. 9:44–60
    [Google Scholar]
  132. 132.
    Liu R, Wang H, Glover K, Feasel M, Wallqvist A. 2019. Dissecting machine-learning prediction of molecular activity: is an applicability domain needed for quantitative structure-activity relationship models based on deep neural networks?. J. Chem. Inf. Model. 59:117–26
    [Google Scholar]
  133. 133.
    Polash A, Nakano T, Takeda S, Brown J. 2019. Applicability domain of active learning in chemical probe identification: convergence in learning from non-specific compounds and decision rule clarification. Molecules 24:2716–32
    [Google Scholar]
  134. 134.
    Mayr A, Klambauer G, Unterthiner T, Steijaert M, Wegner J et al. 2018. Large-scale comparison of machine learning methods for drug target prediction on ChEMBL. Chem. Sci. 9:5441–51
    [Google Scholar]
  135. 135.
    Shah I, Tate T, Patlewicz G. 2021. Generalised Read-Across prediction using genra-py. Bioinformatics 37:3380–81
    [Google Scholar]
  136. 136.
    Huang D, Baber J, Bahmanyar S. 2021. The challenges of generalizability in artificial intelligence for ADMET endpoint and activity prediction. Expert Opin. Drug Discov. 16:1045–56
    [Google Scholar]
  137. 137.
    Redkar S, Mondal S, Joseph A, Hareesha K 2020. A machine learning approach for drug-target interaction prediction using wrapper feature selection and class balancing. Mol. Inform. 39:e1900062
    [Google Scholar]
  138. 138.
    Keum J, Nam H 2017. SELF-BLM: prediction of drug-target interactions via self-training SVM. PLOS ONE 12:e0171839
    [Google Scholar]
  139. 139.
    Rodríguez-Pérez R, Bajorath J 2020. Interpretation of compound activity predictions from complex machine learning models using local approximations and Shapley values. J. Med. Chem. 63:8761–77
    [Google Scholar]
  140. 140.
    Hemmerich J, Asilar E, Ecker G. 2020. COVER: conformational oversampling as data augmentation for molecules. J. Cheminform. 12:18
    [Google Scholar]
  141. 141.
    Capecchi A, Probst D, Reymond J. 2020. One molecular fingerprint to rule them all: drugs biomolecules and the metabolome. J. Cheminform. 12:43
    [Google Scholar]
  142. 142.
    Duran-Frigola M, Pauls E, Guitart-Pla O, Juan-Blanco T, Aloy P 2020. Extending the small-molecule similarity principle to all levels of biology with the chemical checker. Nat. Biotechnol. 38:1087–96
    [Google Scholar]
  143. 143.
    Rodrigues T. 2019. The good, the bad, and the ugly in chemical and biological data for machine learning. Drug Discov. Today 32:3–8
    [Google Scholar]
  144. 144.
    Sheils T, Mathias S, Siramshetty V, Bocci G, Bologa C et al. 2020. How to illuminate the druggable genome using Pharos. Curr. Protoc. Bioinform. 69:e92
    [Google Scholar]
  145. 145.
    Shi H, Liu S, Chen J, Li X, Ma Q, Yu B 2019. Predicting drug-target interactions using Lasso with random forest based on evolutionary information and chemical structure. Genomics 111:1839–52
    [Google Scholar]
  146. 146.
    Taguchi Y. 2017. Identification of candidate drugs using tensor-decomposition-based unsupervised feature extraction in integrated analysis of gene expression between diseases and DrugMatrix datasets. Sci. Rep. 7:13733–48
    [Google Scholar]
  147. 147.
    Mennen S, Alhambra C, Allen L, Barberis M, Berritt S et al. 2019. The evolution of high-throughput experimentation in pharmaceutical development and perspectives on the future. Org. Process Res. Devel. 23:1213–42
    [Google Scholar]
  148. 148.
    Chuang K, Gunsalus L, Keiser M. 2020. Learning molecular representations for medicinal chemistry. J. Med. Chem. 63:870522
    [Google Scholar]
  149. 149.
    David L, Thakkar A, Mercado R, Engkvist O. 2020. Molecular representations in AI-driven drug discovery: a review and practical guide. J. Cheminform. 12:56
    [Google Scholar]
  150. 150.
    Bajorath J, Kearns S, Walters W, Meanwell N, Georg G, Wang S 2020. Artificial intelligence in drug discovery: into the great wide open. J. Med. Chem. 63:8651–52
    [Google Scholar]
  151. 151.
    Bender A, Cortes-Ciriano I. 2021. Artificial intelligence in drug discovery: What is realistic, what are illusions? Part 1: Ways to make an impact, and why we are not there yet. Drug Discov. Today 26:511–24
    [Google Scholar]
  152. 152.
    Tetko I, Engkvist O. 2020. From Big Data to artificial intelligence: chemoinformatics meets new challenges. J. Cheminform. 12:74
    [Google Scholar]
  153. 153.
    Matricon P, Suresh R, Gao Z, Panel N, Jacobson K, Carlsson J. 2021. Ligand design by targeting a binding site water. Chem. Sci. 12:960–68
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-051921-023255
Loading
/content/journals/10.1146/annurev-pharmtox-051921-023255
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error