1932

Abstract

With the worldwide increase in life span, surgical patients are becoming older and have a greater propensity for postoperative cognitive impairment, either new onset or through deterioration of an existing condition; in both conditions, knowledge of the patient's preoperative cognitive function and postoperative cognitive trajectory is imperative. We describe the clinical utility of a tablet-based technique for rapid assessment of the memory and attentiveness domains required for executive function. The pathogenic mechanisms for perioperative neurocognitive disorders have been investigated in animal models in which excessive and/or prolonged postoperative neuroinflammation has emerged as a likely contender. The cellular and molecular species involved in postoperative neuroinflammation are the putative targets for future therapeutic interventions that are efficacious and do not interfere with the surgical patient's healing process.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-051921-112525
2023-01-20
2024-05-10
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/63/1/annurev-pharmtox-051921-112525.html?itemId=/content/journals/10.1146/annurev-pharmtox-051921-112525&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Fowler AJ, Abbott TEF, Prowle J, Pearse RM. 2019. Age of patients undergoing surgery. Br. J. Surg. 106:1012–18
    [Google Scholar]
  2. 2.
    Monk TG, Weldon BC, Garvan CW, Dede DE, van der Aa MT et al. 2008. Predictors of cognitive dysfunction after major noncardiac surgery. Anesthesiology 108:18–30
    [Google Scholar]
  3. 3.
    Leslie DL, Marcantonio ER, Zhang Y, Leo-Summers L, Inouye SK. 2008. One-year health care costs associated with delirium in the elderly population. Arch. Intern. Med. 168:27–32
    [Google Scholar]
  4. 4.
    Gleason LJ, Schmitt EM, Kosar CM, Tabloski P, Saczynski JS et al. 2015. Effect of delirium and other major complications on outcomes after elective surgery in older adults. JAMA Surg. 150:1134–40
    [Google Scholar]
  5. 5.
    Rudolph JL, Jones RN, Rasmussen LS, Silverstein JH, Inouye SK, Marcantonio ER. 2007. Independent vascular and cognitive risk factors for postoperative delirium. Am. J. Med. 120:807–13
    [Google Scholar]
  6. 6.
    Honda S, Furukawa K, Nishiwaki N, Fujiya K, Omori H et al. 2018. Risk factors for postoperative delirium after gastrectomy in gastric cancer patients. World J. Surg. 42:3669–75
    [Google Scholar]
  7. 7.
    Am. Psychiatr. Assoc 2013. Neurocognitive disorders. Diagnostic and Statistical Manual of Mental Disorders Washington, DC: Am. Psychiatr. Publ. , 5th ed..
    [Google Scholar]
  8. 8.
    Berger M, Schenning KJ, Brown CH 4th, Deiner SG, Whittington RA et al. 2018. Best practices for postoperative brain health: recommendations from the Fifth International Perioperative Neurotoxicity Working Group. Anesth. Analg. 127:1406–13
    [Google Scholar]
  9. 9.
    Evered L, Silbert B, Knopman DS, Scott DA, DeKosky ST et al. 2018. Recommendations for the nomenclature of cognitive change associated with anaesthesia and surgery—2018. Anesth. Analg. 127:1189–95
    [Google Scholar]
  10. 10.
    Deiner S, Liu X, Lin HM, Jacoby R, Kim J et al. 2021. Does postoperative cognitive decline result in new disability after surgery?. Ann. Surg. 274:e1108–14
    [Google Scholar]
  11. 11.
    Rajan KB, Weuve J, Barnes LL, McAninch EA, Wilson RS, Evans DA. 2021. Population estimate of people with clinical Alzheimer's disease and mild cognitive impairment in the United States (2020–2060). Alzheimers Dement. 17:1966–75
    [Google Scholar]
  12. 12.
    Silbert B, Evered L, Scott DA, McMahon S, Choong P et al. 2015. Preexisting cognitive impairment is associated with postoperative cognitive dysfunction after hip joint replacement surgery. Anesthesiology 122:1224–34
    [Google Scholar]
  13. 13.
    Greene NH, Attix DK, Weldon BC, Smith PJ, McDonagh DL, Monk TG. 2009. Measures of executive function and depression identify patients at risk for postoperative delirium. Anesthesiology 110:788–95
    [Google Scholar]
  14. 14.
    Lee HB, Mears SC, Rosenberg PB, Leoutsakos JM, Gottschalk A, Sieber FE. 2011. Predisposing factors for postoperative delirium after hip fracture repair in individuals with and without dementia. J. Am. Geriatr. Soc. 59:2306–13
    [Google Scholar]
  15. 15.
    Culley DJ, Flaherty D, Fahey MC, Rudolph JL, Javedan H et al. 2017. Poor performance on a preoperative cognitive screening test predicts postoperative complications in older orthopedic surgical patients. Anesthesiology 127:765–74
    [Google Scholar]
  16. 16.
    Sachdev PS, Blacker D, Blazer DG, Ganguli M, Jeste DV et al. 2014. Classifying neurocognitive disorders: the DSM-5 approach. Nat. Rev. Neurol. 10:634–42
    [Google Scholar]
  17. 17.
    Brenowitz WD, Hubbard RA, Keene CD, Hawes SE, Longstreth WT Jr. et al. 2017. Mixed neuropathologies and estimated rates of clinical progression in a large autopsy sample. Alzheimers Dement. 13:654–62
    [Google Scholar]
  18. 18.
    McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor JP et al. 2017. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology 89:88–100
    [Google Scholar]
  19. 19.
    Am. Soc. Anesthesiol 2022. Perioperative Brain Health Initiative. American Society of Anesthesiologists https://www.asahq.org/brainhealthinitiative
    [Google Scholar]
  20. 20.
    Chow WB, Rosenthal RA, Merkow RP, Ko CY, Esnaola NF et al. 2012. Optimal preoperative assessment of the geriatric surgical patient: a best practices guideline from the American College of Surgeons National Surgical Quality Improvement Program and the American Geriatrics Society. J. Am. Coll. Surg. 215:453–66
    [Google Scholar]
  21. 21.
    Mohanty S, Rosenthal RA, Russell MM, Neuman MD, Ko CY, Esnaola NF. 2016. Optimal perioperative management of the geriatric patient: a best practices guideline from the American College of Surgeons NSQIP and the American Geriatrics Society. J. Am. Coll. Surg. 222:930–47
    [Google Scholar]
  22. 22.
    Connolly A, Gaehl E, Martin H, Morris J, Purandare N. 2011. Underdiagnosis of dementia in primary care: variations in the observed prevalence and comparisons to the expected prevalence. Aging Ment. Health 15:978–84
    [Google Scholar]
  23. 23.
    Bradford A, Kunik ME, Schulz P, Williams SP, Singh H. 2009. Missed and delayed diagnosis of dementia in primary care: prevalence and contributing factors. Alzheimer Dis. Assoc. Disord. 23:306–14
    [Google Scholar]
  24. 24.
    Kotagal V, Langa KM, Plassman BL, Fisher GG, Giordani BJ et al. 2015. Factors associated with cognitive evaluations in the United States. Neurology 84:64–71
    [Google Scholar]
  25. 25.
    Tsoy E, Kiekhofer RE, Guterman EL, Tee BL, Windon CC et al. 2021. Assessment of racial/ethnic disparities in timeliness and comprehensiveness of dementia diagnosis in California. JAMA Neurol. 78:657–65
    [Google Scholar]
  26. 26.
    Evered L 2019. Cognitive testing for perioperative neurocognitive disorder. The Perioperative Neurocognitive Disorders RG Eckenhoff, N Terrando 123–33 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  27. 27.
    Deiner S, Fleisher LA, Leung JM, Peden C, Miller T et al. 2020. Adherence to recommended practices for perioperative anesthesia care for older adults among US anesthesiologists: results from the ASA Committee on Geriatric Anesthesia–Perioperative Brain Health Initiative ASA member survey. Perioper. Med. 9:6
    [Google Scholar]
  28. 28.
    Patnode CD, Perdue LA, Rossom RC, Rushkin MC, Redmond N et al. 2020. Screening for Cognitive Impairment in Older Adults: An Evidence Update for the U.S. Preventive Services Task Force Rockville, MD: Agency Healthc. Res. Qual.
  29. 29.
    Tsoy E, Sideman AB, Pina Escudero SD, Pintado-Caipa M, Kanjanapong S et al. 2021. Global perspectives on brief cognitive assessments for dementia diagnosis. J. Alzheimers Dis. 82:1001–13
    [Google Scholar]
  30. 30.
    Possin KL, Tsoy E, Windon CC. 2021. Perils of race-based norms in cognitive testing: the case of former NFL players. JAMA Neurol. 78:377–78
    [Google Scholar]
  31. 31.
    Rabinovici GD, Stephens ML, Possin KL. 2015. Executive dysfunction. Continuum 21:646–59
    [Google Scholar]
  32. 32.
    Matthews BR. 2015. Memory dysfunction. Continuum 21:613–26
    [Google Scholar]
  33. 33.
    van Harten AC, Smits LL, Teunissen CE, Visser PJ, Koene T et al. 2013. Preclinical AD predicts decline in memory and executive functions in subjective complaints. Neurology 81:1409–16
    [Google Scholar]
  34. 34.
    Cavallari M, Dai W, Guttmann CRG, Meier DS, Ngo LH et al. 2017. Longitudinal diffusion changes following postoperative delirium in older people without dementia. Neurology 89:1020–27
    [Google Scholar]
  35. 35.
    Tanabe S, Mohanty R, Lindroth H, Casey C, Ballweg T et al. 2020. Cohort study into the neural correlates of postoperative delirium: the role of connectivity and slow-wave activity. Br. J. Anaesth. 125:55–66
    [Google Scholar]
  36. 36.
    Possin KL, Moskowitz T, Erlhoff SJ, Rogers KM, Johnson ET et al. 2018. The brain health assessment for detecting and diagnosing neurocognitive disorders. J. Am. Geriatr. Soc. 66:150–66
    [Google Scholar]
  37. 37.
    Cavallari M, Dai W, Guttmann CR, Meier DS, Ngo LH et al. 2016. Neural substrates of vulnerability to postsurgical delirium as revealed by presurgical diffusion MRI. Brain 139:1282–94
    [Google Scholar]
  38. 38.
    Huang C, Martensson J, Gogenur I, Asghar MS. 2018. Exploring postoperative cognitive dysfunction and delirium in noncardiac surgery using MRI: a systematic review. Neural Plast. 2018:1281657
    [Google Scholar]
  39. 39.
    Tsoy E, Erlhoff SJ, Goode CA, Dorsman KA, Kanjanapong S et al. 2020. BHA-CS: a novel cognitive composite for Alzheimer's disease and related disorders. Alzheimers Dement. 12:e12042
    [Google Scholar]
  40. 40.
    Alioto AG, Mumford P, Wolf A, Casaletto KB, Erlhoff S et al. 2019. White matter correlates of cognitive performance on the UCSF Brain Health Assessment. J. Int. Neuropsychol. Soc. 25:654–58
    [Google Scholar]
  41. 41.
    Tsoy E, Strom A, Iaccarino L, Erlhoff SJ, Goode CA et al. 2021. Detecting Alzheimer's disease biomarkers with a brief tablet-based cognitive battery: sensitivity to Aβ and tau PET. Alzheimers Res. Ther. 13:36
    [Google Scholar]
  42. 42.
    Libon DJ, McMillan C, Gunawardena D, Powers C, Massimo L et al. 2009. Neurocognitive contributions to verbal fluency deficits in frontotemporal lobar degeneration. Neurology 73:535–42
    [Google Scholar]
  43. 43.
    Rodriguez-Salgado AM, Llibre-Guerra JJ, Tsoy E, Penalver-Guia AI, Bringas G et al. 2021. A brief digital cognitive assessment for detection of cognitive impairment in Cuban older adults. J. Alzheimers Dis. 79:85–94
    [Google Scholar]
  44. 44.
    Bernstein Sideman A, Chalmer R, Ayers E, Gershon R, Verghese J et al. 2022. Lessons from Detecting Cognitive Impairment Including Dementia (DetectCID) in primary care. J. Alzheimers Dis. 86:655–65
    [Google Scholar]
  45. 45.
    Evered LA, Silbert BS. 2018. Postoperative cognitive dysfunction and noncardiac surgery. Anesth. Analg. 127:496–505
    [Google Scholar]
  46. 46.
    Evered L, Scott DA, Silbert B, Maruff P. 2011. Postoperative cognitive dysfunction is independent of type of surgery and anesthetic. Anesth. Analg. 112:1179–85
    [Google Scholar]
  47. 47.
    Newman MF, Kirchner JL, Phillips-Bute B, Gaver V, Grocott H et al. 2001. Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N. Engl. J. Med. 344:395–402
    [Google Scholar]
  48. 48.
    Staffaroni AM, Tsoy E, Taylor J, Boxer AL, Possin KL. 2020. Digital cognitive assessments for dementia: digital assessments may enhance the efficiency of evaluations in neurology and other clinics. Pract. Neurol. 2020:24–45
    [Google Scholar]
  49. 49.
    Petersen RC, Lopez O, Armstrong MJ, Getchius TSD, Ganguli M et al. 2018. Practice guideline update summary: mild cognitive impairment: report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 90:126–35
    [Google Scholar]
  50. 50.
    Neurology 1994. Practice parameter for diagnosis and evaluation of dementia (summary statement): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 44:2203–6
    [Google Scholar]
  51. 51.
    Burke D, Sengoz A, Schwartz R. 2000. Potentially reversible cognitive impairment in patients presenting to a memory disorders clinic. J. Clin. Neurosci. 7:120–23
    [Google Scholar]
  52. 52.
    Atkins KJ, Scott DA, Silbert B, Pike KE, Evered L. 2021. Preventing delirium and promoting long-term brain health: a clinical trial design for the Perioperative Cognitive Enhancement (PROTECT) trial. J. Alzheimers Dis. 83:1637–49
    [Google Scholar]
  53. 53.
    Ishizawa Y. 2022. Does preoperative cognitive optimization improve postoperative outcomes in the elderly?. J. Clin. Med. 11:445
    [Google Scholar]
  54. 54.
    Gillis C, Buhler K, Bresee L, Carli F, Gramlich L et al. 2018. Effects of nutritional prehabilitation, with and without exercise, on outcomes of patients who undergo colorectal surgery: a systematic review and meta-analysis. Gastroenterology 155:391–410.e4
    [Google Scholar]
  55. 55.
    Whittle J, Wischmeyer PE, Grocott MPW, Miller TE. 2018. Surgical prehabilitation: nutrition and exercise. Anesthesiol. Clin. 36:567–80
    [Google Scholar]
  56. 56.
    Humeidan ML, Reyes JC, Mavarez-Martinez A, Roeth C, Nguyen CM et al. 2021. Effect of cognitive prehabilitation on the incidence of postoperative delirium among older adults undergoing major noncardiac surgery: the Neurobics randomized clinical trial. JAMA Surg. 156:148–56
    [Google Scholar]
  57. 57.
    O'Gara BP, Mueller A, Gasangwa DVI, Patxot M, Shaefi S et al. 2020. Prevention of early postoperative decline: a randomized, controlled feasibility trial of perioperative cognitive training. Anesth. Analg. 130:586–95
    [Google Scholar]
  58. 58.
    Hughes CG, Boncyk CS, Culley DJ, Fleisher LA, Leung JM et al. 2020. American Society for Enhanced Recovery and Perioperative Quality initiative joint consensus statement on postoperative delirium prevention. Anesth. Analg. 130:1572–90
    [Google Scholar]
  59. 59.
    Decker J, Kaloostian CL, Gurvich T, Nguyen P, Widjaja W et al. 2020. Beyond cognitive screening: establishing an interprofessional perioperative brain health initiative. J. Am. Geriatr. Soc. 68:2359–64
    [Google Scholar]
  60. 60.
    Inouye SK, Bogardus ST Jr., Baker DI, Leo-Summers L, Cooney LM Jr. 2000. The Hospital Elder Life Program: a model of care to prevent cognitive and functional decline in older hospitalized patients. J. Am. Geriatr. Soc. 48:1697–706
    [Google Scholar]
  61. 61.
    Belzung C, Lemoine M. 2011. Criteria of validity for animal models of psychiatric disorders: focus on anxiety disorders and depression. Biol. Mood Anxiety Disord. 1:9
    [Google Scholar]
  62. 62.
    Eckenhoff RG, Maze M, Xie Z, Culley DJ, Goodlin SJ et al. 2020. Perioperative neurocognitive disorder: state of the preclinical science. Anesthesiology 132:55–68
    [Google Scholar]
  63. 63.
    Zhang L, Liu H, Jia L, Lyu J, Sun Y et al. 2019. Exosomes mediate hippocampal and cortical neuronal injury induced by hepatic ischemia-reperfusion injury through activating pyroptosis in rats. Oxid. Med. Cell. Longev. 2019:3753485
    [Google Scholar]
  64. 64.
    Numan T, van Dellen E, Vleggaar FP, van Vlieberghe P, Stam CJ, Slooter AJC. 2019. Resting state EEG characteristics during sedation with midazolam or propofol in older subjects. Clin. EEG Neurosci. 50:436–43
    [Google Scholar]
  65. 65.
    Sanders RD, Grover V, Goulding J, Godlee A, Gurney S et al. 2015. Immune cell expression of GABAA receptors and the effects of diazepam on influenza infection. J. Neuroimmunol. 282:97–103
    [Google Scholar]
  66. 66.
    Culley DJ, Baxter MG, Crosby CA, Yukhananov R, Crosby G. 2004. Impaired acquisition of spatial memory 2 weeks after isoflurane and isoflurane-nitrous oxide anesthesia in aged rats. Anesth. Analg. 99:1393–97
    [Google Scholar]
  67. 67.
    Neuman MD, Feng R, Carson JL, Gaskins LJ, Dillane D et al. 2021. Spinal anesthesia or general anesthesia for hip surgery in older adults. N. Engl. J. Med. 385:2025–35
    [Google Scholar]
  68. 68.
    Jiao XF, Lin XM, Ni XF, Li HL, Zhang C et al. 2019. Volatile anesthetics versus total intravenous anesthesia in patients undergoing coronary artery bypass grafting: an updated meta-analysis and trial sequential analysis of randomized controlled trials. PLOS ONE 14:e0224562
    [Google Scholar]
  69. 69.
    Vacas S, Degos V, Tracey KJ, Maze M. 2014. High-mobility group box 1 protein initiates postoperative cognitive decline by engaging bone marrow-derived macrophages. Anesthesiology 120:1160–67
    [Google Scholar]
  70. 70.
    Li Z, Liu F, Ma H, White PF, Yumul R et al. 2017. Age exacerbates surgery-induced cognitive impairment and neuroinflammation in Sprague-Dawley rats: the role of IL-4. Brain Res. 1665:65–73
    [Google Scholar]
  71. 71.
    Moller JT, Cluitmans P, Rasmussen LS, Houx P, Rasmussen H et al. 1998. Long-term postoperative cognitive dysfunction in the elderly: ISPOCD1 study. Lancet 351:857–61
    [Google Scholar]
  72. 72.
    Hovens IB, van Leeuwen BL, Nyakas C, Heineman E, van der Zee EA, Schoemaker RG 2015. Prior infection exacerbates postoperative cognitive dysfunction in aged rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309:R148–59
    [Google Scholar]
  73. 73.
    Hudetz JA, Patterson KM, Amole O, Riley AV, Pagel PS. 2011. Postoperative cognitive dysfunction after noncardiac surgery: effects of metabolic syndrome. J. Anesth. 25:337–44
    [Google Scholar]
  74. 74.
    Hudetz JA, Patterson KM, Iqbal Z, Gandhi SD, Pagel PS. 2011. Metabolic syndrome exacerbates short-term postoperative cognitive dysfunction in patients undergoing cardiac surgery: results of a pilot study. J. Cardiothorac. Vasc. Anesth. 25:282–87
    [Google Scholar]
  75. 75.
    Feng X, Degos V, Koch LG, Britton SL, Zhu Y et al. 2013. Surgery results in exaggerated and persistent cognitive decline in a rat model of the metabolic syndrome. Anesthesiology 118:1098–105
    [Google Scholar]
  76. 76.
    Feinkohl I, Winterer G, Pischon T. 2016. Obesity and post-operative cognitive dysfunction: a systematic review and meta-analysis. Diabetes Metab. Res. Rev. 32:643–51
    [Google Scholar]
  77. 77.
    Wei L, Yao M, Zhao Z, Jiang H, Ge S. 2018. High-fat diet aggravates postoperative cognitive dysfunction in aged mice. BMC Anesthesiol. 18:20
    [Google Scholar]
  78. 78.
    Todd OM, Gelrich L, MacLullich AM, Driessen M, Thomas C, Kreisel SH. 2017. Sleep disruption at home as an independent risk factor for postoperative delirium. J. Am. Geriatr. Soc. 65:949–57
    [Google Scholar]
  79. 79.
    Ni P, Dong H, Zhou Q, Wang Y, Sun M et al. 2019. Preoperative sleep disturbance exaggerates surgery-induced neuroinflammation and neuronal damage in aged mice. Mediators Inflamm. 2019:8301725
    [Google Scholar]
  80. 80.
    Shehabi Y, Grant P, Wolfenden H, Hammond N, Bass F et al. 2009. Prevalence of delirium with dexmedetomidine compared with morphine based therapy after cardiac surgery: a randomized controlled trial (DEXmedetomidine COmpared to Morphine—DEXCOM study). Anesthesiology 111:1075–84
    [Google Scholar]
  81. 81.
    Muscat SM, Deems NP, D'Angelo H, Kitt MM, Grace PM et al. 2021. Postoperative cognitive dysfunction is made persistent with morphine treatment in aged rats. Neurobiol. Aging 98:214–24
    [Google Scholar]
  82. 82.
    Silverstein JH. 2014. Influence of anesthetics on Alzheimer's disease: biophysical, animal model, and clinical reports. J. Alzheimers Dis. 40:839–48
    [Google Scholar]
  83. 83.
    Shen W, Lu K, Wang J, Wu A, Yue Y. 2016. Activation of mTOR signaling leads to orthopedic surgery-induced cognitive decline in mice through β-amyloid accumulation and tau phosphorylation. Mol. Med. Rep. 14:3925–34
    [Google Scholar]
  84. 84.
    Tang JX, Mardini F, Janik LS, Garrity ST, Li RQ et al. 2013. Modulation of murine Alzheimer pathogenesis and behavior by surgery. Ann. Surg. 257:439–48
    [Google Scholar]
  85. 85.
    Zhan G, Hua D, Huang N, Wang Y, Li S et al. 2019. Anesthesia and surgery induce cognitive dysfunction in elderly male mice: the role of gut microbiota. Aging 11:1778–90
    [Google Scholar]
  86. 86.
    Feng X, Uchida Y, Koch L, Britton S, Hu J et al. 2017. Exercise prevents enhanced postoperative neuroinflammation and cognitive decline and rectifies the gut microbiome in a rat model of metabolic syndrome. Front. Immunol. 8:1768
    [Google Scholar]
  87. 87.
    Wu T, Wang X, Zhang R, Jiao Y, Yu W et al. 2020. Mice with pre-existing tumors are vulnerable to postoperative cognitive dysfunction. Brain Res. 1732:146650
    [Google Scholar]
  88. 88.
    Zhang Y, Li HJ, Wang DX, Jia HQ, Sun XD et al. 2017. Impact of inhalational versus intravenous anaesthesia on early delirium and long-term survival in elderly patients after cancer surgery: study protocol of a multicentre, open-label, and randomised controlled trial. BMJ Open 7:e018607
    [Google Scholar]
  89. 89.
    Al Dahhan NZ, De Felice FG, Munoz DP 2019. Potentials and pitfalls of cross-translational models of cognitive impairment. Front. Behav. Neurosci. 13:48
    [Google Scholar]
  90. 90.
    Valentin LS, Pereira VF, Pietrobon RS, Schmidt AP, Oses JP et al. 2016. Effects of single low dose of dexamethasone before noncardiac and nonneurologic surgery and general anesthesia on postoperative cognitive dysfunction—a Phase III double blind, randomized clinical trial. PLOS ONE 11:e0152308
    [Google Scholar]
  91. 91.
    Bari A, Dalley JW, Robbins TW. 2008. The application of the 5-choice serial reaction time task for the assessment of visual attentional processes and impulse control in rats. Nat. Protoc. 3:759–67
    [Google Scholar]
  92. 92.
    Patel S, Stolerman IP, Asherson P, Sluyter F. 2006. Attentional performance of C57BL/6 and DBA/2 mice in the 5-choice serial reaction time task. Behav. Brain Res. 170:197–203
    [Google Scholar]
  93. 93.
    Paine TA, Tomasiewicz HC, Zhang K, Carlezon WA Jr. 2007. Sensitivity of the five-choice serial reaction time task to the effects of various psychotropic drugs in Sprague-Dawley rats. Biol. Psychiatry 62:687–93
    [Google Scholar]
  94. 94.
    Velagapudi R, Subramaniyan S, Xiong C, Porkka F, Rodriguiz RM et al. 2019. Orthopedic surgery triggers attention deficits in a delirium-like mouse model. Front. Immunol. 10:2675
    [Google Scholar]
  95. 95.
    Dudchenko PA. 2004. An overview of the tasks used to test working memory in rodents. Neurosci. Biobehav. Rev. 28:699–709
    [Google Scholar]
  96. 96.
    Yang ST, Shi Y, Wang Q, Peng JY, Li BM. 2014. Neuronal representation of working memory in the medial prefrontal cortex of rats. Mol. Brain 7:61
    [Google Scholar]
  97. 97.
    Ennaceur A, Delacour J. 1988. A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav. Brain Res. 31:47–59
    [Google Scholar]
  98. 98.
    Darcet F, Gardier AM, Gaillard R, David DJ, Guilloux JP. 2016. Cognitive dysfunction in major depressive disorder. A translational review in animal models of the disease. Pharmaceuticals 9:9
    [Google Scholar]
  99. 99.
    Antunes M, Biala G. 2012. The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn. Process. 13:93–110
    [Google Scholar]
  100. 100.
    Bannerman DM, Sprengel R, Sanderson DJ, McHugh SB, Rawlins JN et al. 2014. Hippocampal synaptic plasticity, spatial memory and anxiety. Nat. Rev. Neurosci. 15:181–92
    [Google Scholar]
  101. 101.
    Tucker LB, Velosky AG, McCabe JT. 2018. Applications of the Morris water maze in translational traumatic brain injury research. Neurosci. Biobehav. Rev. 88:187–200
    [Google Scholar]
  102. 102.
    Possin KL, Sanchez PE, Anderson-Bergman C, Fernandez R, Kerchner GA et al. 2016. Cross-species translation of the Morris maze for Alzheimer's disease. J. Clin. Investig. 126:779–83
    [Google Scholar]
  103. 103.
    Pitts MW. 2018. Barnes maze procedure for spatial learning and memory in mice. Bio Protoc. 8:e2744
    [Google Scholar]
  104. 104.
    Mei J, Kohler J, Winter Y, Spies C, Endres M et al. 2020. Automated radial 8-arm maze: a voluntary and stress-free behavior test to assess spatial learning and memory in mice. Behav. Brain Res. 381:112352
    [Google Scholar]
  105. 105.
    Curzon P, Rustay NR, Browman KE 2009. Cued and contextual fear conditioning for rodents. Methods of Behavior Analysis in Neuroscience JJ Buccafusco Boca Raton, FL: CRC Press. , 2nd ed..
    [Google Scholar]
  106. 106.
    Berger M, Murdoch DM, Staats JS, Chan C, Thomas JP et al. 2019. Flow cytometry characterization of cerebrospinal fluid monocytes in patients with postoperative cognitive dysfunction: a pilot study. Anesth. Analg. 129:e150–54
    [Google Scholar]
  107. 107.
    Noah AM, Almghairbi D, Evley R, Moppett IK. 2021. Preoperative inflammatory mediators and postoperative delirium: systematic review and meta-analysis. Br. J. Anaesth. 127:424–34
    [Google Scholar]
  108. 108.
    Beckmann N, Salyer CE, Crisologo PA, Nomellini V, Caldwell CC. 2020. Staging and personalized intervention for infection and sepsis. Surg. Infect. 21:732–44
    [Google Scholar]
  109. 109.
    Saxena S, Kruys V, De Jongh R, Vamecq J, Maze M. 2021. High-mobility group box-1 and its potential role in perioperative neurocognitive disorders. Cells 10:2582
    [Google Scholar]
  110. 110.
    Cibelli M, Fidalgo AR, Terrando N, Ma D, Monaco C et al. 2010. Role of interleukin-1β in postoperative cognitive dysfunction. Ann. Neurol. 68:360–68
    [Google Scholar]
  111. 111.
    Terrando N, Monaco C, Ma D, Foxwell BM, Feldmann M, Maze M. 2010. Tumor necrosis factor-α triggers a cytokine cascade yielding postoperative cognitive decline. PNAS 107:20518–22
    [Google Scholar]
  112. 112.
    Hu J, Feng X, Valdearcos M, Lutrin D, Uchida Y et al. 2018. Interleukin-6 is both necessary and sufficient to produce perioperative neurocognitive disorder in mice. Br. J. Anaesth. 120:537–45
    [Google Scholar]
  113. 113.
    Mollica L, De Marchis F, Spitaleri A, Dallacosta C, Pennacchini D et al. 2007. Glycyrrhizin binds to high-mobility group box 1 protein and inhibits its cytokine activities. Chem. Biol. 14:431–41
    [Google Scholar]
  114. 114.
    Kong ZH, Chen X, Hua HP, Liang L, Liu LJ. 2017. The oral pretreatment of glycyrrhizin prevents surgery-induced cognitive impairment in aged mice by reducing neuroinflammation and Alzheimer's-related pathology via HMGB1 inhibition. J. Mol. Neurosci. 63:385–95
    [Google Scholar]
  115. 115.
    Obermeier B, Daneman R, Ransohoff RM. 2013. Development, maintenance and disruption of the blood-brain barrier. Nat. Med. 19:1584–96
    [Google Scholar]
  116. 116.
    Steinberg BE, Silverman HA, Robbiati S, Gunasekaran MK, Tsaava T et al. 2016. Cytokine-specific neurograms in the sensory vagus nerve. Bioelectron. Med. 3:7–17
    [Google Scholar]
  117. 117.
    Salvador AF, de Lima KA, Kipnis J. 2021. Neuromodulation by the immune system: a focus on cytokines. Nat. Rev. Immunol. 21:526–41
    [Google Scholar]
  118. 118.
    Lopez-Ramirez MA, Fischer R, Torres-Badillo CC, Davies HA, Logan K et al. 2012. Role of caspases in cytokine-induced barrier breakdown in human brain endothelial cells. J. Immunol. 189:3130–39
    [Google Scholar]
  119. 119.
    Zhang S, Dong H, Zhang X, Li N, Sun J, Qian Y. 2016. Cerebral mast cells contribute to postoperative cognitive dysfunction by promoting blood brain barrier disruption. Behav. Brain Res. 298:158–66
    [Google Scholar]
  120. 120.
    Li Z, Mo N, Li L, Cao Y, Wang W et al. 2016. Surgery-induced hippocampal angiotensin II elevation causes blood-brain barrier disruption via MMP/TIMP in aged rats. Front. Cell Neurosci. 10:105
    [Google Scholar]
  121. 121.
    Ni P, Dong H, Wang Y, Zhou Q, Xu M et al. 2018. IL-17A contributes to perioperative neurocognitive disorders through blood-brain barrier disruption in aged mice. J. Neuroinflamm. 15:332
    [Google Scholar]
  122. 122.
    Degos V, Vacas S, Han Z, van Rooijen N, Gressens P et al. 2013. Depletion of bone marrow-derived macrophages perturbs the innate immune response to surgery and reduces postoperative memory dysfunction. Anesthesiology 118:527–36
    [Google Scholar]
  123. 123.
    Hovens IB, van Leeuwen BL, Nyakas C, Heineman E, van der Zee EA, Schoemaker RG 2015. Postoperative cognitive dysfunction and microglial activation in associated brain regions in old rats. Neurobiol. Learn. Mem. 118:74–79
    [Google Scholar]
  124. 124.
    Kelly A, Vereker E, Nolan Y, Brady M, Barry C et al. 2003. Activation of p38 plays a pivotal role in the inhibitory effect of lipopolysaccharide and interleukin-1β on long term potentiation in rat dentate gyrus. J. Biol. Chem. 278:19453–62
    [Google Scholar]
  125. 125.
    Feng X, Valdearcos M, Uchida Y, Lutrin D, Maze M, Koliwad SK. 2017. Microglia mediate postoperative hippocampal inflammation and cognitive decline in mice. JCI Insight 2:e91229
    [Google Scholar]
  126. 126.
    Zou J, Huang GF, Xia Q, Li X, Shi J, Sun N. 2022. Electroacupuncture promotes microglial M2 polarization in ischemic stroke via annexin A1. Acupunct. Med. 40:258–67
    [Google Scholar]
  127. 127.
    Miller-Rhodes P, Kong C, Baht GS, Saminathan P, Rodriguiz RM et al. 2019. The broad spectrum mixed-lineage kinase 3 inhibitor URMC-099 prevents acute microgliosis and cognitive decline in a mouse model of perioperative neurocognitive disorders. J. Neuroinflamm. 16:193
    [Google Scholar]
  128. 128.
    Lai IK, Valdearcos M, Morioka K, Saxena S, Feng X et al. 2020. Blocking Kv1.3 potassium channels prevents postoperative neuroinflammation and cognitive decline without impairing wound healing in mice. Br. J. Anaesth. 125:298–307
    [Google Scholar]
  129. 129.
    Lee CH, Park OK, Yoo KY, Byun K, Lee B et al. 2011. The role of peroxisome proliferator-activated receptor γ, and effects of its agonist, rosiglitazone, on transient cerebral ischemic damage. J. Neurol. Sci. 300:120–29
    [Google Scholar]
  130. 130.
    Vizcaychipi MP, Watts HR, O'Dea KP, Lloyd DG, Penn JW et al. 2014. The therapeutic potential of atorvastatin in a mouse model of postoperative cognitive decline. Ann. Surg. 259:1235–44
    [Google Scholar]
  131. 131.
    Zhang Z, Yuan H, Zhao H, Qi B, Li F, An L 2017. PPARγ activation ameliorates postoperative cognitive decline probably through suppressing hippocampal neuroinflammation in aged mice. Int. Immunopharmacol. 43:53–61
    [Google Scholar]
  132. 132.
    Qiu LL, Pan W, Luo D, Zhang GF, Zhou ZQ et al. 2020. Dysregulation of BDNF/TrkB signaling mediated by NMDAR/Ca2+/calpain might contribute to postoperative cognitive dysfunction in aging mice. J. Neuroinflamm. 17:23
    [Google Scholar]
  133. 133.
    Ferreira FF, Ribeiro FF, Rodrigues RS, Sebastiao AM, Xapelli S. 2018. Brain-derived neurotrophic factor (BDNF) role in cannabinoid-mediated neurogenesis. Front. Cell Neurosci. 12:441
    [Google Scholar]
  134. 134.
    Sun L, Dong R, Xu X, Yang X, Peng M. 2017. Activation of cannabinoid receptor type 2 attenuates surgery-induced cognitive impairment in mice through anti-inflammatory activity. J. Neuroinflamm. 14:138
    [Google Scholar]
  135. 135.
    Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ et al. 2017. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481–87
    [Google Scholar]
  136. 136.
    Chen L, Yang N, Li Y, Li Y, Hong J et al. 2021. Cholecystokinin octapeptide improves hippocampal glutamatergic synaptogenesis and postoperative cognition by inhibiting induction of A1 reactive astrocytes in aged mice. CNS Neurosci. Ther. 27:1374–84
    [Google Scholar]
  137. 137.
    Jin WJ, Feng SW, Feng Z, Lu SM, Qi T, Qian YN. 2014. Minocycline improves postoperative cognitive impairment in aged mice by inhibiting astrocytic activation. NeuroReport 25:1–6
    [Google Scholar]
  138. 138.
    Chiang N, Serhan CN. 2020. Specialized pro-resolving mediator network: an update on production and actions. Essays Biochem. 64:443–62
    [Google Scholar]
  139. 139.
    Serhan CN. 2014. Pro-resolving lipid mediators are leads for resolution physiology. Nature 510:92–101
    [Google Scholar]
  140. 140.
    Su X, Feng X, Terrando N, Yan Y, Chawla A et al. 2013. Dysfunction of inflammation-resolving pathways is associated with exaggerated postoperative cognitive decline in a rat model of the metabolic syndrome. Mol. Med. 18:1481–90
    [Google Scholar]
  141. 141.
    Terrando N, Gomez-Galan M, Yang T, Carlstrom M, Gustavsson D et al. 2013. Aspirin-triggered resolvin D1 prevents surgery-induced cognitive decline. FASEB J. 27:3564–71
    [Google Scholar]
  142. 142.
    Yang T, Xu G, Newton PT, Chagin AS, Mkrtchian S et al. 2019. Maresin 1 attenuates neuroinflammation in a mouse model of perioperative neurocognitive disorders. Br. J. Anaesth. 122:350–60
    [Google Scholar]
  143. 143.
    Guo Y, Ping F, Cao Y, Shang J, Zhang J et al. 2021. Effects of omega-3 polyunsaturated fatty acids on cognitive function after splenectomy in rats. Biomed. Res. Int. 2021:5513886
    [Google Scholar]
  144. 144.
    Gallowitsch-Puerta M, Tracey KJ. 2005. Immunologic role of the cholinergic anti-inflammatory pathway and the nicotinic acetylcholine α7 receptor. Ann. N. Y. Acad. Sci. 1062:209–19
    [Google Scholar]
  145. 145.
    Terrando N, Eriksson LI, Ryu JK, Yang T, Monaco C et al. 2011. Resolving postoperative neuroinflammation and cognitive decline. Ann. Neurol. 70:986–95
    [Google Scholar]
  146. 146.
    Xiong J, Wang H, Bao Y, Guo Y, Sun Y. 2019. Electric vagal nerve stimulation inhibits inflammation and improves early postoperation cognitive dysfunction in aged rats. BMC Anesthesiol 19:217
    [Google Scholar]
  147. 147.
    Terrando N, Yang T, Ryu JK, Newton PT, Monaco C et al. 2015. Stimulation of the α7 nicotinic acetylcholine receptor protects against neuroinflammation after tibia fracture and endotoxemia in mice. Mol. Med. 20:667–75
    [Google Scholar]
  148. 148.
    Su X, Meng ZT, Wu XH, Cui F, Li HL et al. 2016. Dexmedetomidine for prevention of delirium in elderly patients after non-cardiac surgery: a randomised, double-blind, placebo-controlled trial. Lancet 388:1893–902
    [Google Scholar]
  149. 149.
    Hu J, Vacas S, Feng X, Lutrin D, Uchida Y et al. 2018. Dexmedetomidine prevents cognitive decline by enhancing resolution of high mobility group box 1 protein-induced inflammation through a vagomimetic action in mice. Anesthesiology 128:921–31
    [Google Scholar]
  150. 150.
    Mirakaj V, Dalli J, Granja T, Rosenberger P, Serhan CN. 2014. Vagus nerve controls resolution and pro-resolving mediators of inflammation. J. Exp. Med. 211:1037–48
    [Google Scholar]
  151. 151.
    Robillard JM, Gordon GR, Choi HB, Christie BR, MacVicar BA. 2011. Glutathione restores the mechanism of synaptic plasticity in aged mice to that of the adult. PLOS ONE 6:e20676
    [Google Scholar]
  152. 152.
    Rojo AI, McBean G, Cindric M, Egea J, Lopez MG et al. 2014. Redox control of microglial function: molecular mechanisms and functional significance. Antioxid. Redox. Signal. 21:1766–801
    [Google Scholar]
  153. 153.
    Wang YB, Chen Z, Li J, Shi J. 2019. Parecoxib improves the cognitive function of POCD rats via attenuating COX-2. Eur. Rev. Med. Pharmacol. Sci. 23:4971–79
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-051921-112525
Loading
/content/journals/10.1146/annurev-pharmtox-051921-112525
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error