1932

Abstract

Apoptosis is central for the maintenance of health. In the immune system, apoptosis guarantees proper development of immune cells and shutdown of immune reactions by the coordinated elimination of activated immune cells. Limitation of the life span of granulocytes is important, as overactivation of these cells is associated with chronic inflammation and collateral tissue damage. Consequently, targeted induction of granulocyte apoptosis may be beneficial in the course of respective immune disorders. Anti-inflammatory drugs such as glucocorticoids and monoclonal antibodies against IL-5Rα exert their function in part by triggering eosinophil apoptosis. Agonistic antibodies targeting Siglec-8 or death receptors are tested (pre)clinically. Moreover, a new class of inhibitors targeting antiapoptotic BCL-2 proteins shows great promise for anticancer treatments. Because of their specificity and tolerable side effects, these so-called BH3 mimetics may be worthwhile to evaluate in inflammatory disorders. Here, we review past and recent data on pharmacological apoptosis induction of granulocytes and highlight respective therapeutic potential.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-051921-115130
2023-01-20
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/63/1/annurev-pharmtox-051921-115130.html?itemId=/content/journals/10.1146/annurev-pharmtox-051921-115130&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Patel AA, Ginhoux F, Yona S. 2021. Monocytes, macrophages, dendritic cells and neutrophils: an update on lifespan kinetics in health and disease. Immunology 163:250–61
    [Google Scholar]
  2. 2.
    Sun JC, Lopez-Verges S, Kim CC, DeRisi JL, Lanier LL. 2011. NK cells and immune “memory. .” J. Immunol. 186:1891–97
    [Google Scholar]
  3. 3.
    Stringaris K. 2017. Orphan NKs! The mystery of the self-renewing NK cells. Blood 129:1890–91
    [Google Scholar]
  4. 4.
    Park YM, Bochner BS. 2010. Eosinophil survival and apoptosis in health and disease. Allergy Asthma Immunol. Res. 2:87–101
    [Google Scholar]
  5. 5.
    He Z, Allers C, Sugimoto C, Ahmed N, Fujioka H et al. 2018. Rapid turnover and high production rate of myeloid cells in adult rhesus macaques with compensations during aging. J. Immunol. 200:4059–67
    [Google Scholar]
  6. 6.
    Rosales C. 2018. Neutrophil: a cell with many roles in inflammation or several cell types?. Front. Physiol. 9:113
    [Google Scholar]
  7. 7.
    Nicolas-Avila JA, Adrover JM, Hidalgo A. 2017. Neutrophils in homeostasis, immunity, and cancer. Immunity 46:15–28
    [Google Scholar]
  8. 8.
    Geering B, Stoeckle C, Conus S, Simon HU. 2013. Living and dying for inflammation: neutrophils, eosinophils, basophils. Trends Immunol 34:398–409
    [Google Scholar]
  9. 9.
    Bauer A, Kirschnek S, Hacker G. 2007. Inhibition of apoptosis can be accompanied by increased Bim levels in T lymphocytes and neutrophil granulocytes. Cell Death Differ. 14:1714–16
    [Google Scholar]
  10. 10.
    Andina N, Conus S, Schneider EM, Fey MF, Simon HU 2009. Induction of Bim limits cytokine-mediated prolonged survival of neutrophils. Cell Death Differ 16:1248–55
    [Google Scholar]
  11. 11.
    Cowburn AS, Summers C, Dunmore BJ, Farahi N, Hayhoe RP et al. 2011. Granulocyte/macrophage colony-stimulating factor causes a paradoxical increase in the BH3-only pro-apoptotic protein Bim in human neutrophils. Am. J. Respir. Cell Mol. Biol. 44:879–87
    [Google Scholar]
  12. 12.
    Daigle I, Yousefi S, Colonna M, Green DR, Simon HU. 2002. Death receptors bind SHP-1 and block cytokine-induced anti-apoptotic signaling in neutrophils. Nat. Med. 8:61–67
    [Google Scholar]
  13. 13.
    Nutku E, Hudson SA, Bochner BS. 2005. Mechanism of Siglec-8-induced human eosinophil apoptosis: role of caspases and mitochondrial injury. Biochem. Biophys. Res. Commun. 336:918–24
    [Google Scholar]
  14. 14.
    Nutku-Bilir E, Hudson SA, Bochner BS. 2008. Interleukin-5 priming of human eosinophils alters siglec-8 mediated apoptosis pathways. Am. J. Respir. Cell Mol. Biol. 38:121–24
    [Google Scholar]
  15. 15.
    Zhang M, Angata T, Cho JY, Miller M, Broide DH, Varki A. 2007. Defining the in vivo function of Siglec-F, a CD33-related Siglec expressed on mouse eosinophils. Blood 109:4280–87
    [Google Scholar]
  16. 16.
    Zimmermann N, McBride ML, Yamada Y, Hudson SA, Jones C et al. 2008. Siglec-F antibody administration to mice selectively reduces blood and tissue eosinophils. Allergy 63:1156–63
    [Google Scholar]
  17. 17.
    von Gunten S, Schaub A, Vogel M, Stadler BM, Miescher S, Simon HU. 2006. Immunologic and functional evidence for anti-Siglec-9 autoantibodies in intravenous immunoglobulin preparations. Blood 108:4255–59
    [Google Scholar]
  18. 18.
    Liew PX, Kubes P. 2019. The neutrophil's role during health and disease. Physiol. Rev. 99:1223–48
    [Google Scholar]
  19. 19.
    Moulding DA, Quayle JA, Hart CA, Edwards SW. 1998. Mcl-1 expression in human neutrophils: regulation by cytokines and correlation with cell survival. Blood 92:2495–502
    [Google Scholar]
  20. 20.
    Chuang PI, Yee E, Karsan A, Winn RK, Harlan JM 1998. A1 is a constitutive and inducible Bcl-2 homologue in mature human neutrophils. Biochem. Biophys. Res. Commun. 249:361–65
    [Google Scholar]
  21. 21.
    Hasegawa T, Suzuki K, Sakamoto C, Ohta K, Nishiki S et al. 2003. Expression of the inhibitor of apoptosis (IAP) family members in human neutrophils: up-regulation of cIAP2 by granulocyte colony-stimulating factor and overexpression of cIAP2 in chronic neutrophilic leukemia. Blood 101:1164–71
    [Google Scholar]
  22. 22.
    Dibbert B, Daigle I, Braun D, Schranz C, Weber M et al. 1998. Role for Bcl-xL in delayed eosinophil apoptosis mediated by granulocyte-macrophage colony-stimulating factor and interleukin-5. Blood 92:778–83
    [Google Scholar]
  23. 23.
    Vassina EM, Yousefi S, Simon D, Zwicky C, Conus S, Simon HU. 2006. cIAP-2 and survivin contribute to cytokine-mediated delayed eosinophil apoptosis. Eur. J. Immunol. 36:1975–84
    [Google Scholar]
  24. 24.
    Simon HU, Yousefi S, Schranz C, Schapowal A, Bachert C, Blaser K. 1997. Direct demonstration of delayed eosinophil apoptosis as a mechanism causing tissue eosinophilia. J. Immunol. 158:3902–8
    [Google Scholar]
  25. 25.
    Yamaguchi M, Hirai K, Morita Y, Takaishi T, Ohta K et al. 1992. Hemopoietic growth factors regulate the survival of human basophils in vitro. Int. Arch. Allergy Immunol. 97:322–29
    [Google Scholar]
  26. 26.
    Zheng X, Karsan A, Duronio V, Chu F, Walker DC et al. 2002. Interleukin-3, but not granulocyte-macrophage colony-stimulating factor and interleukin-5, inhibits apoptosis of human basophils through phosphatidylinositol 3-kinase: requirement of NF-κB-dependent and -independent pathways. Immunology 107:306–15
    [Google Scholar]
  27. 27.
    Didichenko SA, Spiegl N, Brunner T, Dahinden CA. 2008. IL-3 induces a Pim1-dependent antiapo-ptotic pathway in primary human basophils. Blood 112:3949–58
    [Google Scholar]
  28. 28.
    Reinhart R, Kaufmann T. 2018. IL-4 enhances survival of in vitro-differentiated mouse basophils through transcription-independent signaling downstream of PI3K. Cell Death Dis 9:713
    [Google Scholar]
  29. 29.
    Rohner L, Reinhart R, Hagmann B, Odermatt A, Babirye A et al. 2018. FcεRI cross-linking and IL-3 protect human basophils from intrinsic apoptotic stress. J. Allergy Clin. Immunol. 142:1647–50.e3
    [Google Scholar]
  30. 30.
    Delbridge AR, Strasser A. 2015. The BCL-2 protein family, BH3-mimetics and cancer therapy. Cell Death Differ 22:1071–80
    [Google Scholar]
  31. 31.
    Strasser A, Jost PJ, Nagata S. 2009. The many roles of FAS receptor signaling in the immune system. Immunity 30:180–92
    [Google Scholar]
  32. 32.
    Kaufmann T, Strasser A, Jost PJ. 2012. Fas death receptor signalling: roles of Bid and XIAP. Cell Death Differ 19:42–50
    [Google Scholar]
  33. 33.
    Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL et al. 1997. A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells. Nature 385:729–33
    [Google Scholar]
  34. 34.
    Peschon JJ, Slack JL, Reddy P, Stocking KL, Sunnarborg SW et al. 1998. An essential role for ectodomain shedding in mammalian development. Science 282:1281–84
    [Google Scholar]
  35. 35.
    Kondylis V, Kumari S, Vlantis K, Pasparakis M. 2017. The interplay of IKK, NF-κB and RIPK1 signaling in the regulation of cell death, tissue homeostasis and inflammation. Immunol. Rev. 277:113–27
    [Google Scholar]
  36. 36.
    Siegmund D, Lang I, Wajant H. 2017. Cell death-independent activities of the death receptors CD95, TRAILR1, and TRAILR2. FEBS J 284:1131–59
    [Google Scholar]
  37. 37.
    Li H, Zhu H, Xu CJ, Yuan J. 1998. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501
    [Google Scholar]
  38. 38.
    Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. 1998. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–90
    [Google Scholar]
  39. 39.
    Silke J, Vince J. 2017. IAPs and cell death. Curr. Top. Microbiol. Immunol. 403:95–117
    [Google Scholar]
  40. 40.
    Ivanisenko NV, Seyrek K, Hillert-Richter LK, Konig C, Espe J et al. 2022. Regulation of extrinsic apoptotic signaling by c-FLIP: towards targeting cancer networks. Trends Cancer 8:190–209
    [Google Scholar]
  41. 41.
    Dadsena S, King LE, Garcia-Saez AJ. 2021. Apoptosis regulation at the mitochondria membrane level. Biochim. Biophys. Acta Biomembr. 1863:183716
    [Google Scholar]
  42. 42.
    Adams JM, Cory S 2018. The BCL-2 arbiters of apoptosis and their growing role as cancer targets. Cell Death Differ 25:27–36
    [Google Scholar]
  43. 43.
    Schinzel A, Kaufmann T, Borner C. 2004. Bcl-2 family members: integrators of survival and death signals in physiology and pathology. Biochim. Biophys. Acta 1644:95–105
    [Google Scholar]
  44. 44.
    Wilfling F, Weber A, Potthoff S, Vogtle FN, Meisinger C et al. 2012. BH3-only proteins are tail-anchored in the outer mitochondrial membrane and can initiate the activation of Bax. Cell Death Differ 19:1328–36
    [Google Scholar]
  45. 45.
    Kale J, Osterlund EJ, Andrews DW. 2018. BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ 25:65–80
    [Google Scholar]
  46. 46.
    Cosentino K, Garcia-Saez AJ. 2017. Bax and Bak pores: Are we closing the circle?. Trends Cell Biol 27:266–75
    [Google Scholar]
  47. 47.
    Fernandez-Marrero Y, Spinner S, Kaufmann T, Jost PJ. 2016. Survival control of malignant lymphocytes by anti-apoptotic MCL-1. Leukemia 30:2152–59
    [Google Scholar]
  48. 48.
    Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI et al. 2005. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol. Cell 17:393–403
    [Google Scholar]
  49. 49.
    Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ et al. 2005. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435:677–81
    [Google Scholar]
  50. 50.
    Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ. 2002. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2:183–92
    [Google Scholar]
  51. 51.
    Montero J, Letai A. 2018. Why do BCL-2 inhibitors work and where should we use them in the clinic?. Cell Death Differ 25:56–64
    [Google Scholar]
  52. 52.
    Mason KD, Carpinelli MR, Fletcher JI, Collinge JE, Hilton AA et al. 2007. Programmed anuclear cell death delimits platelet life span. Cell 128:1173–86
    [Google Scholar]
  53. 53.
    Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J et al. 2008. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res 68:3421–28
    [Google Scholar]
  54. 54.
    Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND et al. 2013. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med. 19:202–8
    [Google Scholar]
  55. 55.
    Roberts AW, Davids MS, Pagel JM, Kahl BS, Puvvada SD et al. 2016. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 374:311–22
    [Google Scholar]
  56. 56.
    Lasica M, Anderson MA. 2021. Review of venetoclax in CLL, AML and multiple myeloma. J. Pers. Med. 11:463
    [Google Scholar]
  57. 57.
    Diepstraten ST, Anderson MA, Czabotar PE, Lessene G, Strasser A, Kelly GL. 2022. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat. Rev. Cancer 22:45–64
    [Google Scholar]
  58. 58.
    Simon HU. 2003. Neutrophil apoptosis pathways and their modifications in inflammation. Immunol. Rev. 193:101–10
    [Google Scholar]
  59. 59.
    Iwai K, Miyawaki T, Takizawa T, Konno A, Ohta K et al. 1994. Differential expression of bcl-2 and susceptibility to anti-Fas-mediated cell death in peripheral blood lymphocytes, monocytes, and neutrophils. Blood 84:1201–8
    [Google Scholar]
  60. 60.
    Matsumoto K, Schleimer RP, Saito H, Iikura Y, Bochner BS. 1995. Induction of apoptosis in human eosinophils by anti-Fas antibody treatment in vitro. Blood 86:1437–43
    [Google Scholar]
  61. 61.
    Wicki S, Gurzeler U, Corazza N, Genitsch V, Wong WW, Kaufmann T. 2018. Loss of BID delays FASL-induced cell death of mouse neutrophils and aggravates DSS-induced weight loss. Int. J. Mol. Sci. 19:684
    [Google Scholar]
  62. 62.
    Geering B, Gurzeler U, Federzoni E, Kaufmann T, Simon HU. 2011. A novel TNFR1-triggered apoptosis pathway mediated by class IA PI3Ks in neutrophils. Blood 117:5953–62
    [Google Scholar]
  63. 63.
    Daigle I, Simon HU. 2001. Alternative functions for TRAIL receptors in eosinophils and neutrophils. Swiss Med. Wkly. 131:231–37
    [Google Scholar]
  64. 64.
    Renshaw SA, Parmar JS, Singleton V, Rowe SJ, Dockrell DH et al. 2003. Acceleration of human neutrophil apoptosis by TRAIL. J. Immunol. 170:1027–33
    [Google Scholar]
  65. 65.
    Gon S, Gatanaga T, Sendo F. 1996. Involvement of two types of TNF receptor in TNF-α induced neutrophil apoptosis. Microbiol. Immunol. 40:463–65
    [Google Scholar]
  66. 66.
    Murray J, Barbara JA, Dunkley SA, Lopez AF, Van Ostade X et al. 1997. Regulation of neutrophil apoptosis by tumor necrosis factor-α: requirement for TNFR55 and TNFR75 for induction of apoptosis in vitro. Blood 90:2772–83
    [Google Scholar]
  67. 67.
    Snajdauf M, Havlova K, Vachtenheim J Jr., Ozaniak A, Lischke R et al. 2021. The TRAIL in the treatment of human cancer: an update on clinical trials. Front. Mol. Biosci. 8:628332
    [Google Scholar]
  68. 68.
    Huang DC, Hahne M, Schroeter M, Frei K, Fontana A et al. 1999. Activation of Fas by FasL induces apoptosis by a mechanism that cannot be blocked by Bcl-2 or Bcl-xL. PNAS 96:14871–76
    [Google Scholar]
  69. 69.
    Ogasawara J, Watanabe-Fukunaga R, Adachi M, Matsuzawa A, Kasugai T et al. 1993. Lethal effect of the anti-Fas antibody in mice. Nature 364:806–9
    [Google Scholar]
  70. 70.
    Xu Y, Szalai AJ, Zhou T, Zinn KR, Chaudhuri TR et al. 2003. FcγRs modulate cytotoxicity of anti-Fas antibodies: implications for agonistic antibody-based therapeutics. J. Immunol. 171:562–68
    [Google Scholar]
  71. 71.
    Altznauer F, von Gunten S, Spath P, Simon HU. 2003. Concurrent presence of agonistic and antagonistic anti-CD95 autoantibodies in intravenous Ig preparations. J. Allergy Clin. Immunol. 112:1185–90
    [Google Scholar]
  72. 72.
    Schneider C, Wicki S, Graeter S, Timcheva TM, Keller CW et al. 2017. IVIG regulates the survival of human but not mouse neutrophils. Sci. Rep. 7:1296
    [Google Scholar]
  73. 73.
    Tsujimoto H, Takeshita S, Nakatani K, Kawamura Y, Tokutomi T, Sekine I. 2002. Intravenous immunoglobulin therapy induces neutrophil apoptosis in Kawasaki disease. Clin. Immunol. 103:161–68
    [Google Scholar]
  74. 74.
    Aoyama-Ishikawa M, Seishu A, Kawakami S, Maeshige N, Miyoshi M et al. 2014. Intravenous immunoglobulin-induced neutrophil apoptosis in the lung during murine endotoxemia. Surg. Infect. 15:36–42
    [Google Scholar]
  75. 75.
    von Gunten S, Simon HU. 2010. Cell death modulation by intravenous immunoglobulin. J. Clin. Immunol. 30:Suppl. 1S24–30
    [Google Scholar]
  76. 76.
    Scatizzi JC, Bickel E, Hutcheson J, Haines GK 3rd, Perlman H 2006. Bim deficiency leads to exacerbation and prolongation of joint inflammation in experimental arthritis. Arthritis Rheum 54:3182–93
    [Google Scholar]
  77. 77.
    Scatizzi JC, Hutcheson J, Pope RM, Firestein GS, Koch AE et al. 2010. Bim-Bcl-2 homology 3 mimetic therapy is effective at suppressing inflammatory arthritis through the activation of myeloid cell apoptosis. Arthritis Rheum 62:441–51
    [Google Scholar]
  78. 78.
    Lawlor KE, Smith SD, van Nieuwenhuijze A, Huang DC, Wicks IP. 2011. Evaluation of the Bcl-2 family antagonist ABT-737 in collagen-induced arthritis. J. Leukoc. Biol. 90:819–29
    [Google Scholar]
  79. 79.
    Csepregi JZ, Orosz A, Zajta E, Kasa O, Nemeth T et al. 2018. Myeloid-specific deletion of Mcl-1 yields severely neutropenic mice that survive and breed in homozygous form. J. Immunol. 201:3793–803
    [Google Scholar]
  80. 80.
    Hellvard A, Zeitlmann L, Heiser U, Kehlen A, Niestroj A et al. 2016. Inhibition of CDK9 as a therapeutic strategy for inflammatory arthritis. Sci. Rep. 6:31441
    [Google Scholar]
  81. 81.
    Wang K, Hampson P, Hazeldine J, Krystof V, Strnad M et al. 2012. Cyclin-dependent kinase 9 activity regulates neutrophil spontaneous apoptosis. PLOS ONE 7:e30128
    [Google Scholar]
  82. 82.
    Li X, Yu C, Meng X, Hou Y, Cui Y et al. 2020. Study of double-targeting nanoparticles loaded with MCL-1 siRNA and dexamethasone for adjuvant-induced arthritis therapy. Eur. J. Pharm. Biopharm. 154:136–43
    [Google Scholar]
  83. 83.
    Li Y, Wei S, Sun Y, Zong S, Sui Y. 2021. Nanomedicine-based combination of dexamethasone palmitate and MCL-1 siRNA for synergistic therapeutic efficacy against rheumatoid arthritis. Drug Deliv. Transl. Res. 11:2520–29
    [Google Scholar]
  84. 84.
    Rohner L, Reinhart R, Iype J, Bachmann S, Kaufmann T, Fux M. 2020. Impact of BH3-mimetics on human and mouse blood leukocytes: a comparative study. Sci. Rep. 10:222
    [Google Scholar]
  85. 85.
    Carrington EM, Louis C, Kratina T, Hancock M, Keenan CR et al. 2021. BCL-XL antagonism selectively reduces neutrophil life span within inflamed tissues without causing neutropenia. Blood Adv 5:2550–62
    [Google Scholar]
  86. 86.
    Wang L, Doherty GA, Judd AS, Tao ZF, Hansen TM et al. 2020. Discovery of A-1331852, a first-in-class, potent, and orally-bioavailable BCL-XL inhibitor. ACS Med. Chem. Lett. 11:1829–36
    [Google Scholar]
  87. 87.
    Wang X, He Z, Liu H, Yousefi S, Simon HU. 2016. Neutrophil necroptosis is triggered by ligation of adhesion molecules following GM-CSF priming. J. Immunol. 197:4090–100
    [Google Scholar]
  88. 88.
    Zustakova M, Kratochvilova L, Slama P. 2020. Apoptosis of eosinophil granulocytes. Biology 9:457
    [Google Scholar]
  89. 89.
    Wyllie AH, Beattie GJ, Hargreaves AD. 1981. Chromatin changes in apoptosis. Histochem. J. 13:681–92
    [Google Scholar]
  90. 90.
    Fukakusa M, Bergeron C, Tulic MK, Fiset PO, Al Dewachi O et al. 2005. Oral corticosteroids decrease eosinophil and CC chemokine expression but increase neutrophil, IL-8, and IFN-γ-inducible protein 10 expression in asthmatic airway mucosa. J. Allergy Clin. Immunol. 115:280–86
    [Google Scholar]
  91. 91.
    Yoshimura C, Miyamasu M, Nagase H, Iikura M, Yamaguchi M et al. 2001. Glucocorticoids induce basophil apoptosis. J. Allergy Clin. Immunol. 108:215–20
    [Google Scholar]
  92. 92.
    Garvy BA, Telford WG, King LE, Fraker PJ. 1993. Glucocorticoids and irradiation-induced apoptosis in normal murine bone marrow B-lineage lymphocytes as determined by flow cytometry. Immunology 79:270–77
    [Google Scholar]
  93. 93.
    Meagher LC, Cousin JM, Seckl JR, Haslett C. 1996. Opposing effects of glucocorticoids on the rate of apoptosis in neutrophilic and eosinophilic granulocytes. J. Immunol. 156:4422–28
    [Google Scholar]
  94. 94.
    Kato T, Takeda Y, Nakada T, Sendo F. 1995. Inhibition by dexamethasone of human neutrophil apoptosis in vitro. Nat. Immun. 14:198–208
    [Google Scholar]
  95. 95.
    Cox G. 1995. Glucocorticoid treatment inhibits apoptosis in human neutrophils. Separation of survival and activation outcomes. J. Immunol. 154:4719–25
    [Google Scholar]
  96. 96.
    Liles WC, Dale DC, Klebanoff SJ. 1995. Glucocorticoids inhibit apoptosis of human neutrophils. Blood 86:3181–88
    [Google Scholar]
  97. 97.
    Sentman CL, Shutter JR, Hockenbery D, Kanagawa O, Korsmeyer SJ. 1991. Bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell 67:879–88
    [Google Scholar]
  98. 98.
    Erlacher M, Michalak EM, Kelly PN, Labi V, Niederegger H et al. 2005. BH3-only proteins Puma and Bim are rate-limiting for γ-radiation– and glucocorticoid-induced apoptosis of lymphoid cells in vivo. Blood 106:4131–38
    [Google Scholar]
  99. 99.
    Wu Y, Chen H, Xuan N, Zhou L, Wu Y et al. 2020. Induction of ferroptosis-like cell death of eosinophils exerts synergistic effects with glucocorticoids in allergic airway inflammation. Thorax 75:918–27
    [Google Scholar]
  100. 100.
    Jiang X, Stockwell BR, Conrad M 2021. Ferroptosis: mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol. 22:266–82
    [Google Scholar]
  101. 101.
    von Massenhausen A, Zamora Gonzalez N, Maremonti F, Belavgeni A, Tonnus W et al. 2022. Dexamethasone sensitizes to ferroptosis by glucocorticoid receptor-induced dipeptidase-1 expression and glutathione depletion. Sci. Adv. 8:eabl8920
    [Google Scholar]
  102. 102.
    Hassani M, Koenderman L. 2018. Immunological and hematological effects of IL-5(Rα)-targeted therapy: an overview. Allergy 73:1979–88
    [Google Scholar]
  103. 103.
    Menzies-Gow A, Flood-Page P, Sehmi R, Burman J, Hamid Q et al. 2003. Anti-IL-5 (mepolizumab) therapy induces bone marrow eosinophil maturational arrest and decreases eosinophil progenitors in the bronchial mucosa of atopic asthmatics. J. Allergy Clin. Immunol. 111:714–19
    [Google Scholar]
  104. 104.
    Kolbeck R, Kozhich A, Koike M, Peng L, Andersson CK et al. 2010. MEDI-563, a humanized anti-IL-5 receptor α mAb with enhanced antibody-dependent cell-mediated cytotoxicity function. J. Allergy Clin. Immunol. 125:1344–53.e2
    [Google Scholar]
  105. 105.
    Matera MG, Calzetta L, Rinaldi B, Cazzola M. 2017. Pharmacokinetic/pharmacodynamic drug evaluation of benralizumab for the treatment of asthma. Expert Opin. Drug Metab. Toxicol. 13:1007–13
    [Google Scholar]
  106. 106.
    Pelaia C, Calabrese C, Vatrella A, Busceti MT, Garofalo E et al. 2018. Benralizumab: from the basic mechanism of action to the potential use in the biological therapy of severe eosinophilic asthma. Biomed. Res. Int. 2018 4839230
    [Google Scholar]
  107. 107.
    Kuang FL, Legrand F, Makiya M, Ware J, Wetzler L et al. 2019. Benralizumab for PDGFRA-negative hypereosinophilic syndrome. N. Engl. J. Med. 380:1336–46
    [Google Scholar]
  108. 108.
    Nutku E, Aizawa H, Hudson SA, Bochner BS. 2003. Ligation of Siglec-8: a selective mechanism for induction of human eosinophil apoptosis. Blood 101:5014–20
    [Google Scholar]
  109. 109.
    von Gunten S, Vogel M, Schaub A, Stadler BM, Miescher S et al. 2007. Intravenous immunoglobulin preparations contain anti-Siglec-8 autoantibodies. J. Allergy Clin. Immunol. 119:1005–11
    [Google Scholar]
  110. 110.
    Youngblood BA, Leung J, Falahati R, Williams J, Schanin J et al. 2020. Discovery, function, and therapeutic targeting of siglec-8. Cells 10:19
    [Google Scholar]
  111. 111.
    Kotzin JJ, Spencer SP, McCright SJ, Kumar DBU, Collet MA et al. 2016. The long non-coding RNA Morrbid regulates Bim and short-lived myeloid cell lifespan. Nature 537:239–43
    [Google Scholar]
  112. 112.
    Odinius TO, Buschhorn L, Wagner C, Hauch RT, Dill V et al. 2021. Comprehensive characterization of central BCL-2 family members in aberrant eosinophils and their impact on therapeutic strategies. J. Cancer Res. Clin. Oncol. 148:2331–40
    [Google Scholar]
  113. 113.
    Felton JM, Dorward DA, Cartwright JA, Potey PM, Robb CT et al. 2020. Mcl-1 protects eosinophils from apoptosis and exacerbates allergic airway inflammation. Thorax 75:600–5
    [Google Scholar]
  114. 114.
    Karasuyama H, Shibata S, Yoshikawa S, Miyake K. 2021. Basophils, a neglected minority in the immune system, have come into the limelight at last. Int. Immunol. 33:809–13
    [Google Scholar]
  115. 115.
    Miyake K, Shibata S, Yoshikawa S, Karasuyama H. 2021. Basophils and their effector molecules in allergic disorders. Allergy 76:1693–706
    [Google Scholar]
  116. 116.
    Bagnasco D, Caminati M, Ferrando M, Aloe T, Testino E et al. 2018. Anti-IL-5 and IL-5Ra: efficacy and safety of new therapeutic strategies in severe uncontrolled asthma. Biomed. Res. Int. 2018 5698212
    [Google Scholar]
  117. 117.
    Sehmi R, Wood LJ, Watson R, Foley R, Hamid Q et al. 1997. Allergen-induced increases in IL-5 receptor alpha-subunit expression on bone marrow-derived CD34+ cells from asthmatic subjects. A novel marker of progenitor cell commitment towards eosinophilic differentiation. J. Clin. Investig. 100:2466–75
    [Google Scholar]
  118. 118.
    Mori Y, Iwasaki H, Kohno K, Yoshimoto G, Kikushige Y et al. 2009. Identification of the human eosinophil lineage-committed progenitor: revision of phenotypic definition of the human common myeloid progenitor. J. Exp. Med. 206:183–93
    [Google Scholar]
  119. 119.
    Kawakami A, Suzukawa M, Koketsu R, Komiya A, Ohta K et al. 2008. Enhancement of basophil apoptosis by olopatadine and theophylline. Allergy Asthma Proc 29:322–28
    [Google Scholar]
  120. 120.
    Reinhart R, Rohner L, Wicki S, Fux M, Kaufmann T. 2018. BH3 mimetics efficiently induce apoptosis in mouse basophils and mast cells. Cell Death Differ 25:204–16
    [Google Scholar]
  121. 121.
    Valent P, Akin C, Hartmann K, Nilsson G, Reiter A et al. 2020. Mast cells as a unique hematopoietic lineage and cell system: from Paul Ehrlich's visions to precision medicine concepts. Theranostics 10:10743–68
    [Google Scholar]
  122. 122.
    Karlberg M, Ekoff M, Huang DC, Mustonen P, Harvima IT, Nilsson G. 2010. The BH3-mimetic ABT-737 induces mast cell apoptosis in vitro and in vivo: potential for therapeutics. J. Immunol. 185:2555–62
    [Google Scholar]
  123. 123.
    Ekoff M, Lyberg K, Krajewska M, Arvidsson M, Rak S et al. 2012. Anti-apoptotic BFL-1 is the major effector in activation-induced human mast cell survival. PLOS ONE 7:e39117
    [Google Scholar]
  124. 124.
    Karlberg M, Xiang Z, Nilsson G. 2008. FcγRI-mediated activation of human mast cells promotes survival and induction of the pro-survival gene Bfl-1. J. Clin. Immunol. 28:250–55
    [Google Scholar]
  125. 125.
    Ottina E, Lyberg K, Sochalska M, Villunger A, Nilsson GP. 2015. Knockdown of the antiapoptotic Bcl-2 family member A1/Bfl-1 protects mice from anaphylaxis. J. Immunol. 194:1316–22
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-051921-115130
Loading
/content/journals/10.1146/annurev-pharmtox-051921-115130
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error