1932

Abstract

Antiplatelet therapy is used in the treatment of patients with acute coronary syndromes, stroke, and those undergoing percutaneous coronary intervention. Clopidogrel is the most widely used antiplatelet P2Y12 inhibitor in clinical practice. Genetic variation in may influence its enzymatic activity, resulting in individuals who are carriers of loss-of-function alleles and thus have reduced active clopidogrel metabolites, high on-treatment platelet reactivity, and increased ischemic risk. Prospective studies have examined the utility of genetic testing to guide antiplatelet therapy, and more recently published meta-analyses suggest that pharmacogenetics represents a key treatment strategy to individualize antiplatelet therapy. Rapid genetic tests, including bedside genotyping platforms that are validated and have high reproducibility, are available to guide selection of P2Y12 inhibitors in clinical practice. The aim of this review is to provide an overview of the background and rationale for the role of a guided antiplatelet approach to enhance patient care.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-051921-092701
2023-01-20
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/63/1/annurev-pharmtox-051921-092701.html?itemId=/content/journals/10.1146/annurev-pharmtox-051921-092701&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Wallentin L, Becker RC, Budaj A, Cannon CP, Emanuelsson H et al. 2009. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med. 361:111045–57
    [Google Scholar]
  2. 2.
    Wiviott SD, Braunwald E, McCabe CH, Montalescot G, Ruzyllo W et al. 2007. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med. 357:202001–15
    [Google Scholar]
  3. 3.
    Karve AM, Seth M, Sharma M, LaLonde T, Dixon S et al. 2015. Contemporary use of ticagrelor in interventional practice (from Blue Cross Blue Shield of Michigan Cardiovascular Consortium). Am. J. Cardiol. 115:111502–6
    [Google Scholar]
  4. 4.
    Levine GN, Bates ER, Bittl JA, Brindis RG, Fihn SD et al. 2016. 2016 ACC/AHA guideline focused update on duration of dual antiplatelet therapy in patients with coronary artery disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines: an update of the 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention, 2011 ACCF/AHA guideline for coronary artery bypass graft surgery, 2012 ACC/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease, 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction, 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes, and 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery. Circulation 134:10e123–55 Erratum. 2016. Circulation 134(10):e192–94
    [Google Scholar]
  5. 5.
    Gurbel PA, Bliden KP, Hiatt BL, O'Connor CM. 2003. Clopidogrel for coronary stenting: response variability, drug resistance, and the effect of pretreatment platelet reactivity. Circulation 107:232908–13
    [Google Scholar]
  6. 6.
    Simon T, Bhatt DL, Bergougnan L, Farenc C, Pearson K et al. 2011. Genetic polymorphisms and the impact of a higher clopidogrel dose regimen on active metabolite exposure and antiplatelet response in healthy subjects. Clin. Pharmacol. Ther. 90:2287–95
    [Google Scholar]
  7. 7.
    Pereira NL, Rihal CS, So DYF, Rosenberg Y, Lennon RJ et al. 2019. Clopidogrel pharmacogenetics. Circ. Cardiovasc. Interv. 12:4e007811
    [Google Scholar]
  8. 8.
    Schrör K. 1998. Clinical pharmacology of the adenosine diphosphate (ADP) receptor antagonist, clopidogrel. Vasc. Med. 3:3247–51
    [Google Scholar]
  9. 9.
    Brown SA, Pereira N. 2018. Pharmacogenomic impact of CYP2C19 variation on clopidogrel therapy in precision cardiovascular medicine. J. Pers. Med. 8:18
    [Google Scholar]
  10. 10.
    Sibbing D, Aradi D, Alexopoulos D, Ten Berg J, Bhatt DL et al. 2019. Updated expert consensus statement on platelet function and genetic testing for guiding P2Y(12) receptor inhibitor treatment in percutaneous coronary intervention. JACC Cardiovasc. Interv. 12:161521–37
    [Google Scholar]
  11. 11.
    Aradi D, Kirtane A, Bonello L, Gurbel PA, Tantry US et al. 2015. Bleeding and stent thrombosis on P2Y12-inhibitors: collaborative analysis on the role of platelet reactivity for risk stratification after percutaneous coronary intervention. Eur. Heart J. 36:271762–71
    [Google Scholar]
  12. 12.
    Botton MR, Whirl-Carrillo M, Del Tredici AL, Sangkuhl K, Cavallari LH et al. 2021. PharmVar GeneFocus: CYP2C19. Clin. Pharmacol. Ther. 109:2352–66
    [Google Scholar]
  13. 13.
    Helsby NA, Burns KE. 2012. Molecular mechanisms of genetic variation and transcriptional regulation of CYP2C19. Front. Genet. 3:206
    [Google Scholar]
  14. 14.
    Wei YQ, Wang DG, Yang H, Cao H 2015. Cytochrome P450 CYP 2C19*2 associated with adverse 1-year cardiovascular events in patients with acute coronary syndrome. PLOS ONE 10:7e0132561
    [Google Scholar]
  15. 15.
    Desta Z, Zhao X, Shin JG, Flockhart DA. 2002. Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin. Pharmacokinet. 41:12913–58
    [Google Scholar]
  16. 16.
    Luo HR, Poland RE, Lin KM, Wan YJ. 2006. Genetic polymorphism of cytochrome P450 2C19 in Mexican Americans: a cross-ethnic comparative study. Clin. Pharmacol. Ther. 80:133–40
    [Google Scholar]
  17. 17.
    Verma SS, Bergmeijer TO, Gong L, Reny JL, Lewis JP et al. 2020. Genomewide association study of platelet reactivity and cardiovascular response in patients treated with clopidogrel: a study by the International Clopidogrel Pharmacogenomics Consortium. Clin. Pharmacol. Ther. 108:51067–77
    [Google Scholar]
  18. 18.
    Lewis JP, Backman JD, Reny JL, Bergmeijer TO, Mitchell BD et al. 2020. Pharmacogenomic polygenic response score predicts ischaemic events and cardiovascular mortality in clopidogrel-treated patients. Eur. Heart J. Cardiovasc. Pharmacother. 6:4203–10
    [Google Scholar]
  19. 19.
    Scott SA, Collet JP, Baber U, Yang Y, Peter I et al. 2016. Exome sequencing of extreme clopidogrel response phenotypes identifies B4GALT2 as a determinant of on-treatment platelet reactivity. Clin. Pharmacol. Ther. 100:3287–94
    [Google Scholar]
  20. 20.
    Lewis JP, Horenstein RB, Ryan K, O'Connell JR, Gibson Q et al. 2013. The functional G143E variant of carboxylesterase 1 is associated with increased clopidogrel active metabolite levels and greater clopidogrel response. Pharmacogenet. Genom. 23:11–8
    [Google Scholar]
  21. 21.
    Staritz P, Kurz K, Stoll M, Giannitsis E, Katus HA, Ivandic BT. 2009. Platelet reactivity and clopidogrel resistance are associated with the H2 haplotype of the P2Y12-ADP receptor gene. Int. J. Cardiol. 133:3341–45
    [Google Scholar]
  22. 22.
    Htun WW, Steinhubl SR. 2013. Ticagrelor: the first novel reversible P2Y12 inhibitor. Expert Opin. Pharmacother. 14:2237–45
    [Google Scholar]
  23. 23.
    Teng R. 2012. Pharmacokinetic, pharmacodynamic and pharmacogenetic profile of the oral antiplatelet agent ticagrelor. Clin. Pharmacokinet. 51:5305–18
    [Google Scholar]
  24. 24.
    Dinicolantonio JJ, Serebruany VL. 2013. Exploring the ticagrelor-statin interplay in the PLATO trial. Cardiology 124:2105–7
    [Google Scholar]
  25. 25.
    Varenhorst C, Eriksson N, Johansson Å, Barratt BJ, Hagström E et al. 2015. Effect of genetic variations on ticagrelor plasma levels and clinical outcomes. Eur. Heart J. 36:291901–12
    [Google Scholar]
  26. 26.
    Pourdjabbar A, Hibbert B, Chong AY, Abunassar J, Malhotra N et al. 2016. A pharmacodynamic analysis for the co-administration of inducers of CYP3A with ticagrelor: a cautionary tale in managing patients with acute coronary syndromes. Int. J. Cardiol. 214:423–25
    [Google Scholar]
  27. 27.
    Li M, Hu Y, Li H, Wen Z, Hu X et al. 2017. No effect of SLCO1B1 and CYP3A4/5 polymorphisms on the pharmacokinetics and pharmacodynamics of ticagrelor in healthy Chinese male subjects. Biol. Pharm. Bull. 40:188–96
    [Google Scholar]
  28. 28.
    Brandt JT, Close SL, Iturria SJ, Payne CD, Farid NA et al. 2007. Common polymorphisms of CYP2C19 and CYP2C9 affect the pharmacokinetic and pharmacodynamic response to clopidogrel but not prasugrel. J. Thromb. Haemost. 5:122429–36
    [Google Scholar]
  29. 29.
    Kelly RP, Close SL, Farid NA, Winters KJ, Shen L et al. 2012. Pharmacokinetics and pharmacodynamics following maintenance doses of prasugrel and clopidogrel in Chinese carriers of CYP2C19 variants. Br. J. Clin. Pharmacol. 73:193–105
    [Google Scholar]
  30. 30.
    Varenhorst C, James S, Erlinge D, Brandt JT, Braun OO et al. 2009. Genetic variation of CYP2C19 affects both pharmacokinetic and pharmacodynamic responses to clopidogrel but not prasugrel in aspirin-treated patients with coronary artery disease. Eur. Heart J. 30:141744–52
    [Google Scholar]
  31. 31.
    Mega JL, Close SL, Wiviott SD, Shen L, Walker JR et al. 2010. Genetic variants in ABCB1 and CYP2C19 and cardiovascular outcomes after treatment with clopidogrel and prasugrel in the TRITON-TIMI 38 trial: a pharmacogenetic analysis. Lancet 376:97491312–19
    [Google Scholar]
  32. 32.
    Würtz M, Kristensen SD, Hvas AM, Grove EL. 2012. Pharmacogenetics of the antiplatelet effect of aspirin. Curr. Pharm. Des. 18:335294–308
    [Google Scholar]
  33. 33.
    Yang Y, Lewis JP, Hulot JS, Scott SA. 2015. The pharmacogenetic control of antiplatelet response: candidate genes and CYP2C19. Expert Opin. Drug Metab. Toxicol. 11:101599–617
    [Google Scholar]
  34. 34.
    Shuldiner AR, O'Connell JR, Bliden KP, Gandhi A, Ryan K et al. 2009. Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA 302:8849–57
    [Google Scholar]
  35. 35.
    Luzum JA, Pakyz RE, Elsey AR, Haidar CE, Peterson JF et al. 2017. The Pharmacogenomics Research Network Translational Pharmacogenetics Program: outcomes and metrics of pharmacogenetic implementations across diverse healthcare systems. Clin. Pharmacol. Ther. 102:3502–10
    [Google Scholar]
  36. 36.
    Sistonen J, Fuselli S, Palo JU, Chauhan N, Padh H, Sajantila A. 2009. Pharmacogenetic variation at CYP2C9, CYP2C19, and CYP2D6 at global and microgeographic scales. Pharmacogenet. Genom. 19:2170–79
    [Google Scholar]
  37. 37.
    Scott SA, Sangkuhl K, Stein CM, Hulot JS, Mega JL et al. 2013. Clinical Pharmacogenetics Implementation Consortium guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clin. Pharmacol. Ther. 94:3317–23
    [Google Scholar]
  38. 38.
    Mega JL, Close SL, Wiviott SD, Shen L, Hockett RD et al. 2009. Cytochrome P-450 polymorphisms and response to clopidogrel. N. Engl. J. Med. 360:4354–62
    [Google Scholar]
  39. 39.
    Mega JL, Simon T, Collet JP, Anderson JL, Antman EM et al. 2010. Reduced-function CYP2C19 genotype and risk of adverse clinical outcomes among patients treated with clopidogrel predominantly for PCI: a meta-analysis. JAMA 304:161821–30
    [Google Scholar]
  40. 40.
    Umemura K, Furuta T, Kondo K. 2008. The common gene variants of CYP2C19 affect pharmacokinetics and pharmacodynamics in an active metabolite of clopidogrel in healthy subjects. J. Thromb. Haemost. 6:81439–41
    [Google Scholar]
  41. 41.
    Ernest CS II, Small DS, Rohatagi S, Salazar DE, Wallentin L et al. 2008. Population pharmacokinetics and pharmacodynamics of prasugrel and clopidogrel in aspirin-treated patients with stable coronary artery disease. J. Pharmacokinet. Pharmacodyn. 35:6593–618
    [Google Scholar]
  42. 42.
    Gurbel PA, Tantry US. 2006. Drug insight: clopidogrel nonresponsiveness. Nat. Clin. Pract. Cardiovasc. Med. 3:7387–95
    [Google Scholar]
  43. 43.
    Gurbel PA, Tantry US. 2007. Clopidogrel resistance?. Thromb. Res. 120:3311–21
    [Google Scholar]
  44. 44.
    Holmes MV, Perel P, Shah T, Hingorani AD, Casas JP. 2011. CYP2C19 genotype, clopidogrel metabolism, platelet function, and cardiovascular events: a systematic review and meta-analysis. JAMA 306:242704–14
    [Google Scholar]
  45. 45.
    Gurbel PA, Tantry US. 2012. Do platelet function testing and genotyping improve outcome in patients treated with antithrombotic agents? Platelet function testing and genotyping improve outcome in patients treated with antithrombotic agents. Circulation 125:101276–87
    [Google Scholar]
  46. 46.
    Price MJ, Murray SS, Angiolillo DJ, Lillie E, Smith EN et al. 2012. Influence of genetic polymorphisms on the effect of high- and standard-dose clopidogrel after percutaneous coronary intervention: the GIFT (Genotype Information and Functional Testing) study. J. Am. Coll. Cardiol. 59:221928–37
    [Google Scholar]
  47. 47.
    Mega JL, Hochholzer W, Frelinger AL 3rd, Kluk MJ, Angiolillo DJ et al. 2011. Dosing clopidogrel based on CYP2C19 genotype and the effect on platelet reactivity in patients with stable cardiovascular disease. JAMA 306:202221–28
    [Google Scholar]
  48. 48.
    Jeong YH, Bliden KP, Antonino MJ, Park KS, US Tantry, Gurbel PA. 2012. Usefulness of the VerifyNow P2Y12 assay to evaluate the antiplatelet effects of ticagrelor and clopidogrel therapies. Am. Heart J. 164:135–42
    [Google Scholar]
  49. 49.
    Hochholzer W, Trenk D, Fromm MF, Valina CM, Stratz C et al. 2010. Impact of cytochrome P450 2C19 loss-of-function polymorphism and of major demographic characteristics on residual platelet function after loading and maintenance treatment with clopidogrel in patients undergoing elective coronary stent placement. J. Am. Coll. Cardiol. 55:222427–34
    [Google Scholar]
  50. 50.
    Geisler T, Schaeffeler E, Dippon J, Winter S, Buse V et al. 2008. CYP2C19 and nongenetic factors predict poor responsiveness to clopidogrel loading dose after coronary stent implantation. Pharmacogenomics 9:91251–59
    [Google Scholar]
  51. 51.
    Liu T, Yin T, Li Y, Song LQ, Yu J et al. 2014. CYP2C19 polymorphisms and coronary heart disease risk factors synergistically impact clopidogrel response variety after percutaneous coronary intervention. Coron. Artery Dis. 25:5412–20
    [Google Scholar]
  52. 52.
    Muller C, Caillard S, Jesel L, El Ghannudi S, Ohlmann P et al. 2012. Association of estimated GFR with platelet inhibition in patients treated with clopidogrel. Am. J. Kidney Dis. 59:6777–85
    [Google Scholar]
  53. 53.
    Gremmel T, Müller M, Steiner S, Seidinger D, Koppensteiner R et al. 2013. Chronic kidney disease is associated with increased platelet activation and poor response to antiplatelet therapy. Nephrol. Dial. Transplant. 28:82116–22
    [Google Scholar]
  54. 54.
    Faraday N, Becker DM, Becker LC. 2007. Pharmacogenomics of platelet responsiveness to aspirin. Pharmacogenomics 8:101413–25
    [Google Scholar]
  55. 55.
    Patrono C. 1994. Aspirin as an antiplatelet drug. N. Engl. J. Med. 330:181287–94
    [Google Scholar]
  56. 56.
    Cuisset T, Loosveld M, Morange PE, Quilici J, Moro PJ et al. 2012. CYP2C19*2 and *17 alleles have a significant impact on platelet response and bleeding risk in patients treated with prasugrel after acute coronary syndrome. JACC Cardiovasc. Interv. 5:121280–87
    [Google Scholar]
  57. 57.
    Grosdidier C, Quilici J, Loosveld M, Camoin L, Moro PJ et al. 2013. Effect of CYP2C19*2 and *17 genetic variants on platelet response to clopidogrel and prasugrel maintenance dose and relation to bleeding complications. Am. J. Cardiol. 111:7985–90
    [Google Scholar]
  58. 58.
    Storey RF, Thornton SM, Lawrance R, Husted S, Wickens M et al. 2009. Ticagrelor yields consistent dose-dependent inhibition of ADP-induced platelet aggregation in patients with atherosclerotic disease regardless of genotypic variations in P2RY12, P2RY1, and ITGB3. Platelets 20:5341–48
    [Google Scholar]
  59. 59.
    Collet J-P, Cuisset T, Rangé G, Cayla G, Elhadad S et al. 2012. Bedside monitoring to adjust antiplatelet therapy for coronary stenting. N. Engl. J. Med. 367:222100–9
    [Google Scholar]
  60. 60.
    Price MJ, Berger PB, Teirstein PS, Tanguay JF, Angiolillo DJ et al. 2011. Standard- versus high-dose clopidogrel based on platelet function testing after percutaneous coronary intervention: the GRAVITAS randomized trial. JAMA 305:111097–105
    [Google Scholar]
  61. 61.
    Roberts JD, Wells GA, Le May MR, Labinaz M, Glover C et al. 2012. Point-of-care genetic testing for personalisation of antiplatelet treatment (RAPID GENE): a prospective, randomised, proof-of-concept trial. Lancet 379:98271705–11
    [Google Scholar]
  62. 62.
    Erlinge D, James S, Duvvuru S, Jakubowski JA, Wagner H et al. 2014. Clopidogrel metaboliser status based on point-of-care CYP2C19 genetic testing in patients with coronary artery disease. Thromb. Haemost. 111:5943–50
    [Google Scholar]
  63. 63.
    Morales-Rosado JA, Goel K, Zhang L, Åkerblom A, Baheti S et al. 2021. Next-generation sequencing of CYP2C19 in stent thrombosis: implications for clopidogrel pharmacogenomics. Cardiovasc. Drugs Ther. 35:3549–59
    [Google Scholar]
  64. 64.
    Zhang L, Sarangi V, Moon I, Yu J, Liu D et al. 2020. CYP2C9 and CYP2C19: deep mutational scanning and functional characterization of genomic missense variants. Clin. Transl. Sci. 13:4727–42
    [Google Scholar]
  65. 65.
    Sorich MJ, Rowland A, McKinnon RA, Wiese MD. 2014. CYP2C19 genotype has a greater effect on adverse cardiovascular outcomes following percutaneous coronary intervention and in Asian populations treated with clopidogrel: a meta-analysis. Circ. Cardiovasc. Genet. 7:6895–902
    [Google Scholar]
  66. 66.
    Niu X, Mao L, Huang Y, Baral S, Li JY et al. 2015. CYP2C19 polymorphism and clinical outcomes among patients of different races treated with clopidogrel: a systematic review and meta-analysis. J. Huazhong. Univ. Sci. Technol. Med. Sci. 35:2147–56
    [Google Scholar]
  67. 67.
    Xi Z, Fang F, Wang J, AlHelal J, Zhou Y, Liu W. 2019. CYP2C19 genotype and adverse cardiovascular outcomes after stent implantation in clopidogrel-treated Asian populations: a systematic review and meta-analysis. Platelets 30:2229–40
    [Google Scholar]
  68. 68.
    Lee CR, Thomas CD, Beitelshees AL, Tuteja S, Empey PE et al. 2021. Impact of the CYP2C19*17 allele on outcomes in patients receiving genotype-guided antiplatelet therapy after percutaneous coronary intervention. Clin. Pharmacol. Ther. 109:3705–15
    [Google Scholar]
  69. 69.
    Cavallari LH, Beitelshees AL, Blake KV, Dressler LG, Duarte JD et al. 2017. The IGNITE Pharmacogenetics Working Group: an opportunity for building evidence with pharmacogenetic implementation in a real-world setting. Clin. Transl. Sci. 10:3143–46
    [Google Scholar]
  70. 70.
    Claassens DMF, Bergmeijer TO, Vos GJA, Hermanides RS, van 't Hof AWJ et al. 2021. Clopidogrel versus ticagrelor or prasugrel after primary percutaneous coronary intervention according to CYP2C19 genotype: a POPular genetics subanalysis. Circ. Cardiovasc. Interv. 14:4e009434
    [Google Scholar]
  71. 71.
    Bergmeijer TO, Reny JL, Pakyz RE, Gong L, Lewis JP et al. 2018. Genome-wide and candidate gene approaches of clopidogrel efficacy using pharmacodynamic and clinical end points—rationale and design of the International Clopidogrel Pharmacogenomics Consortium (ICPC). Am. Heart J. 198:152–59
    [Google Scholar]
  72. 72.
    Deleted in proof
  73. 73.
    Linskey DW, Linskey DC, McLeod HL, Luzum JA. 2021. The need to shift pharmacogenetic research from candidate gene to genome-wide association studies. Pharmacogenomics 22:171143–50
    [Google Scholar]
  74. 74.
    Pan Y, Chen W, Xu Y, Yi X, Han Y et al. 2017. Genetic polymorphisms and clopidogrel efficacy for acute ischemic stroke or transient ischemic attack: a systematic review and meta-analysis. Circulation 135:121–33
    [Google Scholar]
  75. 75.
    Tornio A, Flynn R, Morant S, Velten E, Palmer CNA et al. 2018. Investigating real-world clopidogrel pharmacogenetics in stroke using a bioresource linked to electronic medical records. Clin. Pharmacol. Ther. 103:2281–86
    [Google Scholar]
  76. 76.
    Wang Y, Zhao X, Lin J, Li H, Johnston SC et al. 2016. Association between CYP2C19 loss-of-function allele status and efficacy of clopidogrel for risk reduction among patients with minor stroke or transient ischemic attack. JAMA 316:170–78
    [Google Scholar]
  77. 77.
    Lee CR, Luzum JA, Sangkuhl K, Gammal RS, Sabatine MS et al. 2022. Clinical Pharmacogenetics Implementation Consortium guideline for CYP2C19 genotype and clopidogrel therapy: 2022 update. Clin. Pharmacol. Ther. In press
    [Google Scholar]
  78. 78.
    FDA (US Food Drug Admin.) 2021. Clopidogrel prescribing information 2021 FDA, Silver Spring, MD https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/020839s074lbl.pdf
  79. 79.
    Alhazzani A, Venkatachalapathy P, Padhilahouse S, Sellappan M, Munisamy M et al. 2021. Biomarkers for antiplatelet therapies in acute ischemic stroke: a clinical review. Front. Neurol. 12:667234
    [Google Scholar]
  80. 80.
    Gower MN, Ratner LR, Williams AK, Rossi JS, Stouffer GA, Lee CR. 2020. Clinical utility of CYP2C19 genotype-guided antiplatelet therapy in patients at risk of adverse cardiovascular and cerebrovascular events: a review of emerging evidence. Pharmacogenom. Pers. Med. 13:239–52
    [Google Scholar]
  81. 81.
    Li C, Jia W, Li J, Li F, Ma J, Zhou L. 2021. Association with CYP2C19 polymorphisms and clopidogrel in treatment of elderly stroke patients. BMC Neurol 21:1104
    [Google Scholar]
  82. 82.
    Lv H, Yang Z, Wu H, Liu M, Mao X et al. 2021. High on-treatment platelet reactivity as predictor of long-term clinical outcomes in stroke patients with antiplatelet agents. Transl. Stroke Res. 13:3391–98
    [Google Scholar]
  83. 83.
    Al-Rubaish AM, Al-Muhanna FA, Alshehri AM, Alsulaiman AA, Alabdulali MM et al. 2021. Prevalence of CYP2C19*2 carriers in Saudi ischemic stroke patients and the suitability of using genotyping to guide antiplatelet therapy in a university hospital setup. Drug. Metab. Pers. Ther. In press
    [Google Scholar]
  84. 84.
    Wang J, Liu J, Zhou Y, Wang F, Xu K et al. 2019. Association among PlA1/A2 gene polymorphism, laboratory aspirin resistance and clinical outcomes in patients with coronary artery disease: an updated meta-analysis. Sci. Rep. 9:113177
    [Google Scholar]
  85. 85.
    Ferreira M, Freitas-Silva M, Assis J, Pinto R, Nunes JP, Medeiros R. 2020. The emergent phenomenon of aspirin resistance: insights from genetic association studies. Pharmacogenomics 21:2125–40
    [Google Scholar]
  86. 86.
    Ross S, Paré G. 2018. Pharmacogenetics of stroke. Stroke 49:102541–48
    [Google Scholar]
  87. 87.
    Herrera-Galeano JE, Becker DM, Wilson AF, Yanek LR, Bray P et al. 2008. A novel variant in the platelet endothelial aggregation receptor-1 gene is associated with increased platelet aggregability. Arterioscler. Thromb. Vasc. Biol. 28:81484–90
    [Google Scholar]
  88. 88.
    Lewis JP, Riaz M, Xie S, Polekhina G, Wolfe R et al. 2020. Genetic variation in PEAR1, cardiovascular outcomes and effects of aspirin in a healthy elderly population. Clin. Pharmacol. Ther. 108:61289–98
    [Google Scholar]
  89. 89.
    Li Z, Jiang H, Ding Y, Zhang D, Zhang X et al. 2021. Platelet endothelial aggregation receptor 1 polymorphism is associated with functional outcome in small-artery occlusion stroke patients treated with aspirin. Front. Cardiovasc. Med. 8:664012
    [Google Scholar]
  90. 90.
    Bourgeois S, Carr DF, Musumba CO, Penrose A, Esume C et al. 2021. Genome-wide association between EYA1 and aspirin-induced peptic ulceration. EBioMedicine 74:103728
    [Google Scholar]
  91. 91.
    Mallah N, Zapata-Cachafeiro M, Aguirre C, Ibarra-García E, Palacios-Zabalza I et al. 2021. A multicenter case-control study of the effect of e-nos VNTR polymorphism on upper gastrointestinal hemorrhage in NSAID users. Sci. Rep. 11:119923
    [Google Scholar]
  92. 92.
    Mallah N, Zapata-Cachafeiro M, Aguirre C, Ibarra-García E, Palacios-Zabalza I et al. 2022. Synergism interaction between genetic polymorphisms in drug metabolizing enzymes and NSAIDs on upper gastrointestinal haemorrhage: a multicenter case-control study. Ann. Med. 54:1379–92
    [Google Scholar]
  93. 93.
    Forgerini M, Urbano G, de Nadai TR, Batah SS, Fabro AT, Mastroianni PC. 2021. Genetic variants in PTGS1 and NOS3 genes increase the risk of upper gastrointestinal bleeding: a case-control study. Front. Pharmacol. 12:671835
    [Google Scholar]
  94. 94.
    Handa Y, Fukushima S, Yo S, Osawa M, Murao T et al. 2021. A novel gene associated with small bowel bleeding in patients taking low-dose aspirin. Dig. Liver Dis. 53:7841–45
    [Google Scholar]
  95. 95.
    Wang Y, Chen W, Lin Y, Meng X, Chen G et al. 2019. Ticagrelor plus aspirin versus clopidogrel plus aspirin for platelet reactivity in patients with minor stroke or transient ischaemic attack: open label, blinded endpoint, randomised controlled phase II trial. BMJ 365:l2211
    [Google Scholar]
  96. 96.
    Verdoia M, Tonon F, Gioscia R, Nardin M, Fierro N et al. 2020. Impact of the rs73598374 polymorphism of the adenosine deaminase gene on platelet reactivity and long-term outcomes among patients with acute coronary syndrome treated with ticagrelor. Thromb. Res. 196:231–37
    [Google Scholar]
  97. 97.
    Yuan D, Shi X, Gao L, Wan G, Zhang H et al. 2022. Identification of potential biological factors affecting the treatment of ticagrelor after percutaneous coronary intervention in the Chinese population. Pharmacogenom. Pers. Med. 15:29–43
    [Google Scholar]
  98. 98.
    Wallentin L, James S, Storey RF, Armstrong M, Barratt BJ et al. 2010. Effect of CYP2C19 and ABCB1 single nucleotide polymorphisms on outcomes of treatment with ticagrelor versus clopidogrel for acute coronary syndromes: a genetic substudy of the PLATO trial. Lancet 376:97491320–28
    [Google Scholar]
  99. 99.
    Danielak D, Karaźniewicz-Łada M, Główka F. 2018. Ticagrelor in modern cardiology—an up-to-date review of most important aspects of ticagrelor pharmacotherapy. Expert Opin. Pharmacother. 19:2103–12
    [Google Scholar]
  100. 100.
    Wallentin L, Becker RC, Budaj A, Cannon CP, Emanuelsson H, Held C et al. 2009. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med. 361:111045–57
    [Google Scholar]
  101. 101.
    Mega JL, Close SL, Wiviott SD, Man M, Duvvuru S et al. 2016. PON1 Q192R genetic variant and response to clopidogrel and prasugrel: pharmacokinetics, pharmacodynamics, and a meta-analysis of clinical outcomes. J. Thromb. Thrombolys. 41:3374–83
    [Google Scholar]
  102. 102.
    Mega JL, Close SL, Wiviott SD, Shen L, Hockett RD et al. 2009. Cytochrome P450 genetic polymorphisms and the response to prasugrel: relationship to pharmacokinetic, pharmacodynamic, and clinical outcomes. Circulation 119:192553–60
    [Google Scholar]
  103. 103.
    Sawayama Y, Yamamoto T, Tomita Y, Asada K, Yagi N et al. 2020. Comparison between clopidogrel and prasugrel associated with CYP2C19 genotypes in patients receiving percutaneous coronary intervention in a Japanese population. Circ. J. 84:91575–81
    [Google Scholar]
  104. 104.
    Cavallari LH, Lee CR, Beitelshees AL, Cooper-DeHoff RM, Duarte JD et al. 2018. Multisite investigation of outcomes with implementation of CYP2C19 genotype-guided antiplatelet therapy after percutaneous coronary intervention. JACC Cardiovasc. Interv. 11:2181–91
    [Google Scholar]
  105. 105.
    Galli M, Franchi F, Rollini F, Angiolillo DJ. 2021. Role of platelet function and genetic testing in patients undergoing percutaneous coronary intervention. Trends Cardiovasc. Med. In press
    [Google Scholar]
  106. 106.
    Xie X, Ma YT, Yang YN, Li XM, Zheng YY et al. 2013. Personalized antiplatelet therapy according to CYP2C19 genotype after percutaneous coronary intervention: a randomized control trial. Int. J. Cardiol. 168:43736–40
    [Google Scholar]
  107. 107.
    Claassens DMF, Vos GJA, Bergmeijer TO, Hermanides RS, van 't Hof AWJ et al. 2019. A genotype-guided strategy for oral P2Y12 inhibitors in primary PCI. N. Engl. J. Med. 381:171621–31
    [Google Scholar]
  108. 108.
    Pereira NL, Farkouh ME, So D, Lennon R, Geller N et al. 2020. Effect of genotype-guided oral P2Y12 inhibitor selection versus conventional clopidogrel therapy on ischemic outcomes after percutaneous coronary intervention: the TAILOR-PCI randomized clinical trial. JAMA 324:8761–71
    [Google Scholar]
  109. 109.
    Parcha V, Heindl BF, Li P, Kalra R, Limdi NA et al. 2021. Genotype-guided P2Y12 inhibitor therapy after percutaneous coronary intervention: a Bayesian analysis. Circ. Genom. Precis Med. 14:6e003353
    [Google Scholar]
  110. 110.
    Pereira NL, Rihal C, Lennon R, Marcus G, Shrivastava S et al. 2021. Effect of CYP2C19 genotype on ischemic outcomes during oral P2Y12 inhibitor therapy: a meta-analysis. JACC Cardiovasc. Interv. 14:7739–50
    [Google Scholar]
  111. 111.
    Galli M, Benenati S, Capodanno D, Franchi F, Rollini F et al. 2021. Guided versus standard antiplatelet therapy in patients undergoing percutaneous coronary intervention: a systematic review and meta-analysis. Lancet 397:102831470–83
    [Google Scholar]
  112. 112.
    Wang Y, Meng X, Wang A, Xie X, Pan Y et al. 2021. Ticagrelor versus clopidogrel in CYP2C19 loss-of-function carriers with stroke or TIA. N. Engl. J. Med. 385:272520–30
    [Google Scholar]
  113. 113.
    Kazi DS, Garber AM, Shah RU, Dudley RA, Mell MW et al. 2014. Cost-effectiveness of genotype-guided and dual antiplatelet therapies in acute coronary syndrome. Ann. Intern. Med. 160:4221–32
    [Google Scholar]
  114. 114.
    Sorich MJ, Horowitz JD, Sorich W, Wiese MD, Pekarsky B, Karnon JD. 2013. Cost-effectiveness of using CYP2C19 genotype to guide selection of clopidogrel or ticagrelor in Australia. Pharmacogenomics 14:162013–21
    [Google Scholar]
  115. 115.
    Lala A, Berger JS, Sharma G, Hochman JS, Braithwaite RS, Ladapo JA. 2013. Genetic testing in patients with acute coronary syndrome undergoing percutaneous coronary intervention: a cost-effectiveness analysis. J. Thromb. Haemost. 11:181–91
    [Google Scholar]
  116. 116.
    Deiman BA, Tonino PA, Kouhestani K, Schrover CE, Scharnhorst V et al. 2016. Reduced number of cardiovascular events and increased cost-effectiveness by genotype-guided antiplatelet therapy in patients undergoing percutaneous coronary interventions in the Netherlands. Neth. Heart J. 24:10589–99
    [Google Scholar]
  117. 117.
    Weitzel KW, Elsey AR, Langaee TY, Burkley B, Nessl DR et al. 2014. Clinical pharmacogenetics implementation: approaches, successes, and challenges. Am. J. Med. Genet. C Semin. Med. Genet. 166c:156–67
    [Google Scholar]
  118. 118.
    Empey PE, Pratt VM, Hoffman JM, Caudle KE, Klein TE. 2021. Expanding evidence leads to new pharmacogenomics payer coverage. Genet. Med. 23:5830–32
    [Google Scholar]
  119. 119.
    Scott SA. 2011. Personalizing medicine with clinical pharmacogenetics. Genet. Med. 13:12987–95
    [Google Scholar]
  120. 120.
    Abul-Husn NS, Owusu Obeng A, Sanderson SC, Gottesman O, Scott SA 2014. Implementation and utilization of genetic testing in personalized medicine. Pharmacogenom. Pers. Med. 7:227–40
    [Google Scholar]
  121. 121.
    Pereira NL, Stewart AK. 2015. Clinical implementation of cardiovascular pharmacogenomics. Mayo Clin. Proc. 90:6701–4
    [Google Scholar]
  122. 122.
    Luzum JA, Luzum MJ. 2016. Physicians' attitudes toward pharmacogenetic testing before and after pharmacogenetic education. Pers. Med. 13:2119–27
    [Google Scholar]
  123. 123.
    Nickola TJ, Green JS, Harralson AF, O'Brien TJ. 2012. The current and future state of pharmacogenomics medical education in the USA. Pharmacogenomics 13:121419–25
    [Google Scholar]
  124. 124.
    Pereira NL, So D, Bae JH, Chavez I, Jeong MH et al. 2019. International survey of patients undergoing percutaneous coronary intervention and their attitudes toward pharmacogenetic testing. Pharmacogenet. Genom. 29:476–83
    [Google Scholar]
  125. 125.
    Wu AH, White MJ, Oh S, Burchard E. 2015. The Hawaii clopidogrel lawsuit: the possible effect on clinical laboratory testing. Pers. Med. 12:3179–81
    [Google Scholar]
  126. 126.
    Dep. Atty. Gen 2021. $834 Million order entered in Hawai‘i state court against Bristol-Myers Squibb and Sanofi for failing to investigate and disclose ineffectiveness of Plavix® News Release, Febr. 15. https://ag.hawaii.gov/wp-content/uploads/2021/02/News-Release-2021-13.pdf
  127. 127.
    Haga SB, Moaddeb J. 2014. Comparison of delivery strategies for pharmacogenetic testing services. Pharmacogenet. Genom. 24:3139–45
    [Google Scholar]
  128. 128.
    Gottesman O, Scott SA, Ellis SB, Overby CL, Ludtke A et al. 2013. The CLIPMERGE PGx program: clinical implementation of personalized medicine through electronic health records and genomics-pharmacogenomics. Clin. Pharmacol. Ther. 94:2214–17
    [Google Scholar]
  129. 129.
    Pulley JM, Denny JC, Peterson JF, Bernard GR, Vnencak-Jones CL et al. 2012. Operational implementation of prospective genotyping for personalized medicine: the design of the Vanderbilt PREDICT project. Clin. Pharmacol. Ther. 92:187–95
    [Google Scholar]
  130. 130.
    Rasmussen-Torvik LJ, Stallings SC, Gordon AS, Almoguera B, Basford MA et al. 2014. Design and anticipated outcomes of the eMERGE-PGx project: a multicenter pilot for preemptive pharmacogenomics in electronic health record systems. Clin. Pharmacol. Ther. 96:4482–89
    [Google Scholar]
  131. 131.
    AACC (Am. Assoc. Clin. Chem.) 2021. FDA OKs 23andMe to report pharmacogenomic variants without confirmatory testing. AACC July 1. https://www.aacc.org/cln/articles/2021/july/fda-oks-23andme-to-report-pharmacogenomic-variants-without-confirmatory-testing
    [Google Scholar]
  132. 132.
    Capodanno D, Angiolillo DJ, Lennon RJ, Goodman SG, Kim SW et al. 2022. ABCD-GENE score and clinical outcomes following percutaneous coronary intervention: insights from the TAILOR-PCI trial. J. Am. Heart Assoc. 11:4e024156
    [Google Scholar]
  133. 133.
    Grant C, Raina A, Lennon R, Goodman SG, Gulati R et al. 2021. Baseline clinical and genetic data based machine learning predictions of 1-year ischemic outcomes following percutaneous coronary intervention. Circulation 144:Suppl. 1A10602
    [Google Scholar]
  134. 134.
    Whirl-Carrillo M, Huddart R, Gong L, Sangkuhl K, Thorn CF et al. 2021. An evidence-based framework for evaluating pharmacogenomics knowledge for personalized medicine. Clin. Pharmacol. Ther. 110:3563–72
    [Google Scholar]
  135. 135.
    Collet JP, Thiele H, Barbato E, Barthélémy O, Bauersachs J et al. 2021. 2020 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 42:141289–367
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-051921-092701
Loading
/content/journals/10.1146/annurev-pharmtox-051921-092701
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error