1932

Abstract

Interindividual variability in genes encoding drug-metabolizing enzymes, transporters, receptors, and human leukocyte antigens has a major impact on a patient's response to drugs with regard to efficacy and safety. Enabled by both technological and conceptual advances, the field of pharmacogenomics is developing rapidly. Major progress in omics profiling methods has enabled novel genotypic and phenotypic characterization of patients and biobanks. These developments are paralleled by advances in machine learning, which have allowed us to parse the immense wealth of data and establish novel genetic markers and polygenic models for drug selection and dosing. Pharmacogenomics has recently become more widespread in clinical practice to personalize treatment and to develop new drugs tailored to specific patient populations. In this review, we provide an overview of the latest developments in the field and discuss the way forward, including how to address the missing heritability, develop novel polygenic models, and further improve the clinical implementation of pharmacogenomics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-051921-091209
2024-01-23
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/64/1/annurev-pharmtox-051921-091209.html?itemId=/content/journals/10.1146/annurev-pharmtox-051921-091209&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Snyder LH. 1931. Inherited taste deficiency. Science 74:151–52
    [Google Scholar]
  2. 2.
    Lauschke VM, Ingelman-Sundberg M. 2019. Prediction of drug response and adverse drug reactions: from twin studies to next generation sequencing. Eur. J. Pharm. Sci. 130:65–77
    [Google Scholar]
  3. 3.
    Ingelman-Sundberg M. 2004. Pharmacogenetics of cytochrome P450 and its applications in drug therapy: the past, present and future. Trends Pharmacol. Sci. 25:4193–200
    [Google Scholar]
  4. 4.
    Pirmohamed M. 2023. Pharmacogenomics: current status and future perspectives. Nat. Rev. Genet. 24:350–62
    [Google Scholar]
  5. 5.
    Shekhani R, Steinacher L, Swen JJ, Ingelman-Sundberg M. 2020. Evaluation of current regulation and guidelines of pharmacogenomic drug labels: opportunities for improvements. Clin. Pharmacol. Ther. 107:51240–55
    [Google Scholar]
  6. 6.
    Eur. Comm. 2008. Strengthening pharmacovigilance to reduce adverse effects of medicines Factsheet, Eur. Comm Brussels, Belg.: https://ec.europa.eu/commission/presscorner/detail/de/MEMO_08_782
    [Google Scholar]
  7. 7.
    Laatikainen O, Sneck S, Bloigu R, Lahtinen M, Lauri T, Turpeinen M. 2016. Hospitalizations due to adverse drug events in the elderly—a retrospective register study. Front. Pharmacol. 7:358
    [Google Scholar]
  8. 8.
    Lazarou J, Pomeranz BH, Corey PN. 1998. Incidence of adverse drug reactions in hospitalized patients. JAMA 279:151200–5
    [Google Scholar]
  9. 9.
    Russell LE, Zhou Y, Almousa AA, Sodhi JK, Nwabufo CK, Lauschke VM. 2021. Pharmacogenomics in the era of next generation sequencing—from byte to bedside. Drug Metab. Rev. 53:2253–78
    [Google Scholar]
  10. 10.
    Seeb JE, Pascal CE, Ramakrishnan R, Seeb LW. 2009. SNP genotyping by the 5′-nuclease reaction: advances in high-throughput genotyping with nonmodel organisms. Single Nucleotide Polymorphisms AA Komar 277–92. Totowa, NJ: Humana Press
    [Google Scholar]
  11. 11.
    Pusch W, Wurmbach J-H, Thiele H, Kostrzewa M. 2002. MALDI-TOF mass spectrometry-based SNP genotyping. Pharmacogenomics 3:4537–48
    [Google Scholar]
  12. 12.
    Hardenbol P, Banér J, Jain M, Nilsson M, Namsaraev EA et al. 2003. Multiplexed genotyping with sequence-tagged molecular inversion probes. Nat. Biotechnol. 21:6673–78
    [Google Scholar]
  13. 13.
    Watanabe K, Stringer S, Frei O, Mirkov MU, de Leeuw C et al. 2019. A global overview of pleiotropy and genetic architecture in complex traits. Nat. Genet. 51:91339–48
    [Google Scholar]
  14. 14.
    Jansen PR, Watanabe K, Stringer S, Skene N, Bryois J et al. 2019. Genome-wide analysis of insomnia in 1,331,010 individuals identifies new risk loci and functional pathways. Nat. Genet. 51:3394–403
    [Google Scholar]
  15. 15.
    Uffelmann E, Huang QQ, Munung NS, de Vries J, Okada Y et al. 2021. Genome-wide association studies. Nat. Rev. Methods Primers 1:159
    [Google Scholar]
  16. 16.
    Bhangale TR, Rieder MJ, Nickerson DA. 2008. Estimating coverage and power for genetic association studies using near-complete variation data. Nat. Genet. 40:7841–43
    [Google Scholar]
  17. 17.
    Li M, Li C, Guan W. 2008. Evaluation of coverage variation of SNP chips for genome-wide association studies. Eur. J. Hum. Genet. 16:5635–43
    [Google Scholar]
  18. 18.
    Mitt M, Kals M, Pärn K, Gabriel SB, Lander ES et al. 2017. Improved imputation accuracy of rare and low-frequency variants using population-specific high-coverage WGS-based imputation reference panel. Eur. J. Hum. Genet. 25:7869–76
    [Google Scholar]
  19. 19.
    Hovelson DH, Xue Z, Zawistowski M, Ehm MG, Harris EC et al. 2017. Characterization of ADME gene variation in 21 populations by exome sequencing. Pharmacogenet. Genom. 27:389–100
    [Google Scholar]
  20. 20.
    Klein K, Tremmel R, Winter S, Fehr S, Battke F et al. 2019. A new panel-based next-generation sequencing method for ADME genes reveals novel associations of common and rare variants with expression in a human liver cohort. Front. Genet. 10:7
    [Google Scholar]
  21. 21.
    Lee S, Shin J-Y, Kwon N-J, Kim C, Seo J-S. 2022. ClinPharmSeq: A targeted sequencing panel for clinical pharmacogenetics implementation. PLOS ONE 17:7e0272129
    [Google Scholar]
  22. 22.
    Rubinacci S, Ribeiro DM, Hofmeister RJ, Delaneau O. 2021. Efficient phasing and imputation of low-coverage sequencing data using large reference panels. Nat. Genet. 53:1120–26
    [Google Scholar]
  23. 23.
    Heather JM, Chain B. 2016. The sequence of sequencers: the history of sequencing DNA. Genomics 107:11–8
    [Google Scholar]
  24. 24.
    Lauschke VM, Milani L, Ingelman-Sundberg M. 2017. Pharmacogenomic biomarkers for improved drug therapy—recent progress and future developments. AAPS J 20:14
    [Google Scholar]
  25. 25.
    Kuleshov V, Xie D, Chen R, Pushkarev D, Ma Z et al. 2014. Whole-genome haplotyping using long reads and statistical methods. Nat. Biotechnol. 32:3261–66
    [Google Scholar]
  26. 26.
    Wang O, Chin R, Cheng X, Wu MKY, Mao Q et al. 2019. Efficient and unique cobarcoding of second-generation sequencing reads from long DNA molecules enabling cost-effective and accurate sequencing, haplotyping, and de novo assembly. Genome Res 29:5798–808
    [Google Scholar]
  27. 27.
    Zheng GXY, Lau BT, Schnall-Levin M, Jarosz M, Bell JM et al. 2016. Haplotyping germline and cancer genomes with high-throughput linked-read sequencing. Nat. Biotechnol. 34:3303–11
    [Google Scholar]
  28. 28.
    Eid J, Fehr A, Gray J, Luong K, Lyle J et al. 2009. Real-time DNA sequencing from single polymerase molecules. Science 323:5910133–38
    [Google Scholar]
  29. 29.
    Feng Y, Zhang Y, Ying C, Wang D, Du C. 2015. Nanopore-based fourth-generation DNA sequencing technology. Genom. Proteom. Bioinformat. 13:14–16
    [Google Scholar]
  30. 30.
    Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV et al. 2022. The complete sequence of a human genome. Science 376:658844–53
    [Google Scholar]
  31. 31.
    Chin C-S, Khalak A. 2019. Human genome assembly in 100 minutes. bioRxiv 705616. https://doi.org/10.1101/705616
    [Crossref]
  32. 32.
    Kronenberg ZN, Fiddes IT, Gordon D, Murali S, Cantsilieris S et al. 2018. High-resolution comparative analysis of great ape genomes. Science 360:6393eaar6343
    [Google Scholar]
  33. 33.
    Method of the year 2022: long-read sequencing 2023. Nat. Methods 20:11
    [Google Scholar]
  34. 34.
    Buermans HP, Vossen RH, Anvar SY, Allard WG, Guchelaar H-J et al. 2017. Flexible and scalable full-length CYP2D6 long amplicon PacBio sequencing. Hum. Mutat. 38:3310–16
    [Google Scholar]
  35. 35.
    Fukunaga K, Hishinuma E, Hiratsuka M, Kato K, Okusaka T et al. 2021. Determination of novel CYP2D6 haplotype using the targeted sequencing followed by the long-read sequencing and the functional characterization in the Japanese population. J. Hum. Genet. 66:2139–49
    [Google Scholar]
  36. 36.
    Matern BM, Olieslagers TI, Groeneweg M, Duygu B, Wieten L et al. 2020. Long-read nanopore sequencing validated for human leukocyte antigen class I typing in routine diagnostics. J. Mol. Diagn. 22:7912–19
    [Google Scholar]
  37. 37.
    Liu C, Yang X, Duffy BF, Hoisington-Lopez J, Crosby M et al. 2021. High-resolution HLA typing by long reads from the R10.3 Oxford nanopore flow cells. Hum. Immunol. 82:4288–95
    [Google Scholar]
  38. 38.
    van der Lee M, Rowell WJ, Menafra R, Guchelaar H-J, Swen JJ, Anvar SY. 2021. Application of long-read sequencing to elucidate complex pharmacogenomic regions: a proof of principle. Pharmacogenom. J. 22:175–81
    [Google Scholar]
  39. 39.
    Lacaze P, Ronaldson KJ, Zhang EJ, Alfirevic A, Shah H et al. 2020. Genetic associations with clozapine-induced myocarditis in patients with schizophrenia. Transl. Psychiatry 10:137
    [Google Scholar]
  40. 40.
    van der Lee M, Allard WG, Vossen RH, Baak-Pablo RF, Menafra R et al. 2021. Toward predicting CYP2D6-mediated variable drug response from CYP2D6 gene sequencing data. Sci. Transl. Med. 13:603eabf3637
    [Google Scholar]
  41. 41.
    Kobayashi ES, Batalov S, Wenger AM, Lambert C, Dhillon H et al. 2022. Approaches to long-read sequencing in a clinical setting to improve diagnostic rate. Sci. Rep. 12:116945
    [Google Scholar]
  42. 42.
    Schaal W, Ameur A, Olsson-Strömberg U, Hermanson M, Cavelier L, Spjuth O. 2022. Migrating to long-read sequencing for clinical routine BCR-ABL1 TKI resistance mutation screening. Cancer Inform 21:11769351221110872
    [Google Scholar]
  43. 43.
    Polderman TJC, Benyamin B, de Leeuw CA, Sullivan PF, van Bochoven A et al. 2015. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat. Genet. 47:7702–9
    [Google Scholar]
  44. 44.
    Jukic MM, Smith RL, Haslemo T, Molden E, Ingelman-Sundberg M. 2019. Effect of CYP2D6 genotype on exposure and efficacy of risperidone and aripiprazole: a retrospective, cohort study. Lancet Psychiatry 6:5418–26
    [Google Scholar]
  45. 45.
    Jukic MM, Haslemo T, Molden E, Ingelman-Sundberg M. 2018. Impact of CYP2C19 genotype on escitalopram exposure and therapeutic failure: a retrospective study based on 2,087 patients. Am. J. Psychiatry 175:5463–70
    [Google Scholar]
  46. 46.
    Matthaei J, Brockmöller J, Tzvetkov MV, Sehrt D, Sachse-Seeboth C et al. 2015. Heritability of metoprolol and torsemide pharmacokinetics. Clin. Pharmacol. Ther. 98:6611–21
    [Google Scholar]
  47. 47.
    Matthaei J, Tzvetkov MV, Gal V, Sachse-Seeboth C, Sehrt D et al. 2016. Low heritability in pharmacokinetics of talinolol: a pharmacogenetic twin study on the heritability of the pharmacokinetics of talinolol, a putative probe drug of MDR1 and other membrane transporters. Genome Med 8:1119
    [Google Scholar]
  48. 48.
    Matthaei J, Bonat WH, Kerb R, Tzvetkov MV, Strube J et al. 2020. Inherited and acquired determinants of hepatic CYP3A activity in humans. Front. Genet. 11:944
    [Google Scholar]
  49. 49.
    Lauschke VM, Zhou Y, Ingelman-Sundberg M. 2019. Novel genetic and epigenetic factors of importance for inter-individual differences in drug disposition, response and toxicity. Pharmacol. Ther. 197:122–52
    [Google Scholar]
  50. 50.
    Goswami C, Chattopadhyay A, Chuang EY. 2021. Rare variants: data types and analysis strategies. Ann. Transl. Med. 9:12961
    [Google Scholar]
  51. 51.
    Kozyra M, Ingelman-Sundberg M, Lauschke VM. 2017. Rare genetic variants in cellular transporters, metabolic enzymes, and nuclear receptors can be important determinants of interindividual differences in drug response. Genet. Med. 19:120–29
    [Google Scholar]
  52. 52.
    Ingelman-Sundberg M, Mkrtchian S, Zhou Y, Lauschke VM. 2018. Integrating rare genetic variants into pharmacogenetic drug response predictions. Hum. Genom. 12:126
    [Google Scholar]
  53. 53.
    Wright GE, Carleton B, Hayden MR, Ross CJ. 2018. The global spectrum of protein-coding pharmacogenomic diversity. Pharmacogenom. J. 18:1187–95
    [Google Scholar]
  54. 54.
    Zhou Y, Lauschke VM. 2022. The genetic landscape of major drug metabolizing cytochrome P450 genes—an updated analysis of population-scale sequencing data. Pharmacogenom. J. 22:5–6284–93
    [Google Scholar]
  55. 55.
    Schaller L, Lauschke VM. 2019. The genetic landscape of the human solute carrier (SLC) transporter superfamily. Hum. Genet. 138:11–121359–77
    [Google Scholar]
  56. 56.
    Xiao Q, Zhou Y, Lauschke VM. 2020. Ethnogeographic and inter-individual variability of human ABC transporters. Hum. Genet. 139:5623–46
    [Google Scholar]
  57. 57.
    Zhou Y, Mkrtchian S, Kumondai M, Hiratsuka M, Lauschke VM. 2019. An optimized prediction framework to assess the functional impact of pharmacogenetic variants. Pharmacogenom. J. 19:2115–26
    [Google Scholar]
  58. 58.
    Pandi M-T, Koromina M, Tsafaridis I, Patsilinakos S, Christoforou E et al. 2021. A novel machine learning-based approach for the computational functional assessment of pharmacogenomic variants. Hum. Genom. 15:151
    [Google Scholar]
  59. 59.
    DeMattia E, Silvestri M, Polesel J, Ecca F, Mezzalira S et al. 2022. Rare genetic variant burden in DPYD predicts severe fluoropyrimidine-related toxicity risk. Biomed. Pharmacother. 154:113644
    [Google Scholar]
  60. 60.
    El-Boraie A, Tanner J, Zhu AZ, Claw KG, Prasad B et al. 2022. Functional characterization of novel rare CYP2A6 variants and potential implications for clinical outcomes. Clin. Transl. Sci. 15:1204–20
    [Google Scholar]
  61. 61.
    Zuk O, Schaffner SF, Samocha K, Do R, Hechter E et al. 2014. Searching for missing heritability: designing rare variant association studies. PNAS 111:4E455–64
    [Google Scholar]
  62. 62.
    Siamoglou S, Koromina M, Hishinuma E, Yamazaki S, Tsermpini E-E et al. 2022. Identification and functional validation of novel pharmacogenomic variants using a next-generation sequencing-based approach for clinical pharmacogenomics. Pharmacol. Res. 176:106087
    [Google Scholar]
  63. 63.
    van der Lee M, Guchelaar H-J, Swen JJ. 2021. Substrate specificity of CYP2D6 genetic variants. Pharmacogenomics 22:161081–89
    [Google Scholar]
  64. 64.
    Rodriguez CF, Escudero-Bravo P, Díaz L, Bartoccioni P, García-Martín C et al. 2021. Structural basis for substrate specificity of heteromeric transporters of neutral amino acids. PNAS 118:49e2113573118
    [Google Scholar]
  65. 65.
    Bråten LS, Haslemo T, Jukic MM, Ivanov M, Ingelman-Sundberg M et al. 2021. A novel CYP2C-haplotype associated with ultrarapid metabolism of escitalopram. Clin. Pharmacol. Ther. 110:3786–93
    [Google Scholar]
  66. 66.
    Bråten LS, Ingelman-Sundberg M, Jukic MM, Molden E, Kringen MK. 2022. Impact of the novel CYP2C:TG haplotype and CYP2B6 variants on sertraline exposure in a large patient population. Clin. Transl. Sci. 15:92135–45
    [Google Scholar]
  67. 67.
    Smith RL, Wollmann BM, Kausberg M, Mæland S, Tveito M et al. 2022. Effects of a novel UGT2B haplotype and UGT1A4*3 allele variants on glucuronidation of clozapine in vivo. Curr. Drug Metab. 23:166–72
    [Google Scholar]
  68. 68.
    Collins JM, Nworu AC, Mohammad SJ, Li L, Li C et al. 2022. Regulatory variants in a novel distal enhancer regulate the expression of CYP3A4 and CYP3A5. Clin. Transl. Sci. 15:112720–31
    [Google Scholar]
  69. 69.
    Lenk , Klöditz K, Johansson I, Smith RL, Jukic M et al. 2022. The polymorphic nuclear factor NFIB regulates hepatic CYP2D6 expression and influences risperidone metabolism in psychiatric patients. Clin. Pharmacol. Ther. 111:51165–74
    [Google Scholar]
  70. 70.
    Chen W, Fu X, Dong B, Wang Y-D, Shiah S et al. 2012. Neonatal activation of the nuclear receptor CAR results in epigenetic memory and permanent change of drug metabolism in mouse liver. Hepatology 56:41499–508
    [Google Scholar]
  71. 71.
    Fisel P, Schaeffeler E, Schwab M. 2016. DNA methylation of ADME genes. Clin. Pharmacol. Ther. 99:5512–27
    [Google Scholar]
  72. 72.
    Lauschke VM, Barragan I, Ingelman-Sundberg M. 2018. Pharmacoepigenetics and toxicoepigenetics: novel mechanistic insights and therapeutic opportunities. Annu. Rev. Pharmacol. Toxicol. 58:161–85
    [Google Scholar]
  73. 73.
    Wang J, Lushan Y, Jiang H, Zheng X, Zeng S. 2020. Epigenetic regulation of differentially expressed drug-metabolizing enzymes in cancer. Drug Metab. Dispos. 48:9759–68
    [Google Scholar]
  74. 74.
    García-Calzón S, Perfilyev A, Martinell M, Ustinova M, Kalamajski S et al. 2020. Epigenetic markers associated with metformin response and intolerance in drug-naïve patients with type 2 diabetes. Sci. Transl. Med. 12:561eaaz1803
    [Google Scholar]
  75. 75.
    Rieger JK, Klein K, Winter S, Zanger UM. 2013. Expression variability of absorption, distribution, metabolism, excretion-related microRNAs in human liver: influence of nongenetic factors and association with gene expression. Drug Metab. Dispos. 41:101752–62
    [Google Scholar]
  76. 76.
    Ning B, Yu D, Yu A-M. 2019. Advances and challenges in studying noncoding RNA regulation of drug metabolism and development of RNA therapeutics. Biochem. Pharmacol. 169:113638
    [Google Scholar]
  77. 77.
    Li D, Chen M, Hong H, Tong W, Ning B. 2022. Integrative approaches for studying the role of noncoding RNAs in influencing drug efficacy and toxicity. Expert Opin. Drug Metab. Toxicol. 18:2151–63
    [Google Scholar]
  78. 78.
    Gulyaeva LF, Kushlinskiy NE. 2016. Regulatory mechanisms of microRNA expression. J. Transl. Med. 14:1143
    [Google Scholar]
  79. 79.
    Treiber T, Treiber N, Meister G. 2019. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat. Rev. Mol. Cell. Bio. 20:15–20
    [Google Scholar]
  80. 80.
    Collins JM, Wang D. 2022. Regulation of CYP3A4 and CYP3A5 by a lncRNA: a potential underlying mechanism explaining the association between CYP3A4*1G and CYP3A metabolism. Pharmacogenet. Genom. 32:116–23
    [Google Scholar]
  81. 81.
    Wang X, Ramat A, Simonelig M, Liu M-F. 2023. Emerging roles and functional mechanisms of PIWI-interacting RNAs. Nat. Rev. Mol. Cell Bio. 24:2123–41
    [Google Scholar]
  82. 82.
    Sun YH, Wang RH, Du K, Zhu J, Zheng J et al. 2021. Coupled protein synthesis and ribosome-guided piRNA processing on mRNAs. Nat. Commun. 12:15970
    [Google Scholar]
  83. 83.
    Casier K, Boivin A, Carré C, Teysset L. 2019. Environmentally-induced transgenerational epigenetic inheritance: implication of PIWI interacting RNAs. Cells 8:91108
    [Google Scholar]
  84. 84.
    Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. 2019. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet. 20:11675–91
    [Google Scholar]
  85. 85.
    Yengo L, Vedantam S, Marouli E, Sidorenko J, Bartell E et al. 2022. A saturated map of common genetic variants associated with human height. Nature 610:7933704–12
    [Google Scholar]
  86. 86.
    Coppola L, Cianflone A, Grimaldi AM, Incoronato M, Bevilacqua P et al. 2019. Biobanking in health care: evolution and future directions. J. Transl. Med. 17:1172
    [Google Scholar]
  87. 87.
    Müller H, Dagher G, Loibner M, Stumptner C, Kungl P, Zatloukal K. 2020. Biobanks for life sciences and personalized medicine: importance of standardization, biosafety, biosecurity, and data management. Curr. Opin. Biotech. 65:45–51
    [Google Scholar]
  88. 88.
    McInnes G, Lavertu A, Sangkuhl K, Klein TE, Whirl-Carrillo M, Altman RB. 2021. Pharmacogenetics at scale: an analysis of the UK Biobank. Clin. Pharmacol. Ther. 109:61528–37
    [Google Scholar]
  89. 89.
    Reisberg S, Krebs K, Lepamets M, Kals M, Mägi R et al. 2019. Translating genotype data of 44,000 biobank participants into clinical pharmacogenetic recommendations: challenges and solutions. Genet. Med. 21:61345–54
    [Google Scholar]
  90. 90.
    Tasa T, Krebs K, Kals M, Mägi R, Lauschke VM et al. 2019. Genetic variation in the Estonian population: pharmacogenomics study of adverse drug effects using electronic health records. Eur. J. Hum. Genet. 27:3442–54
    [Google Scholar]
  91. 91.
    Wu Y, Byrne EM, Zheng Z, Kemper KE, Yengo L et al. 2019. Genome-wide association study of medication-use and associated disease in the UK Biobank. Nat. Commun. 10:11891
    [Google Scholar]
  92. 92.
    Krebs K, Bovijn J, Zheng N, Lepamets M, Censin JC et al. 2020. Genome-wide study identifies association between HLA-B*55:01 and self-reported penicillin allergy. Am. J. Hum. Genet. 107:4612–21
    [Google Scholar]
  93. 93.
    Wendt FR, Koller D, Pathak GA, Jacoby D, Miller EJ, Polimanti R. 2021. Biobank scale pharmacogenomics informs the genetic underpinnings of simvastatin use. Clin. Pharmacol. Ther. 110:3777–85
    [Google Scholar]
  94. 94.
    Krebs K, Milani L. 2023. Harnessing the power of electronic health records and genomics for drug discovery. Annu. Rev. Pharmacol. Toxicol. 63:65–76
    [Google Scholar]
  95. 95.
    Szustakowski JD, Balasubramanian S, Kvikstad E, Khalid S, Bronson PG et al. 2021. Advancing human genetics research and drug discovery through exome sequencing of the UK Biobank. Nat. Genet. 53:7942–48
    [Google Scholar]
  96. 96.
    Zhou W, Kanai M, Wu K-HH, Rasheed H, Tsuo K et al. 2022. Global biobank meta-analysis initiative: powering genetic discovery across human disease. Cell Genom 2:10100192
    [Google Scholar]
  97. 97.
    Zhou Y, Tremmel R, Schaeffeler E, Schwab M, Lauschke VM. 2022. Challenges and opportunities associated with rare-variant pharmacogenomics. Trends Pharmacol. Sci. 43:10852–65
    [Google Scholar]
  98. 98.
    Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J et al. 2020. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581:7809434–43
    [Google Scholar]
  99. 99.
    Hauser AS, Chavali S, Masuho I, Jahn LJ, Martemyanov KA et al. 2018. Pharmacogenomics of GPCR drug targets. Cell 172:1–241–54
    [Google Scholar]
  100. 100.
    Zhou Y, Arribas GH, Turku A, Jürgenson T, Mkrtchian S et al. 2021. Rare genetic variability in human drug target genes modulates drug response and can guide precision medicine. Sci. Adv. 7:36eabi6856
    [Google Scholar]
  101. 101.
    Magliocco G, Thomas A, Desmeules J, Daali Y. 2019. Phenotyping of human CYP450 enzymes by endobiotics: current knowledge and methodological approaches. Clin. Pharmacokinet. 58:111373–91
    [Google Scholar]
  102. 102.
    Mochizuki T, Mizuno T, Maeda K, Kusuhara H. 2021. Current progress in identifying endogenous biomarker candidates for drug transporter phenotyping and their potential application to drug development. Drug Metab. Pharmacokinet. 37:100358
    [Google Scholar]
  103. 103.
    Zubarev RA, Makarov A. 2013. Orbitrap mass spectrometry. Anal. Chem. 85:115288–96
    [Google Scholar]
  104. 104.
    Harvey MH, McMillan M, Morgan MR, Chan HW. 1985. Solanidine is present in sera of healthy individuals and in amounts dependent on their dietary potato consumption. Hum. Exp. Toxicol. 4:2187–94
    [Google Scholar]
  105. 105.
    Magliocco G, Desmeules J, Matthey A, Quirós-Guerrero LM, Bararpour N et al. 2021. Metabolomics reveals biomarkers in human urine and plasma to predict cytochrome P450 2D6 (CYP2D6) activity. Brit. J. Pharmacol. 178:234708–25
    [Google Scholar]
  106. 106.
    Behrle AC, Douglas J, Leeder JS, van Haandel L. 2022. Isolation and identification of 3,4-seco-solanidine-3,4-dioic acid (SSDA) as a urinary biomarker of cytochrome P450 2D6 (CYP2D6) activity. Drug Metab. Dispos. 50:101342–51
    [Google Scholar]
  107. 107.
    Wollmann BM, Størset E, Kringen MK, Molden E, Smith RL. 2023. Prediction of CYP2D6 poor metabolizers by measurements of solanidine and metabolites—a study in 839 patients with known CYP2D6 genotype. Eur. J. Clin. Pharmacol. 79:4523–31
    [Google Scholar]
  108. 108.
    Lewis CM, Vassos E. 2020. Polygenic risk scores: from research tools to clinical instruments. Genome Med 12:144
    [Google Scholar]
  109. 109.
    Khera AV, Chaffin M, Aragam KG, Haas ME, Roselli C et al. 2018. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat. Genet. 50:91219–24
    [Google Scholar]
  110. 110.
    Johnson D, Wilke MA, Lyle SM, Kowalec K, Jorgensen A et al. 2022. A systematic review and analysis of the use of polygenic scores in pharmacogenomics. Clin. Pharmacol. Ther. 111:4919–30
    [Google Scholar]
  111. 111.
    Siemens A, Anderson SJ, Rassekh SR, Ross CJD, Carleton BC. 2022. A systematic review of polygenic models for predicting drug outcomes. J. Pers. Med. 12:91394
    [Google Scholar]
  112. 112.
    Natarajan P, Young R, Stitziel NO, Padmanabhan S, Baber U et al. 2017. Polygenic risk score identifies subgroup with higher burden of atherosclerosis and greater relative benefit from statin therapy in the primary prevention setting. Circulation 135:222091–101
    [Google Scholar]
  113. 113.
    Zhang J-P, Robinson D, Yu J, Gallego J, Fleischhacker WW et al. 2019. Schizophrenia polygenic risk score as a predictor of antipsychotic efficacy in first-episode psychosis. Am. J. Psychiatry 176:121–28
    [Google Scholar]
  114. 114.
    Damask A, Steg PG, Schwartz GG, Szarek M, Hagström E et al. 2019. Patients with high genome-wide polygenic risk scores for coronary artery disease may receive greater clinical benefit from alirocumab treatment in the ODYSSEY OUTCOMES trial. Circulation 141:8624–36
    [Google Scholar]
  115. 115.
    Zhai S, Zhang H, Mehrotra DV, Shen J. 2022. Pharmacogenomics polygenic risk score for drug response prediction using PRS-PGx methods. Nat. Commun. 13:15278
    [Google Scholar]
  116. 116.
    Lewis JP, Backman JD, Reny J-L, Bergmeijer TO, Mitchell BD et al. 2019. Pharmacogenomic polygenic response score predicts ischemic events and cardiovascular mortality in clopidogrel-treated patients. Eur. Heart J. Cardiovasc. Pharmacother. 6:4203–10
    [Google Scholar]
  117. 117.
    Cross B, Turner R, Pirmohamed M. 2022. Polygenic risk scores: an overview from bench to bedside for personalised medicine. Front. Genet. 13:1000667
    [Google Scholar]
  118. 118.
    Pardiñas AF, Kappel DB, Roberts M, Tipple F, Shitomi-Jones LM et al. 2023. Pharmacokinetics and pharmacogenomics of clozapine in an ancestrally diverse sample: a longitudinal analysis and genome-wide association study using UK clinical monitoring data. Lancet Psychiatry 10:3209–19
    [Google Scholar]
  119. 119.
    Kiiskinen T, Helkkula P, Krebs K, Karjalainen J, Saarentaus E et al. 2023. Genetic predictors of lifelong medication-use patterns in cardiometabolic diseases. Nat. Med. 29:1209–18
    [Google Scholar]
  120. 120.
    Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC et al. 2009. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460:7256748–52
    [Google Scholar]
  121. 121.
    Mavaddat N, Michailidou K, Dennis J, Lush M, Fachal L et al. 2019. Polygenic risk scores for prediction of breast cancer and breast cancer subtypes. Am. J. Hum. Genet. 104:121–34
    [Google Scholar]
  122. 122.
    Lewis AC, Perez EF, Prince AER, Flaxman HR, Gomez L et al. 2022. Patient and provider perspectives on polygenic risk scores: implications for clinical reporting and utilization. Genome Med. 14:1114
    [Google Scholar]
  123. 123.
    Klein ME, Parvez MM, Shin J-G. 2017. Clinical implementation of pharmacogenomics for personalized precision medicine: barriers and solutions. J. Pharm. Sci. 106:92368–79
    [Google Scholar]
  124. 124.
    Mizuno T, Dong M, Taylor ZL, Ramsey LB, Vinks AA. 2022. Clinical implementation of pharmacogenetics and model-informed precision dosing to improve patient care. Br. J. Clin. Pharmacol. 88:41418–26
    [Google Scholar]
  125. 125.
    Luczak T, Brown SJ, Armbruster D, Hundertmark M, Brown J, Stenehjem D. 2021. Strategies and settings of clinical pharmacogenetic implementation: a scoping review of pharmacogenetics programs. Pharmacogenomics 22:6345–64
    [Google Scholar]
  126. 126.
    van Calker D, Serchov T. 2021. The “missing heritability”–problem in psychiatry: Is the interaction of genetics, epigenetics and transposable elements a potential solution?. Neurosci. Biobehav. Rev. 126:23–42
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-051921-091209
Loading
/content/journals/10.1146/annurev-pharmtox-051921-091209
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error