1932

Abstract

The failure of preclinical research to advance successful candidate medications in psychiatry has created a paradigmatic crisis in psychiatry. The Research Domain Criteria (RDoC) initiative was designed to remedy this situation with a neuroscience-based approach that employs multimodal and cross-species in vivo methodology to increase the probability of translational findings and, consequently, drug discovery. The present review underscores the feasibility of this methodological approach by briefly reviewing, first, the use of multidimensional and cross-species methodologies in traditional behavioral pharmacology and, subsequently, the utility of this approach in contemporary neuroimaging and electrophysiology research—with a focus on the value of functionally homologous studies in nonhuman and human subjects. The final section provides a brief review of the RDoC, with a focus on the potential strengths and weaknesses of its domain-based underpinnings. Optimistically, this mechanistic and multidimensional approach in neuropsychiatric research will lead to novel therapeutics for the management of neuropsychiatric disorders.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-051921-093711
2024-01-23
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/64/1/annurev-pharmtox-051921-093711.html?itemId=/content/journals/10.1146/annurev-pharmtox-051921-093711&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Kuhn TS. 1962. The Structure of Scientific Revolutions Chicago: Univ. Chicago Press
    [Google Scholar]
  2. 2.
    Hyman SE. 2010. The diagnosis of mental disorders: the problem of reification. Annu. Rev. Clin. Psychol. 6:155–79
    [Google Scholar]
  3. 3.
    Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS et al. 2010. Research Domain Criteria (RdoC): toward a new classification framework for research on mental disorders. Am. J. Psychiatry 167:7748–51
    [Google Scholar]
  4. 4.
    Markov DD. 2022. Sucrose preference test as a measure of anhedonic behavior in a chronic unpredictable mild stress model of depression: outstanding issues. Brain Sci 12:101287
    [Google Scholar]
  5. 5.
    Gómez-Nieto R, Hormigo S, López DE. 2020. Prepulse inhibition of the auditory startle reflex assessment as a hallmark of brainstem sensorimotor gating mechanisms. Brain Sci 10:9639
    [Google Scholar]
  6. 6.
    Swerdlow NR, Braff DL, Taaid N, Geyer MA. 1994. Assessing the validity of an animal model of deficient sensorimotor gating in schizophrenic patients. Arch. Gen. Psychiatry 51:2139–54
    [Google Scholar]
  7. 7.
    Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR et al. 2000. Antidepressant effects of ketamine in depressed patients. Biol. Psychiatry 47:4351–54
    [Google Scholar]
  8. 8.
    Domino EF. 1965. Taming the ketamine tiger. Anesthesiology 113:3678–84
    [Google Scholar]
  9. 9.
    Wei Y, Chang L, Hashimoto K. 2020. A historical review of antidepressant effects of ketamine and its enantiomers. Pharmacol. Biochem. Behav. 190:172870
    [Google Scholar]
  10. 10.
    Kaffman A, White JD, Wei L, Johnson FK, Krystal JH. 2019. Enhancing the utility of preclinical research in neuropsychiatry drug development. Methods Mol. Biol. 2011:3–22
    [Google Scholar]
  11. 11.
    Nestler EJ, Hyman SE. 2010. Animal models of neuropsychiatric disorders. Nat. Neurosci. 13:101161–69
    [Google Scholar]
  12. 12.
    Winsky L, Brady L. 2005. Perspective on the status of preclinical models for psychiatric disorders. Drug Discov. Today Dis. Models 2:279–83
    [Google Scholar]
  13. 13.
    Fenno L, Yizhar O, Deisseroth K. 2011. The development and application of optogenetics. Annu. Rev. Neurosci. 34:389–412
    [Google Scholar]
  14. 14.
    Kim C, Adhikari A, Deisseroth K. 2017. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat. Rev. Neurosci. 18:222–35
    [Google Scholar]
  15. 15.
    Campbell EJ, Marchant NJ. 2018. The use of chemogenetics in behavioural neuroscience: receptor variants, targeting approaches and caveats. Br. J. Pharmacol. 175:7994–1003
    [Google Scholar]
  16. 16.
    Liu X, Ramirez S, Pang PT, Puryear CB, Govindarajan A et al. 2012. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484:7394381–85
    [Google Scholar]
  17. 17.
    Grella SL, Fortin AH, Ruesch E, Bladon JH, Reynolds LF et al. 2022. Reactivating hippocampal-mediated memories during reconsolidation to disrupt fear. Nat. Commun. 13:14733
    [Google Scholar]
  18. 18.
    Ayllon T, Azrin NH. 1965. The measurement and reinforcement of behavior of psychotics. J. Exp. Anal. Behav. 8:6357–83
    [Google Scholar]
  19. 19.
    Howell LL, Bergman J, Morse WH. 1988. Effects of levorphanol and several kappa-selective opioids on respiration and behavior in rhesus monkeys. J. Pharmacol. Exp. Ther. 245:1364–72
    [Google Scholar]
  20. 20.
    Gerak LR, Butelman ER, Woods JH, France CP. 1994. Antinociceptive and respiratory effects of nalbuphine in rhesus monkeys. J. Pharmacol. Exp. Ther. 271:2993–99
    [Google Scholar]
  21. 21.
    Withey SL, Paronis CA, Bergman J. 2018. Concurrent assessment of the antinociceptive and behaviorally disruptive effects of opioids in squirrel monkeys. J. Pain 19:7728–40
    [Google Scholar]
  22. 22.
    Withey SL, Spealman RD, Bergman J, Paronis CA. 2019. Behavioral effects of opioid full and partial agonists during chronic buprenorphine treatment. J. Pharmacol. Exp. Ther. 371:2544–54
    [Google Scholar]
  23. 23.
    Withey SL, Bergman J, Paronis CA. 2023. The effects of chronic naltrexone on reinstatement of opioid-induced drug-seeking behavior and antinociception. J. Pharmacol. Exp. Ther. In press
    [Google Scholar]
  24. 24.
    Pettit HO, Justice JB Jr. 1989. Dopamine in the nucleus accumbens during cocaine self-administration as studied by in vivo microdialysis. Pharmacol. Biochem. Behav. 34:4899–904
    [Google Scholar]
  25. 25.
    Pettit HO, Justice JB Jr. 1991. Effect of dose on cocaine self-administration behavior and dopamine levels in the nucleus accumbens. Brain Res. 539:194–102
    [Google Scholar]
  26. 26.
    Hemby SE, Martin TJ, Co C, Dworkin SI, Smith JE. 1995. The effects of intravenous heroin administration on extracellular nucleus accumbens dopamine concentrations as determined by in vivo microdialysis. J. Pharmacol. Exp. Ther. 273:2591–98
    [Google Scholar]
  27. 27.
    Czoty PW, Makriyannis A, Bergman J. 2004. Methamphetamine discrimination and in vivo microdialysis in squirrel monkeys. Psychopharmacology 175:2170–78
    [Google Scholar]
  28. 28.
    Wise RA, Newton P, Leeb K, Burnette B, Pocock D, Justice JB. 1995. Fluctuations in nucleus accumbens dopamine concentration during intravenous cocaine self-administration in rats. Psychopharmacology 120:10–20
    [Google Scholar]
  29. 29.
    Fischman MW, Smith RC, Schuster CR. 1976. Effects of chlorpromazine on avoidance and escape responding in humans. Pharmacol. Biochem. Behav. 4:1111–14
    [Google Scholar]
  30. 30.
    Noda Y, Mouri A, Hida H, Nabeshima T. 2011. Phencyclidine-induced cognitive impairment and its neural mechanisms. Cogn. Sci. 6:2129–66
    [Google Scholar]
  31. 31.
    Depoortere R, Perrault G, Sanger DJ. 1997. Potentiation of prepulse inhibition of the startle reflex in rats: pharmacological evaluation of the procedure as a model for detecting antipsychotic activity. Psychopharmacology 132:366–74
    [Google Scholar]
  32. 32.
    Swerdlow NR, Bakshi V, Waikar M, Taaid N, Geyer MA. 1998. Seroquel, clozapine and chlorpromazine restore sensorimotor gating in ketamine-treated rats. Psychopharmacology 140:175–80
    [Google Scholar]
  33. 33.
    Li L, Du Y, Li N, Wu X, Wu Y. 2009. Top-down modulation of prepulse inhibition of the startle reflex in humans and rats. Neurosci. Biobehav. Rev. 33:81157–67
    [Google Scholar]
  34. 34.
    Kamien JB, Bickel WK, Hughes JR, Higgins ST, Smith BJ. 1993. Drug discrimination by humans compared to nonhumans: current status and future directions. Psychopharmacology 111:3259–70
    [Google Scholar]
  35. 35.
    Bolin BL, Alcorn JL, Reynolds AR, Lile JA, Rush CR. 2016. Human drug discrimination: a primer and methodological review. Exp. Clin. Psychopharmacol. 24:4214–28
    [Google Scholar]
  36. 36.
    Preston KL, Bigelow GE. 1991. Subjective and discriminative effects of drugs. Behav. Pharmacol. 2:4–5293–313
    [Google Scholar]
  37. 37.
    Jutkiewicz EM, Bergman J. 2004. Effects of dopamine D1 ligands on eye blinking in monkeys: efficacy, antagonism, and D1/D2 interactions. J. Pharmacol. Exp. Ther. 311:31008–15
    [Google Scholar]
  38. 38.
    Rosenzweig-Lipson S, Bergman J. 1994. Catalepsy-associated behavior induced by dopamine D1 receptor antagonists and partial dopamine D1 receptor agonists in squirrel monkeys. Eur. J. Pharmacol. 260:2–3237–41
    [Google Scholar]
  39. 39.
    Pitts EG, Minerva AR, Chandler EB, Kohn JN, Logun MT et al. 2017. 3,4-Methylenedioxymethamphetamine increases affiliative behaviors in squirrel monkeys in a serotonin 2A receptor-dependent manner. Neuropsychopharmacology 42:101962–71
    [Google Scholar]
  40. 40.
    Baker JT, Germine LT, Ressler KJ, Rauch SL, Carlezon WA Jr 2018. Digital devices and continuous telemetry: opportunities for aligning psychiatry and neuroscience. Neuropsychopharmacology 43:132499–503
    [Google Scholar]
  41. 41.
    Kavanagh E, Kimock C, Whitehouse J, Micheletta J, Waller BM. 2022. Revisiting Darwin's comparisons between human and non-human primate facial signals. Evol. Hum. Sci. 4:e27
    [Google Scholar]
  42. 42.
    Wong DF, Tauscher J, Gründer G. 2009. The role of imaging in proof of concept for CNS drug discovery and development. Neuropsychopharmacology 34:1187–203
    [Google Scholar]
  43. 43.
    Howes OD, Mehta MA. 2021. Challenges in CNS drug development and the role of imaging. Psychopharmacology 238:51229–30
    [Google Scholar]
  44. 44.
    van den Heuvel MP, Hulshoff Pol HE. 2010. Specific somatotopic organization of functional connections of the primary motor network during resting state. Hum. Brain Mapp. 31:4631–44
    [Google Scholar]
  45. 45.
    Bonhomme V, Vanhaudenhuyse A, Demertzi A, Bruno MA, Jaquet O et al. 2016. Resting-state network-specific breakdown of functional connectivity during ketamine alteration of consciousness in volunteers. Anesthesiology 125:5873–88
    [Google Scholar]
  46. 46.
    Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB et al. 2007. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol. Psychiatry 62:5429–37
    [Google Scholar]
  47. 47.
    Gu H, Salmeron BJ, Ross TJ, Geng X, Zhan W et al. 2010. Mesocorticolimbic circuits are impaired in chronic cocaine users as demonstrated by resting-state functional connectivity. Neuroimage 53:2593–601
    [Google Scholar]
  48. 48.
    Camchong J, MacDonald AW 3rd, Bell C, Mueller BA, Lim KO. 2011. Altered functional and anatomical connectivity in schizophrenia. Schizophr. Bull. 37:3640–50
    [Google Scholar]
  49. 49.
    Sutherland MT, McHugh MJ, Pariyadath V, Stein EA. 2012. Resting state functional connectivity in addiction: lessons learned and a road ahead. Neuroimage 62:42281–95
    [Google Scholar]
  50. 50.
    Damoiseaux JS, Beckmann CF, Arigita EJ, Barkhof F et al. 2008. Reduced resting-state brain activity in the “default network” in normal aging. Cereb. Cortex 18:1856–64
    [Google Scholar]
  51. 51.
    Gozdas E, Holland SK, Altaye MCMIND Authorship Consort 2019. Developmental changes in functional brain networks from birth through adolescence. Hum. Brain Mapp 40:51434–44
    [Google Scholar]
  52. 52.
    Balsters JH, Zerbi V, Sallet J, Wenderoth N, Mars RB. 2020. Primate homologs of mouse cortico-striatal circuits. eLife 9:e53680
    [Google Scholar]
  53. 53.
    Friston KJ. 1994. Functional and effective connectivity in neuroimaging: a synthesis. Hum. Brain Mapp. 2:56–78
    [Google Scholar]
  54. 54.
    Biswal B, Yetkin FZ, Haughton VM, Hyde JS. 1995. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34:4537–41
    [Google Scholar]
  55. 55.
    Lynch CJ, Power JD, Scult MA, Dubin M, Gunning FM, Liston C. 2020. Rapid precision functional mapping of individuals using multi-echo fMRI. Cell Rep 33:12108540
    [Google Scholar]
  56. 56.
    Biswal BB. 2012. Resting state fMRI: a personal history. Neuroimage 62:2938–44
    [Google Scholar]
  57. 57.
    Cordes D, Haughton VM, Arfanakis K, Wendt GJ, Turski PA et al. 2000. Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR Am. J. Neuroradiol. 21:91636–44
    [Google Scholar]
  58. 58.
    Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. 2001. A default mode of brain function. PNAS 98:2676–82
    [Google Scholar]
  59. 59.
    Beckmann CF, DeLuca M, Devlin JT, Smith SM. 2005. Investigations into resting-state connectivity using independent component analysis. Philos. Trans. R. Soc. Lond. B 360: 1457.1001–13
    [Google Scholar]
  60. 60.
    Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ et al. 2006. Consistent resting-state networks across healthy subjects. PNAS 103:3713848–53
    [Google Scholar]
  61. 61.
    Pendse GV, Borsook D, Becerra L. 2011. A simple and objective method for reproducible resting state network (RSN) detection in fMRI. PLOS ONE 6:12e27594
    [Google Scholar]
  62. 62.
    Bluhm RL, Miller J, Lanius RA, Osuch EA, Boksman K et al. 2007. Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenic patients: anomalies in the default network. Schizophr. Bull. 33:41004–12
    [Google Scholar]
  63. 63.
    Auer DP. 2008. Spontaneous low-frequency blood oxygenation level-dependent fluctuations and functional connectivity analysis of the ‘resting’ brain. Magn. Reson. Imaging 26:71055–64
    [Google Scholar]
  64. 64.
    Greicius M. 2008. Resting-state functional connectivity in neuropsychiatric disorders. Curr. Opin. Neurol. 21:4424–30
    [Google Scholar]
  65. 65.
    Yamada T, Hashimoto RI, Yahata N, Ichikawa N, Yoshihara Y et al. 2017. Resting-state functional connectivity-based biomarkers and functional MRI-based neurofeedback for psychiatric disorders: a challenge for developing theranostic biomarkers. Int. J. Neuropsychopharmacol. 20:10769–81
    [Google Scholar]
  66. 66.
    Canario E, Chen D, Biswal B. 2021. A review of resting-state fMRI and its use to examine psychiatric disorders. Psychoradiology 1:142–53
    [Google Scholar]
  67. 67.
    Kennedy DP, Redcay E, Courchesne E. 2006. Failing to deactivate: resting functional abnormalities in autism. PNAS 103:218275–80
    [Google Scholar]
  68. 68.
    Kaboodvand N, Iravani B, Fransson P. 2020. Dynamic synergetic configurations of resting-state networks in ADHD. Neuroimage 207:116347
    [Google Scholar]
  69. 69.
    Takagi Y, Sakai Y, Abe Y, Nishida S, Harrison BJ et al. 2018. A common brain network among state, trait, and pathological anxiety from whole-brain functional connectivity. Neuroimage 172:506–16
    [Google Scholar]
  70. 70.
    van den Heuvel MP, Hulshoff Pol HE. 2010. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 20:8519–34
    [Google Scholar]
  71. 71.
    Zhao F, Zhao T, Zhou L, Wu Q, Hu X. 2008. BOLD study of stimulation-induced neural activity and resting-state connectivity in medetomidine-sedated rat. Neuroimage 39:1248–60
    [Google Scholar]
  72. 72.
    Pawela CP, Biswal BB, Cho YR, Kao DS, Li R et al. 2008. Resting-state functional connectivity of the rat brain. Magn. Reson. Med. 59:51021–29
    [Google Scholar]
  73. 73.
    Zhang F, Gradinaru V, Adamantidis AR, Durand R, Airan RD et al. 2010. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat. Protoc. 5:3439–56
    [Google Scholar]
  74. 74.
    Hutchison RM, Mirsattari SM, Jones CK, Gati JS, Leung LS. 2010. Functional networks in the anesthetized rat brain revealed by independent component analysis of resting-state FMRI. J. Neurophysiol. 103:63398–406
    [Google Scholar]
  75. 75.
    Oh SW, Harris JA, Ng L, Winslow B, Cain N. 2014. A mesoscale connectome of the mouse brain. Nature 508:7495207–14
    [Google Scholar]
  76. 76.
    Schlegel F, Sych Y, Schroeter A, Stobart J, Weber B et al. 2018. Fiber-optic implant for simultaneous fluorescence-based calcium recordings and BOLD fMRI in mice. Nat. Protoc. 13:5840–55
    [Google Scholar]
  77. 77.
    Weitz AJ, Lee JH. 2013. Progress with optogenetic functional MRI and its translational implications. Fut. Neurol. 8:6691–700
    [Google Scholar]
  78. 78.
    Tournier J-D, Mori S, Leemans A. 2011. Diffusion tensor imaging and beyond. Mag. Reason. Med. 65:61532–56
    [Google Scholar]
  79. 79.
    Bodini B, Ciccarelli O. 2014. Diffusion MRI in neurological disorders. Diffusion MRI: From Quantitative Measurement to In Vivo Neuroanatomy H Johansen-Berg, TEJ Behrens 241–55. London: Elsevier. , 2nd ed..
    [Google Scholar]
  80. 80.
    Fani N, King TZ, Jovanovic T, Glover EM, Bradley B et al. 2012. White matter integrity in highly traumatized adults with and without post-traumatic stress disorder. Neuropsychopharmacology 37:122740–46
    [Google Scholar]
  81. 81.
    Bellani M, Boschello F, Delvecchio G, Dusi N, Altamura CA et al. 2016. DTI and myelin plasticity in bipolar disorder: integrating neuroimaging and neuropathological findings. Front. Psychiatry 7:21
    [Google Scholar]
  82. 82.
    Yoncheva YN, Somandepalli K, Reiss PT, Kelly C, Di Martino A et al. 2016. Mode of anisotropy reveals global diffusion alterations in attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry 55:2137–45
    [Google Scholar]
  83. 83.
    Bergamino M, Kuplicki R, Victor TA, Cha Y-H, Paulus MP. 2017. Comparison of two different analysis approaches for DTI free-water corrected and uncorrected maps in the study of white matter microstructural integrity in individuals with depression. Hum. Brain Mapp. 38:94690–702
    [Google Scholar]
  84. 84.
    Schmahmann JD, Pandya DN, Wang R, Dai G, D'Arceuil HE et al. 2007. Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130:3630–53
    [Google Scholar]
  85. 85.
    Catani M, Thiebaut de Schotten M. 2008. A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 44:81105–32
    [Google Scholar]
  86. 86.
    Mori S, Oishi K, Jiang H, Jiang L, Li X et al. 2008. Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage 40:2570–82
    [Google Scholar]
  87. 87.
    Gao Y, Parvathaneni P, Schilling KG, Wang F, Stepniewska I et al. 2016. A 3D high resolution ex vivo white matter atlas of the common squirrel monkey (Saimiri sciureus) based on diffusion tensor imaging. Proc. SPIE Int. Soc. Opt. Eng. 9784:97843K
    [Google Scholar]
  88. 88.
    Bryant KL, Li L, Eichert N, Mars RB. 2020. A comprehensive atlas of white matter tracts in the chimpanzee. PLOS Biol 18:12e3000971
    [Google Scholar]
  89. 89.
    Van Essen DC, Jbabdi S, Sotiropoulos SN, Chen C, Dikranian K et al. 2014. Mapping connections in humans and non-human primates: aspirations and challenges for diffusion imaging. Diffusion MRI: From Quantitative Measurement to In Vivo Neuroanatomy H Johansen-Berg, TEJ Behrens 337–58. London: Elsevier., 2nd ed..
    [Google Scholar]
  90. 90.
    van den Berg JP, Vereecke HE, Proost JH, Eleveld DJ, Wietasch JK et al. 2017. Pharmacokinetic and pharmacodynamic interactions in anaesthesia: a review of current knowledge and how it can be used to optimize anaesthetic drug administration. Br. J. Anaesth. 118:144–57
    [Google Scholar]
  91. 91.
    Layton R, Layton D, Beggs D, Fisher A, Mansell P, Stanger KJ. 2023. The impact of stress and anesthesia on animal models of infectious disease. Front. Vet. Sci. 10:1086003
    [Google Scholar]
  92. 92.
    Derksen M, Zuidinga B, van der Veer M, Rhemrev V, Jolink L et al. 2023. A comparison of how deep brain stimulation in two targets with anti-compulsive efficacy modulates brain activity using fMRI in awake rats. Psychiatry Res. Neuroimaging 330:111611
    [Google Scholar]
  93. 93.
    Withey SL, Cao L, de Moura FB, Cayetano KR, Rohan ML et al. 2022. Fentanyl-induced changes in brain activity in awake nonhuman primates at 9.4 Tesla. Brain Imaging Behav 16:41684–94
    [Google Scholar]
  94. 94.
    Mandeville JB, Choi JK, Jarraya B, Rosen BR, Jenkins BG, Vanduffel W. 2011. fMRI of cocaine self-administration in macaques reveals functional inhibition of basal ganglia. Neuropsychopharmacology 36:61187–98
    [Google Scholar]
  95. 95.
    Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM et al. 2009. Correspondence of the brain's functional architecture during activation and rest. PNAS 106:3113040–45
    [Google Scholar]
  96. 96.
    Smith SM, Beckmann CF, Andersson J, Auerbach EJ, Bijsterbosch J et al. 2013. Resting-state fMRI in the Human Connectome Project. Neuroimage 80:144–68
    [Google Scholar]
  97. 97.
    Hutchison RM, Leung LS, Mirsattari SM, Gati JS, Menon RS, Everling S. 2011. Resting-state networks in the macaque at 7 T. Neuroimage 56:31546–55
    [Google Scholar]
  98. 98.
    Belcher AM, Yen CC, Stepp H, Gu H, Lu H et al. 2013. Large-scale brain networks in the awake, truly resting marmoset monkey. J. Neurosci. 33:4216796–804
    [Google Scholar]
  99. 99.
    Liu C, Yen CC, Szczupak D, Ye FQ, Leopold DA, Silva AC. 2019. Anatomical and functional investigation of the marmoset default mode network. Nat. Commun. 10:11975
    [Google Scholar]
  100. 100.
    Yacoub E, Grier MD, Auerbach EJ, Lagore RL, Harel N et al. 2020. Ultra-high field (10.5 T) resting state fMRI in the macaque. Neuroimage 223:117349
    [Google Scholar]
  101. 101.
    Yassin W, de Moura FB, Withey SL, Cao L, Kangas BD et al. 2023. Resting state networks of awake adolescent and adult squirrel monkeys using ultra-high field (9.4T) functional magnetic resonance imaging. bioRxiv 2023.01.08.523000. https://doi.org/10.1101/2023.01.08.523000
  102. 102.
    Jonckers E, Van Audekerke J, De Visscher G, Van der Linden A, Verhoye M. 2011. Functional connectivity fMRI of the rodent brain: comparison of functional connectivity networks in rat and mouse. PLOS ONE 6:4e18876
    [Google Scholar]
  103. 103.
    Lu H, Zou Q, Gu H, Raichle ME, Stein EA, Yang Y. 2012. Rat brains also have a default mode network. PNAS 109:103979–84
    [Google Scholar]
  104. 104.
    Blokland A, Prickaerts J, van Duinen M, Sambeth A. 2015. The use of EEG parameters as predictors of drug effects on cognition. Eur. J. Pharmacol. 759:163–68
    [Google Scholar]
  105. 105.
    Javitt DC, Siegel SJ, Spencer KM, Mathalon DH, Hong LE et al. 2020. A roadmap for development of neuro-oscillations as translational biomarkers for treatment development in neuropsychopharmacology. Neuropsychopharmacology 45:91411–22
    [Google Scholar]
  106. 106.
    Leiser SC, Dunlop J, Bowlby MR, Devilbiss DM. 2011. Aligning strategies for using EEG as a surrogate biomarker: a review of preclinical and clinical research. Biochem. Pharmacol. 81:121408–21
    [Google Scholar]
  107. 107.
    Pizzagalli DA 2007. Electroencephalography and high-density electrophysiological source localization. Handbook of Psychophysiology JT Cacioppo, LG Tassinary, GG Berntson 56–84. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  108. 108.
    Buzsáki G, Logothetis N, Singer W. 2013. Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. Neuron 80:3751–64
    [Google Scholar]
  109. 109.
    Robble MA, Schroder HS, Kangas BD, Nickels S, Breiger M et al. 2021. Concordant neurophysiological signatures of cognitive control in humans and rats. Neuropsychopharmacology 46:71252–62
    [Google Scholar]
  110. 110.
    Narayanan NS, Cavanagh JF, Frank MJ, Laubach M. 2013. Common medial frontal mechanisms of adaptive control in humans and rodents. Nat. Neurosci. 16:121888–95
    [Google Scholar]
  111. 111.
    Cavanagh JF, Gregg D, Light GA, Olguin SL, Sharp RF et al. 2021. Electrophysiological biomarkers of behavioral dimensions from cross-species paradigms. Transl. Psychiatry 11:1482
    [Google Scholar]
  112. 112.
    Li Z, Zhang L, Zeng Y, Zhao Q, Hu L. 2023. Gamma-band oscillations of pain and nociception: a systematic review and meta-analysis of human and rodent studies. Neurosci. Biobehav. Rev. 146:105062
    [Google Scholar]
  113. 113.
    Tan LL, Oswald MJ, Heinl C, Retana Romero OA, Kaushalya SK et al. 2019. Gamma oscillations in somatosensory cortex recruit prefrontal and descending serotonergic pathways in aversion and nociception. Nat. Commun. 10:1983
    [Google Scholar]
  114. 114.
    Fu Z, Sajad A, Errington SP, Schall JD, Rutishauser U. 2023. Neurophysiological mechanisms of error monitoring in human and non-human primates. Nat. Rev. Neurosci. 24:3153–72
    [Google Scholar]
  115. 115.
    Iturra-Mena AM, Kangas BD, Luc OT, Potter D, Pizzagalli DA. 2023. Electrophysiological signatures of reward learning in the rodent touchscreen-based probabilistic reward task. Neuropsychopharmacology 48:4700–9
    [Google Scholar]
  116. 116.
    Santesso DL, Dillon DG, Birk JL, Holmes AJ, Goetz E et al. 2008. Individual differences in reinforcement learning: behavioral, electrophysiological, and neuroimaging correlates. Neuroimage 42:2807–16
    [Google Scholar]
  117. 117.
    Ehrlichman RS, Maxwell CR, Majumdar S, Siegel SJ. 2008. Deviance-elicited changes in event-related potentials are attenuated by ketamine in mice. J. Cogn. Neurosci. 20:1403–14
    [Google Scholar]
  118. 118.
    Lakatos P, O'Connell MN, Barczak A, McGinnis T, Neymotin S et al. 2020. The thalamocortical circuit of auditory mismatch negativity. Biol. Psychiatry 87:8770–80
    [Google Scholar]
  119. 119.
    Rosburg T, Kreitschmann-Andermahr I. 2016. The effects of ketamine on the mismatch negativity (MMN) in humans—a meta-analysis. Clin. Neurophysiol. 127:21387–94
    [Google Scholar]
  120. 120.
    Ehlers CL, Phillips E, Wills D, Benedict J, Sanchez-Alavez M. 2020. Phase locking of event-related oscillations is decreased in both young adult humans and rats with a history of adolescent alcohol exposure. Addict. Biol. 25:2e12732
    [Google Scholar]
  121. 121.
    Antonoudiou P, Colmers PLW, Walton NL, Weiss GL, Smith AC et al. 2022. Allopregnanolone mediates affective switching through modulation of oscillatory states in the basolateral amygdala. Biol. Psychiatry 91:3283–93
    [Google Scholar]
  122. 122.
    Cordes D, Haughton VM, Arfanakis K, Wendt GJ, Turski PA et al. 2022. Amphetamine alters an EEG marker of reward processing in humans and mice. Psychopharmacology 239:3923–33
    [Google Scholar]
  123. 123.
    Zhang F, Wang F, Yue L, Zhang H, Peng W, Hu L. 2019. Cross-species investigation on resting state electroencephalogram. Brain Topogr 32:5808–24
    [Google Scholar]
  124. 124.
    Ledford H. 2013. Psychiatry framework seeks to reform diagnostic doctrine. Nature. https://doi.org/10.1038/nature.2013.12972
    [Crossref] [Google Scholar]
  125. 125.
    Cuthbert BN. 2020. The role of RDoC in future classification of mental disorders. Dialogues Clin. Neurosci. 22:181–85
    [Google Scholar]
  126. 126.
    Morris SE, Sanislow CA, Pacheco J, Vaidyanathan U, Gordon JA, Cuthbert BN. 2022. Revisiting the seven pillars of RDoC. BMC Med 20:1220
    [Google Scholar]
  127. 127.
    Sanislow CA, Morris SE, Cuthbert BN, Pacheco J. 2022. Development and environment in the National Institute of Mental Health (NIMH) Research Domain Criteria. J. Psychopathol. Clin. Sci. 131:6653–59
    [Google Scholar]
  128. 128.
    Kozak MJ, Cuthbert BN. 2016. The NIMH Research Domain Criteria initiative: background, issues, and pragmatics. Psychophysiology 53:3286–97
    [Google Scholar]
  129. 129.
    Ross CA, Margolis RL. 2018. Research Domain Criteria: cutting edge neuroscience or Galen's humors revisited?. Mol. Neuropsychiatry 4:3158–63
    [Google Scholar]
  130. 130.
    Ross CA, Margolis RL. 2019. Research Domain Criteria: strengths, weaknesses, and potential alternatives for future psychiatric research. Mol. Neuropsychiatry 5:4218–36
    [Google Scholar]
  131. 131.
    Ang YS, Kaiser R, Deckersbach T, Almeida J, Phillips ML et al. 2020. Pretreatment reward sensitivity and frontostriatal resting-state functional connectivity are associated with response to bupropion after sertraline nonresponse. Biol. Psychiatry 88:8657–67
    [Google Scholar]
  132. 132.
    Santesso DL, Evins AE, Frank MJ, Schetter EC, Bogdan R, Pizzagalli DA. 2009. Single dose of a dopamine agonist impairs reinforcement learning in humans: evidence from event-related potentials and computational modeling of striatal-cortical function. Hum. Brain Mapp. 30:71963–76
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-051921-093711
Loading
/content/journals/10.1146/annurev-pharmtox-051921-093711
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error