1932

Abstract

Phosphatases and kinases maintain an equilibrium of dephosphorylated and phosphorylated proteins, respectively, that are required for critical cellular functions. Imbalance in this equilibrium or irregularity in their function causes unfavorable cellular effects that have been implicated in the development of numerous diseases. Protein tyrosine phosphatases (PTPs) catalyze the dephosphorylation of protein substrates on tyrosine residues, and their involvement in cell signaling and diseases such as cancer and inflammatory and metabolic diseases has made them attractive therapeutic targets. However, PTPs have proved challenging in therapeutics development, garnering them the unfavorable reputation of being undruggable. Nonetheless, great strides have been made toward the inhibition of PTPs over the past decade. Here, we discuss the advancement in small-molecule inhibition for the PTP subfamily known as the mitogen-activated protein kinase (MAPK) phosphatases (MKPs). We review strategies and inhibitor discovery tools that have proven successful for small-molecule inhibition of the MKPs and discuss what the future of MKP inhibition potentially might yield.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-051921-121923
2023-01-20
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/63/1/annurev-pharmtox-051921-121923.html?itemId=/content/journals/10.1146/annurev-pharmtox-051921-121923&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Graves JD, Krebs EG. 1999. Protein phosphorylation and signal transduction. Pharmacol. Ther. 82:111–21
    [Google Scholar]
  2. 2.
    Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C et al. 2006. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:635–48
    [Google Scholar]
  3. 3.
    Sparks JW, Brautigan DL. 1986. Molecular basis for substrate specificity of protein kinases and phosphatases. Int. J. Biochem. 18:497–504
    [Google Scholar]
  4. 4.
    Dhanasekaran N, Reddy EP. 1998. Signaling by dual specificity kinases. Oncogene 17:1447–55
    [Google Scholar]
  5. 5.
    Fauman EB, Saper MA. 1996. Structure and function of the protein tyrosine phosphatases. Trends Biochem. Sci. 21:413–17
    [Google Scholar]
  6. 6.
    Sacco F, Perfetto L, Castagnoli L, Cesareni G. 2012. The human phosphatase interactome: an intricate family portrait. FEBS Lett. 586:2732–39
    [Google Scholar]
  7. 7.
    Moorhead GB, De Wever V, Templeton G, Kerk D 2009. Evolution of protein phosphatases in plants and animals. Biochem. J. 417:401–9
    [Google Scholar]
  8. 8.
    Tonks NK. 2013. Protein tyrosine phosphatases—from housekeeping enzymes to master regulators of signal transduction. FEBS J. 280:346–78
    [Google Scholar]
  9. 9.
    Neel BG, Tonks NK. 1997. Protein tyrosine phosphatases in signal transduction. Curr. Opin. Cell Biol. 9:193–204
    [Google Scholar]
  10. 10.
    Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I et al. 2004. Protein tyrosine phosphatases in the human genome. Cell 117:699–711
    [Google Scholar]
  11. 11.
    Tiganis T, Bennett AM. 2007. Protein tyrosine phosphatase function: the substrate perspective. Biochem. J. 402:1–15
    [Google Scholar]
  12. 12.
    Theodosiou A, Ashworth A. 2002. MAP kinase phosphatases. Genome Biol. 3:reviews3009.1
    [Google Scholar]
  13. 13.
    Caunt CJ, Keyse SM. 2013. Dual-specificity MAP kinase phosphatases (MKPs). FEBS J. 280:489–504
    [Google Scholar]
  14. 14.
    Chen Z, Gibson TB, Robinson F, Silvestro L, Pearson G et al. 2001. MAP kinases. Chem. Rev. 101:2449–76
    [Google Scholar]
  15. 15.
    Dorfman K, Carrasco D, Gruda M, Ryan C, Lira SA, Bravo R. 1996. Disruption of the Erp/Mkp-1 gene does not affect mouse development: normal MAP kinase activity in ERP/MKP-1-deficient fibroblasts. Oncogene 13:925–31
    [Google Scholar]
  16. 16.
    Cargnello M, Roux PP. 2011. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev. 75:50–83
    [Google Scholar]
  17. 17.
    Bennett BL, Sasaki DT, Murray BW, O'Leary EC, Sakata ST et al. 2001. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. PNAS 98:13681–86
    [Google Scholar]
  18. 18.
    Mayer RJ, Callahan JF. 2006. p38 MAP kinase inhibitors: a future therapy for inflammatory diseases. Drug Discov. Today Ther. Strateg. 3:49–54
    [Google Scholar]
  19. 19.
    Hill RJ, Dabbagh K, Phippard D, Li C, Suttmann RT et al. 2008. Pamapimod, a novel p38 mitogen-activated protein kinase inhibitor: preclinical analysis of efficacy and selectivity. J. Pharmacol. Exp. Ther. 327:610–19
    [Google Scholar]
  20. 20.
    Stebbins JL, De SK, Machleidt T, Becattini B, Vazquez J et al. 2008. Identification of a new JNK inhibitor targeting the JNK-JIP interaction site. PNAS 105:16809–13
    [Google Scholar]
  21. 21.
    Chin HM, Lai DK, Falchook GS. 2019. Extracellular signal-regulated kinase (ERK) inhibitors in oncology clinical trials. J. Immunother. Precis. Oncol. 2:10–16
    [Google Scholar]
  22. 22.
    Tonks NK. 2006. Protein tyrosine phosphatases: from genes, to function, to disease. Nat. Rev. Mol. Cell Biol. 7:833–46
    [Google Scholar]
  23. 23.
    Seternes O-M, Kidger AM, Keyse SM. 2019. Dual-specificity MAP kinase phosphatases in health and disease. Biochim. Biophys. Acta 1866:124–43
    [Google Scholar]
  24. 24.
    Keyse SM, Emslie EA. 1992. Oxidative stress and heat shock induce a human gene encoding a protein-tyrosine phosphatase. Nature 359:644–47
    [Google Scholar]
  25. 25.
    Franklin CC, Kraft AS. 1997. Conditional expression of the mitogen-activated protein kinase (MAPK) phosphatase MKP-1 preferentially inhibits p38 MAPK and stress-activated protein kinase in U937 cells. J. Biol. Chem. 272:16917–23
    [Google Scholar]
  26. 26.
    Charles CH, Sun H, Lau LF, Tonks NK. 1993. The growth factor-inducible immediate-early gene 3CH134 encodes a protein-tyrosine-phosphatase. PNAS 90:5292–96
    [Google Scholar]
  27. 27.
    Wang H-Y, Cheng Z, Malbon CC. 2003. Overexpression of mitogen-activated protein kinase phosphatases MKP1, MKP2 in human breast cancer. Cancer Lett. 191:229–37
    [Google Scholar]
  28. 28.
    Shen J, Zhang Y, Yu H, Shen B, Liang Y et al. 2016. Role of DUSP1/MKP1 in tumorigenesis, tumor progression and therapy. Cancer Med. 5:2061–68
    [Google Scholar]
  29. 29.
    Chattopadhyay S, Machado-Pinilla R, Manguan-García C, Belda-Iniesta C, Moratilla C et al. 2006. MKP1/CL100 controls tumor growth and sensitivity to cisplatin in non-small-cell lung cancer. Oncogene 25:3335–45
    [Google Scholar]
  30. 30.
    Khadir A, Tiss A, Abubaker J, Abu-Farha M, Al-Khairi I et al. 2015. MAP kinase phosphatase DUSP1 is overexpressed in obese humans and modulated by physical exercise. Am. J. Physiol. Endocrinol. Metab. 308:E71–83
    [Google Scholar]
  31. 31.
    Lawan A, Min K, Zhang L, Canfran-Duque A, Jurczak MJ et al. 2018. Skeletal muscle-specific deletion of MKP-1 reveals a p38 MAPK/JNK/Akt signaling node that regulates obesity-induced insulin resistance. Diabetes 67:624–35
    [Google Scholar]
  32. 32.
    Low HB, Zhang Y. 2016. Regulatory roles of MAPK phosphatases in cancer. Immune Netw. 16:85–98
    [Google Scholar]
  33. 33.
    Lang R, Raffi F. 2019. Dual-specificity phosphatases in immunity and infection: an update. Int. J. Mol. Sci. 20:2710
    [Google Scholar]
  34. 34.
    Lawan A, Bennett AM. 2017. Mitogen-activated protein kinase regulation in hepatic metabolism. Trends Endocrinol. Metab. 28:868–78
    [Google Scholar]
  35. 35.
    Zhong C, Min K, Zhao Z, Zhang C, Gao E et al. 2021. MAP kinase phosphatase-5 deficiency protects against pressure overload-induced cardiac fibrosis. Front. Immunol. 12:790511
    [Google Scholar]
  36. 36.
    Xylourgidis N, Min K, Ahangari F, Yu G, Herazo-Maya JD et al. 2019. Role of dual-specificity protein phosphatase DUSP10/MKP-5 in pulmonary fibrosis. Am. J. Physiol. Lung Cell Mol. Physiol. 317:L678–89
    [Google Scholar]
  37. 37.
    Shi H, Verma M, Zhang L, Dong C, Flavell RA, Bennett AM. 2013. Improved regenerative myogenesis and muscular dystrophy in mice lacking Mkp5. J. Clin. Investig. 123:2064–77
    [Google Scholar]
  38. 38.
    Ventura J-J, Nebreda ÁR. 2006. Protein kinases and phosphatases as therapeutic targets in cancer. Clin. Trans. Oncol. 8:153–60
    [Google Scholar]
  39. 39.
    Ríos P, Nunes-Xavier CE, Tabernero L, Kohn M, Pulido R. 2014. Dual-specificity phosphatases as molecular targets for inhibition in human disease. Antioxid. Redox Signal. 20:2251–73
    [Google Scholar]
  40. 40.
    Krabill AD, Zhang Z-Y. 2021. Functional interrogation and therapeutic targeting of protein tyrosine phosphatases. Biochem. Soc. Trans. 49:1723–34
    [Google Scholar]
  41. 41.
    Barr AJ. 2010. Protein tyrosine phosphatases as drug targets: strategies and challenges of inhibitor development. Future Med. Chem. 2:1563–76
    [Google Scholar]
  42. 42.
    Zhang Z-Y. 2017. Drugging the undruggable: therapeutic potential of targeting protein tyrosine phosphatases. Acc. Chem. Res. 50:122–29
    [Google Scholar]
  43. 43.
    Tautz L, Critton DA, Grotegut S. 2013. Protein tyrosine phosphatases: structure, function, and implication in human disease. Methods Mol. Biol. 1053:179–221
    [Google Scholar]
  44. 44.
    Kolmodin K, Åqvist J. 2001. The catalytic mechanism of protein tyrosine phosphatases revisited. FEBS Lett. 498:208–13
    [Google Scholar]
  45. 45.
    Farooq A, Chaturvedi G, Mujtaba S, Plotnikova O, Zeng L et al. 2001. Solution structure of ERK2 binding domain of MAPK phosphatase MKP-3. Mol. Cell 7:387–99
    [Google Scholar]
  46. 46.
    Jeong DG, Yoon TS, Jung S-K, Park BC, Park H et al. 2011. Exploring binding sites other than the catalytic core in the crystal structure of the catalytic domain of MKP-4. Acta Crystallogr. D Biol. Crystallogr. 67:25–31
    [Google Scholar]
  47. 47.
    Farooq A, Plotnikova O, Chaturvedi G, Yan S, Zeng L et al. 2003. Solution structure of the MAPK phosphatase PAC-1 catalytic domain. Structure 11:155–64
    [Google Scholar]
  48. 48.
    Carnero A. 2006. High throughput screening in drug discovery. Clin. Trans. Oncol. 8:482–90
    [Google Scholar]
  49. 49.
    Dahlin JL, Baell J, Walters MA 2004. Assay interference by chemical reactivity. Assay Guidance Manual S Markossian, A Grossman, K Brimacombe, M Arkin, D Auld, et al Bethesda, MD: Eli Lilly & Co., Natl. Cent. Adv. Transl. Sci.
    [Google Scholar]
  50. 50.
    McCallum MM, Nandhikonda P, Temmer JJ, Eyermann C, Simeonov A et al. 2013. High-throughput identification of promiscuous inhibitors from screening libraries with the use of a thiol-containing fluorescent probe. J. Biomol. Screen 18:705–13
    [Google Scholar]
  51. 51.
    Stewart AE, Dowd S, Keyse SM, McDonald NQ. 1999. Crystal structure of the MAPK phosphatase Pyst1 catalytic domain and implications for regulated activation. Nat. Struct. Biol. 6:174–81
    [Google Scholar]
  52. 52.
    Jeong DG, Yoon T-S, Kim JH, Shim MY, Jung S-K et al. 2006. Crystal structure of the catalytic domain of human MAP kinase phosphatase 5: structural insight into constitutively active phosphatase. J. Mol. Biol. 360:946–55
    [Google Scholar]
  53. 53.
    Jeong DG, Cho YH, Yoon T-S, Kim JH, Ryu SE, Kim SJ. 2007. Crystal structure of the catalytic domain of human DUSP5, a dual specificity MAP kinase protein phosphatase. Proteins 66:253–58
    [Google Scholar]
  54. 54.
    Jeong DG, Jung S-K, Yoon T-S, Woo E-J, Kim JH et al. 2009. Crystal structure of the catalytic domain of human MKP-2 reveals a 24-mer assembly. Proteins 76:763–67
    [Google Scholar]
  55. 55.
    Lountos GT, Austin BP, Tropea JE, Waugh DS. 2015. Structure of human dual-specificity phosphatase 7, a potential cancer drug target. Acta Crystallogr. F Struct. Biol. Commun. 71:650–56
    [Google Scholar]
  56. 56.
    Muhammed MT, Aki-Yalcin E. 2019. Homology modeling in drug discovery: overview, current applications, and future perspectives. Chem. Biol. Drug Des. 93:12–20
    [Google Scholar]
  57. 57.
    Vogt A, Tamewitz A, Skoko J, Sikorski RP, Giuliano KA, Lazo JS. 2005. The benzo[c]phenanthridine alkaloid, sanguinarine, is a selective, cell-active inhibitor of mitogen-activated protein kinase phosphatase-1. J. Biol. Chem. 280:19078–86
    [Google Scholar]
  58. 58.
    Malikova J, Zdarilova A, Hlobilkova A. 2006. Effects of sanguinarine and chelerythrine on the cell cycle and apoptosis. Biomed. Pap. 150:5–12
    [Google Scholar]
  59. 59.
    Laines-Hidalgo JI, Muñoz-Sánchez JA, Loza-Müller L, Vázquez-Flota F. 2022. An update of the sanguinarine and benzophenanthridine alkaloids’ biosynthesis and their applications. Molecules 27:1378
    [Google Scholar]
  60. 60.
    Basu A, Kumar GS. 2020. Interaction of the putative anticancer alkaloid chelerythrine with nucleic acids: biophysical perspectives. Biophys. Rev. 12:1369–86
    [Google Scholar]
  61. 61.
    Kundu S, Fan K, Cao M, Lindner DJ, Tuthill R et al. 2010. Tyrosine phosphatase inhibitor-3 sensitizes melanoma and colon cancer to biotherapeutics and chemotherapeutics. Mol. Cancer Ther. 9:2287–96
    [Google Scholar]
  62. 62.
    Wolpin BM, Mayer RJ. 2008. Systemic treatment of colorectal cancer. Gastroenterology 134:1296–310.e1
    [Google Scholar]
  63. 63.
    Ward Y, Gupta S, Jensen P, Wartmann M, Davis RJ, Kelly K. 1994. Control of MAP kinase activation by the mitogen-induced threonine/tyrosine phosphatase PAC1. Nature 367:651–54
    [Google Scholar]
  64. 64.
    Rohan PJ, Davis P, Moskaluk CA, Kearns M, Krutzsch H et al. 1993. PAC-1: a mitogen-induced nuclear protein tyrosine phosphatase. Science 259:1763–66
    [Google Scholar]
  65. 65.
    Boyce M, Bryant KF, Jousse C, Long K, Harding HP et al. 2005. A selective inhibitor of eIF2α dephosphorylation protects cells from ER stress. Science 307:935–39
    [Google Scholar]
  66. 66.
    Hamamura K, Lin CC, Yokota H. 2013. Salubrinal reduces expression and activity of MMP13 in chondrocytes. Osteoarthritis Cartilage 21:764–72
    [Google Scholar]
  67. 67.
    Hamamura K, Nishimura A, Chen A, Takigawa S, Sudo A, Yokota H. 2015. Salubrinal acts as a Dusp2 inhibitor and suppresses inflammation in anti-collagen antibody-induced arthritis. Cell. Signal. 27:828–35
    [Google Scholar]
  68. 68.
    Pescini Gobert R, Joubert L, Curchod M-L, Salvat C, Foucault I et al. 2009. Convergent functional genomics of oligodendrocyte differentiation identifies multiple autoinhibitory signaling circuits. Mol. Cell. Biol. 29:1538–53
    [Google Scholar]
  69. 69.
    Misra-Press A, Rim CS, Yao H, Roberson MS, Stork PJ. 1995. A novel mitogen-activated protein kinase phosphatase: structure, expression, and regulation. J. Biol. Chem. 270:14587–96
    [Google Scholar]
  70. 70.
    Cadalbert L, Sloss CM, Cameron P, Plevin R. 2005. Conditional expression of MAP kinase phosphatase-2 protects against genotoxic stress-induced apoptosis by binding and selective dephosphorylation of nuclear activated c-jun N-terminal kinase. Cell. Signal. 17:1254–64
    [Google Scholar]
  71. 71.
    Ratsada P, Hijiya N, Hidano S, Tsukamoto Y, Nakada C et al. 2020. DUSP4 is involved in the enhanced proliferation and survival of DUSP4-overexpressing cancer cells. Biochem. Biophys. Res. Commun. 528:586–93
    [Google Scholar]
  72. 72.
    Park H, Jeon TJ, Chien PN, Park SY, Oh SM, Kim SJ et al. 2014. Discovery of novel DUSP4 inhibitors through the virtual screening with docking simulations. Bull. Korean Chem. Soc. 35:2655–59
    [Google Scholar]
  73. 73.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. 1997. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Del. Rev. 23:3–25
    [Google Scholar]
  74. 74.
    Camps M, Nichols A, Gillieron C, Antonsson B, Muda M et al. 1998. Catalytic activation of the phosphatase MKP-3 by ERK2 mitogen-activated protein kinase. Science 280:1262–65
    [Google Scholar]
  75. 75.
    Dickinson RJ, Eblaghie MC, Keyse SM, Morriss-Kay GM. 2002. Expression of the ERK-specific MAP kinase phosphatase PYST1/MKP3 in mouse embryos during morphogenesis and early organogenesis. Mech. Dev. 113:193–96
    [Google Scholar]
  76. 76.
    Vogt A, Cooley KA, Brisson M, Tarpley MG, Wipf P, Lazo JS. 2003. Cell-active dual specificity phosphatase inhibitors identified by high-content screening. Chem. Biol. 10:733–42
    [Google Scholar]
  77. 77.
    Lazo JS, Aslan DC, Southwick EC, Cooley KA, Ducruet AP et al. 2001. Discovery and biological evaluation of a new family of potent inhibitors of the dual specificity protein phosphatase Cdc25. J. Med. Chem. 44:4042–49
    [Google Scholar]
  78. 78.
    Vogt A, Adachi T, Ducruet AP, Chesebrough J, Nemoto K et al. 2001. Spatial analysis of key signaling proteins by high-content solid-phase cytometry in Hep3B cells treated with an inhibitor of Cdc25 dual-specificity phosphatases. J. Biol. Chem. 276:20544–50
    [Google Scholar]
  79. 79.
    Vogt A, McDonald PR, Tamewitz A, Sikorski RP, Wipf P et al. 2008. A cell-active inhibitor of mitogen-activated protein kinase phosphatases restores paclitaxel-induced apoptosis in dexamethasone-protected cancer cells. Mol. Cancer Ther. 7:330–40
    [Google Scholar]
  80. 80.
    González-Navajas JM, Fine S, Law J, Datta SK, Nguyen KP et al. 2010. TLR4 signaling in effector CD4+ T cells regulates TCR activation and experimental colitis in mice. J. Clin. Investig. 120:570–81
    [Google Scholar]
  81. 81.
    Wu W, Pew T, Zou M, Pang D, Conzen SD. 2005. Glucocorticoid receptor-induced MAPK phosphatase-1 (MPK-1) expression inhibits paclitaxel-associated MAPK activation and contributes to breast cancer cell survival. J. Biol. Chem. 280:4117–24
    [Google Scholar]
  82. 82.
    Molina G, Vogt A, Bakan A, Dai W, De Oliveira PQ et al. 2009. Zebrafish chemical screening reveals an inhibitor of Dusp6 that expands cardiac cell lineages. Nat. Chem. Biol. 5:680–87
    [Google Scholar]
  83. 83.
    Korotchenko VN, Saydmohammed M, Vollmer LL, Bakan A, Sheetz K et al. 2014. In vivo structure-activity relationship studies support allosteric targeting of a dual specificity phosphatase. ChemBioChem 15:1436–45
    [Google Scholar]
  84. 84.
    Shojaee S, Caeser R, Buchner M, Park E, Swaminathan S et al. 2015. Erk negative feedback control enables pre-B cell transformation and represents a therapeutic target in acute lymphoblastic leukemia. Cancer Cell 28:114–28
    [Google Scholar]
  85. 85.
    Wu Q-N, Liao Y-F, Lu Y-X, Wang Y, Lu J-H et al. 2018. Pharmacological inhibition of DUSP6 suppresses gastric cancer growth and metastasis and overcomes cisplatin resistance. Cancer Lett. 412:243–55
    [Google Scholar]
  86. 86.
    Cao S, Murphy BT, Foster C, Lazo JS, Kingston DGI. 2009. Bioactivities of simplified adociaquinone B and naphthoquinone derivatives against Cdc25B, MKP-1, and MKP-3 phosphatases. Bioorg. Med. Chem. 17:2276–81
    [Google Scholar]
  87. 87.
    Theodosiou A, Smith A, Gillieron C, Arkinstall S, Ashworth A. 1999. MKP5, a new member of the MAP kinase phosphatase family, which selectively dephosphorylates stress-activated kinases. Oncogene 18:6981–88
    [Google Scholar]
  88. 88.
    Tanoue T, Moriguchi T, Nishida E. 1999. Molecular cloning and characterization of a novel dual specificity phosphatase, MKP-5. J. Biol. Chem. 274:19949–56
    [Google Scholar]
  89. 89.
    Masuda K, Shima H, Kikuchi K, Watanabe Y, Matsuda Y. 2000. Expression and comparative chromosomal mapping of MKP-5 genes DUSP10/Dusp10. Cytogenet. Cell. Genet. 90:71–74
    [Google Scholar]
  90. 90.
    Gannam ZTK, Min K, Shillingford SR, Zhang L, Herrington J et al. 2020. An allosteric site on MKP5 reveals a strategy for small-molecule inhibition. Sci. Signal. 13:eaba3043
    [Google Scholar]
  91. 91.
    Xylourgidis N, Min K, Ahangari F, Yu G, Herazo-Maya JD et al. 2019. Role of dual-specificity protein phosphatase DUSP10/MKP-5 in pulmonary fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 317:L678–89
    [Google Scholar]
  92. 92.
    Masuda K, Shima H, Watanabe M, Kikuchi K. 2001. MKP-7, a novel mitogen-activated protein kinase phosphatase, functions as a shuttle protein. J. Biol. Chem. 276:39002–11
    [Google Scholar]
  93. 93.
    Tanoue T, Yamamoto T, Maeda R, Nishida E. 2001. A novel MAPK phosphatase MKP-7 acts preferentially on JNK/SAPK and p38α and β MAPKs. J. Biol. Chem. 276:26629–39
    [Google Scholar]
  94. 94.
    Low HB, Wong ZL, Wu B, Kong LR, Png CW et al. 2021. DUSP16 promotes cancer chemoresistance through regulation of mitochondria-mediated cell death. Nat. Commun. 12:2284
    [Google Scholar]
  95. 95.
    Zhang H, Zheng H, Mu W, He Z, Yang B et al. 2015. DUSP16 ablation arrests the cell cycle and induces cellular senescence. FEBS J. 282:4580–94
    [Google Scholar]
  96. 96.
    Musikacharoen T, Bandow K, Kakimoto K, Kusuyama J, Onishi T et al. 2011. Functional involvement of dual specificity phosphatase 16 (DUSP16), a c-Jun N-terminal kinase-specific phosphatase, in the regulation of T helper cell differentiation. J. Biol. Chem. 286:24896–905
    [Google Scholar]
  97. 97.
    Raphael I, Nalawade S, Eagar TN, Forsthuber TG. 2015. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 74:5–17
    [Google Scholar]
  98. 98.
    Park H, Park SY, Nam S-W, Ryu SE. 2014. Discovery of novel DUSP16 phosphatase inhibitors through virtual screening with homology modeled protein structure. J. Biomol. Screen. 19:1383–90
    [Google Scholar]
  99. 99.
    Chen Y-NP, LaMarche MJ, Chan HM, Fekkes P, Garcia-Fortanet J et al. 2016. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature 535:148–52
    [Google Scholar]
  100. 100.
    Peti W, Nairn AC, Page R. 2013. Structural basis for protein phosphatase 1 regulation and specificity. FEBS J. 280:596–611
    [Google Scholar]
  101. 101.
    Tripathi NK, Shrivastava A. 2019. Recent developments in bioprocessing of recombinant proteins: expression hosts and process development. Front. Bioeng. Biotechnol. 7:420
    [Google Scholar]
  102. 102.
    Montserat J, Chen L, Lawrence DS, Zhang Z-Y. 1996. Potent low molecular weight substrates for protein-tyrosine phosphatase. J. Biol. Chem. 271:7868–72
    [Google Scholar]
  103. 103.
    Tautz L, Sergienko EA. 2013. High-throughput screening for protein tyrosine phosphatase activity modulators. Methods Mol. Biol. 1053:223–40
    [Google Scholar]
  104. 104.
    Stanford SM, Bottini N. 2017. Targeting tyrosine phosphatases: time to end the stigma. Trends Pharmacol. Sci. 38:524–40
    [Google Scholar]
  105. 105.
    Shen K, Keng Y-F, Wu L, Guo X-L, Lawrence DS, Zhang Z-Y. 2001. Acquisition of a specific and potent PTP1B inhibitor from a novel combinatorial library and screening procedure. J. Biol. Chem. 276:47311–19
    [Google Scholar]
  106. 106.
    Low JL, Chai CL, Yao SQ. 2014. Bidentate inhibitors of protein tyrosine phosphatases. Antioxid. Redox Signal. 20:2225–50
    [Google Scholar]
  107. 107.
    Maeshima K, Stanford SM, Hammaker D, Sacchetti C, Zeng L-F et al. 2016. Abnormal PTPN11 enhancer methylation promotes rheumatoid arthritis fibroblast-like synoviocyte aggressiveness and joint inflammation. JCI Insight 1:e86580
    [Google Scholar]
  108. 108.
    Tanoue T, Yamamoto T, Nishida E. 2002. Modular structure of a docking surface on MAPK phosphatases. J. Biol. Chem. 277:22942–49
    [Google Scholar]
  109. 109.
    Guo K, Tang JP, Jie L, Al-Aidaroos AQO, Hong CW et al. 2012. Engineering the first chimeric antibody in targeting intracellular PRL-3 oncoprotein for cancer therapy in mice. Oncotarget 3:158–71
    [Google Scholar]
  110. 110.
    Du S, Liew SS, Zhang C-W, Du W, Lang W et al. 2020. Cell-permeant bioadaptors for cytosolic delivery of native antibodies: a “mix-and-go” approach. ACS Cent. Sci. 6:2362–76
    [Google Scholar]
  111. 111.
    Zinker BA, Rondinone CM, Trevillyan JM, Gum RJ, Clampit JE et al. 2002. PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice. PNAS 99:11357–62
    [Google Scholar]
  112. 112.
    Digenio A, Pham NC, Watts LM, Morgan ES, Jung SW et al. 2018. Antisense inhibition of protein tyrosine phosphatase 1B with IONIS-PTP-1BRx improves insulin sensitivity and reduces weight in overweight patients with type 2 diabetes. Diabetes Care 41:807–14
    [Google Scholar]
  113. 113.
    Wang M, Lu J, Wang M, Yang C-Y, Wang S 2020. Discovery of SHP2-D26 as a first, potent, and effective PROTAC degrader of SHP2 protein. J. Med. Chem. 63:7510–28
    [Google Scholar]
  114. 114.
    Small GW, Shi YY, Higgins LS, Orlowski RZ. 2007. Mitogen-activated protein kinase phosphatase-1 is a mediator of breast cancer chemoresistance. Cancer Res. 67:4459
    [Google Scholar]
  115. 115.
    Magi-Galluzzi C, Mishra R, Fiorentino M, Montironi R, Yao H et al. 1997. Mitogen-activated protein kinase phosphatase 1 is overexpressed in prostate cancers and is inversely related to apoptosis. Lab. Investig. 76:37–51
    [Google Scholar]
  116. 116.
    Wu JJ, Roth RJ, Anderson EJ, Hong E-G, Lee M-K et al. 2006. Mice lacking MAP kinase phosphatase-1 have enhanced MAP kinase activity and resistance to diet-induced obesity. Cell Metab. 4:61–73
    [Google Scholar]
  117. 117.
    Bennett AM, Lawan A. 2020. Improving obesity and insulin resistance by targeting skeletal muscle MKP-1. J. Cell. Signal. 1:160–68
    [Google Scholar]
  118. 118.
    Jeffrey KL, Brummer T, Rolph MS, Liu SM, Callejas NA et al. 2006. Positive regulation of immune cell function and inflammatory responses by phosphatase PAC-1. Nat. Immunol. 7:274–83
    [Google Scholar]
  119. 119.
    Givant-Horwitz V, Davidson B, Goderstad JM, Nesland JM, Tropé CG, Reich R. 2004. The PAC-1 dual specificity phosphatase predicts poor outcome in serous ovarian carcinoma. Gynecol. Oncol. 93:517–23
    [Google Scholar]
  120. 120.
    Barbour M, Plevin R, Jiang H-R. 2016. MAP kinase phosphatase 2 deficient mice develop attenuated experimental autoimmune encephalomyelitis through regulating dendritic cells and T cells. Sci. Rep. 6:38999
    [Google Scholar]
  121. 121.
    Cornell TT, Rodenhouse P, Cai Q, Sun L, Shanley TP. 2010. Mitogen-activated protein kinase phosphatase 2 regulates the inflammatory response in sepsis. Infect. Immun. 78:2868–76
    [Google Scholar]
  122. 122.
    Gupta A, Towers C, Willenbrock F, Brant R, Hodgson DR et al. 2020. Dual-specificity protein phosphatase DUSP4 regulates response to MEK inhibition in BRAF wild-type melanoma. Br. J. Cancer 122:506–16
    [Google Scholar]
  123. 123.
    Feng B, Jiao P, Helou Y, Li Y, He Q et al. 2014. Mitogen-activated protein kinase phosphatase 3 (MKP-3)-deficient mice are resistant to diet-induced obesity. Diabetes 63:2924–34
    [Google Scholar]
  124. 124.
    Xu H, Yang Q, Shen M, Huang X, Dembski M et al. 2005. Dual specificity MAPK phosphatase 3 activates PEPCK gene transcription and increases gluconeogenesis in rat hepatoma cells. J. Biol. Chem. 280:36013–18
    [Google Scholar]
  125. 125.
    Domercq M, Alberdi E, Sánchez-Gómez MV, Ariz U, Pérez-Samartín A, Matute C. 2011. Dual-specific phosphatase-6 (Dusp6) and ERK mediate AMPA receptor-induced oligodendrocyte death. J. Biol. Chem. 286:11825–36
    [Google Scholar]
  126. 126.
    Purcell NH, Wilkins BJ, York A, Saba-El-Leil MK, Meloche S et al. 2007. Genetic inhibition of cardiac ERK1/2 promotes stress-induced apoptosis and heart failure but has no effect on hypertrophy in vivo. PNAS 104:14074–79
    [Google Scholar]
  127. 127.
    Levy-Nissenbaum O, Sagi-Assif O, Kapon D, Hantisteanu S, Burg T et al. 2003. Dual-specificity phosphatase Pyst2-L is constitutively highly expressed in myeloid leukemia and other malignant cells. Oncogene 22:7649–60
    [Google Scholar]
  128. 128.
    Liu R, van Berlo JH, York AJ, Vagnozzi RJ, Maillet M, Molkentin JD. 2016. DUSP8 regulates cardiac ventricular remodeling by altering ERK1/2 signaling. Circ. Res. 119:249–60
    [Google Scholar]
  129. 129.
    Fukuda H, Imamura M, Tanaka Y, Iwata M, Hirose H et al. 2012. A single nucleotide polymorphism within DUSP9 is associated with susceptibility to type 2 diabetes in a Japanese population. PLOS ONE 7:e46263
    [Google Scholar]
  130. 130.
    Kabir NN, Rönnstrand L, Kazi JU. 2013. Deregulation of protein phosphatase expression in acute myeloid leukemia. Med. Oncol. 30:517
    [Google Scholar]
  131. 131.
    Zhang T, Li X, Du Q, Gong S, Wu M et al. 2014. DUSP10 gene polymorphism and risk of colorectal cancer in the Han Chinese population. Eur. J. Cancer Prev. 23:173–76
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-051921-121923
Loading
/content/journals/10.1146/annurev-pharmtox-051921-121923
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error