1932

Abstract

Chemoprevention refers to the use of natural or synthetic agents to reverse, suppress, or prevent the progression or recurrence of cancer. A large body of preclinical and clinical data suggest the ability of aspirin to prevent precursor lesions and cancers, but much of the clinical data are inferential and based on descriptive epidemiology, case control, and cohort studies or studies designed to answer other questions (e.g., cardiovascular mortality). Multiple pharmacological, clinical, and epidemiologic studies suggest that aspirin can prevent certain cancers but may also cause other effects depending on the tissue or disease and organ site in question. The best-known biological targets of aspirin are cyclooxygenases, which drive a wide variety of functions, including hemostasis, inflammation, and immune modulation. Newly recognized molecular and cellular interactions suggest additional modifiable functional targets, and the existence of consensus molecular cancer subtypes suggests that aspirin may have differential effects based on tumor heterogeneity. This review focuses on new pharmacological developments and innovations in biopharmacology that clarify the potential role of aspirin in cancer chemoprevention.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-052020-023107
2023-01-20
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/63/1/annurev-pharmtox-052020-023107.html?itemId=/content/journals/10.1146/annurev-pharmtox-052020-023107&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Rothwell PM, Wilson M, Elwin CE, Norrving B, Algra A et al. 2010. Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet 376:1741–50
    [Google Scholar]
  2. 2.
    Drew DA, Chan AT. 2021. Aspirin in the prevention of colorectal neoplasia. Annu. Rev. Med. 72:415–30
    [Google Scholar]
  3. 3.
    Burn J, Sheth H, Elliott F, Reed L, Macrae F et al. 2020. Cancer prevention with aspirin in hereditary colorectal cancer (Lynch syndrome), 10-year follow-up and registry-based 20-year data in the CAPP2 study: a double-blind, randomised, placebo-controlled trial. Lancet 395:1855–63
    [Google Scholar]
  4. 4.
    Bibbins-Domingo K, US Prev. Serv. Task Force. 2016. Aspirin use for the primary prevention of cardiovascular disease and colorectal cancer: recommendations from the U.S. Preventive Services Task Force. Ann. Intern. Med. 164:836–45
    [Google Scholar]
  5. 5.
    Dehmer S, O'Keefe L, Grossman E, Mecisosk M. 2021. Aspirin use to prevent cardiovascular disease and colorectal cancer: an updated decision analysis for the U.S. Preventive Services Task Force. Tech. Rep. 21-05283-EF-2 Agency Health Res. Qual. Rockville, MD:
  6. 6.
    US Prev. Serv. Task Force 2022. Aspirin use to prevent cardiovascular disease: US Preventive Task Force Recommendation Statement. JAMA 327:1577–84
    [Google Scholar]
  7. 7.
    Baron JA, Cole BF, Sandler RS, Haile RW, Ahnen D et al. 2003. A randomized trial of aspirin to prevent colorectal adenomas. N. Engl. J. Med.348891–99
    [Google Scholar]
  8. 8.
    Zacharias NM, Ornelas A, Lee J, Hu J, Davis JS et al. 2019. Real-time interrogation of aspirin reactivity, biochemistry, and biodistribution by hyperpolarized magnetic resonance spectroscopy. Angew. Chem. Int. Ed. Engl. 58:4179–83
    [Google Scholar]
  9. 9.
    Menter DG, Afshar-Kharghan V, Shen JP, Martch SL, Maitra A et al. 2022. Of vascular defense, hemostasis, cancer, and platelet biology: an evolutionary perspective. Cancer Metastasis Rev. 41:147–72
    [Google Scholar]
  10. 10.
    Huang J, Zhang P, Solari FA, Sickmann A, Garcia A et al. 2021. Molecular proteomics and signalling of human platelets in health and disease. Int. J. Mol. Sci. 22:9860
    [Google Scholar]
  11. 11.
    Shah P, Yang W, Sun S, Pasay J, Faraday N, Zhang H. 2017. Platelet glycoproteins associated with aspirin-treatment upon platelet activation. Proteomics 17:201600199
    [Google Scholar]
  12. 12.
    Mateos-Caceres PJ, Macaya C, Azcona L, Modrego J, Mahillo E et al. 2010. Different expression of proteins in platelets from aspirin-resistant and aspirin-sensitive patients. Thromb. Haemost. 103:160–70
    [Google Scholar]
  13. 13.
    Barrachina MN, Hermida-Nogueira L, Moran LA, Casas V, Hicks SM et al. 2021. Phosphoproteomic analysis of platelets in severe obesity uncovers platelet reactivity and signaling pathways alterations. Arterioscler. Thromb. Vasc. Biol. 41:478–90
    [Google Scholar]
  14. 14.
    Orouji E, Raman AT, Singh AK, Sorokin A, Arslan E et al. 2021. Chromatin state dynamics confers specific therapeutic strategies in enhancer subtypes of colorectal cancer. Gut 71:938–49
    [Google Scholar]
  15. 15.
    Liu Y, Baggerly KA, Orouji E, Manyam G, Chen H et al. 2021. Methylation-eQTL analysis in cancer research. Bioinformatics 37:4014–22
    [Google Scholar]
  16. 16.
    Tsujii M, DuBois RN. 1995. Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell 83:493–501
    [Google Scholar]
  17. 17.
    Zou Z, Zheng W, Fan H, Deng G, Lu SH et al. 2021. Aspirin enhances the therapeutic efficacy of cisplatin in oesophageal squamous cell carcinoma by inhibition of putative cancer stem cells. Br. J. Cancer 125:826–38
    [Google Scholar]
  18. 18.
    Tatham MH, Cole C, Scullion P, Wilkie R, Westwood NJ et al. 2017. A proteomic approach to analyze the aspirin-mediated lysine acetylome. Mol. Cell Proteom. 16:310–26
    [Google Scholar]
  19. 19.
    Jung SB, Kim CS, Naqvi A, Yamamori T, Mattagajasingh I et al. 2010. Histone deacetylase 3 antagonizes aspirin-stimulated endothelial nitric oxide production by reversing aspirin-induced lysine acetylation of endothelial nitric oxide synthase. Circ. Res. 107:877–87
    [Google Scholar]
  20. 20.
    Lim J, Song Y, Jang JH, Jeong CH, Lee S et al. 2018. Aspirin-inspired acetyl-donating HDACs inhibitors. Arch. Pharm. Res. 41:967–76
    [Google Scholar]
  21. 21.
    Zhan Y, He Z, Liu X, Miao N, Lin F et al. 2018. Aspirin-induced attenuation of adipogenic differentiation of bone marrow mesenchymal stem cells is accompanied by the disturbed epigenetic modification. Int. J. Biochem. Cell Biol. 98:29–42
    [Google Scholar]
  22. 22.
    Mitchell JA, Warner TD. 2006. COX isoforms in the cardiovascular system: understanding the activities of non-steroidal anti-inflammatory drugs. Nat. Rev. Drug Discov. 5:75–86
    [Google Scholar]
  23. 23.
    Marnett LJ, Wlodawer P, Samuelsson B. 1975. Co-oxygenation of organic substrates by the prostaglandin synthetase of sheep vesicular gland. J. Biol. Chem. 250:8510–17
    [Google Scholar]
  24. 24.
    Johnson JL, Wimsatt J, Buckel SD, Dyer RD, Maddipati KR. 1995. Purification and characterization of prostaglandin H synthase-2 from sheep placental cotyledons. Arch. Biochem. Biophys. 324:26–34
    [Google Scholar]
  25. 25.
    Gierse JK, Koboldt CM, Walker MC, Seibert K, Isakson PC. 1999. Kinetic basis for selective inhibition of cyclo-oxygenases. Biochem. J. 339:Pt. 3607–14
    [Google Scholar]
  26. 26.
    Liu W, Poole EM, Ulrich CM, Kulmacz RJ. 2012. Decreased cyclooxygenase inhibition by aspirin in polymorphic variants of human prostaglandin H synthase-1. Pharmacogenet. Genom. 22:525–37
    [Google Scholar]
  27. 27.
    Miyamoto T, Yamamoto S, Hayaishi O. 1974. Prostaglandin synthetase system. resolution into oxygenase and isomerase components. PNAS 71:3645–48
    [Google Scholar]
  28. 28.
    Loll PJ, Picot D, Garavito RM. 1995. The structural basis of aspirin activity inferred from the crystal structure of inactivated prostaglandin H2 synthase. Nat. Struct. Biol. 2:637–43
    [Google Scholar]
  29. 29.
    Menter DG, Tucker SC, Kopetz S, Sood AK, Crissman JD, Honn KV. 2014. Platelets and cancer: a casual or causal relationship: revisited. Cancer Metastasis Rev. 33:231–69
    [Google Scholar]
  30. 30.
    Raz A, Wyche A, Siegel N, Needleman P. 1988. Regulation of fibroblast cyclooxygenase synthesis by interleukin-1. J. Biol. Chem. 263:3022–28
    [Google Scholar]
  31. 31.
    Fletcher BS, Kujubu DA, Perrin DM, Herschman HR. 1992. Structure of the mitogen-inducible TIS10 gene and demonstration that the TIS10-encoded protein is a functional prostaglandin G/H synthase. J. Biol. Chem. 267:4338–44
    [Google Scholar]
  32. 32.
    Hla T, Neilson K. 1992. Human cyclooxygenase-2 cDNA. PNAS 89:7384–88
    [Google Scholar]
  33. 33.
    Blobaum AL, Marnett LJ. 2007. Structural and functional basis of cyclooxygenase inhibition. J. Med. Chem. 50:1425–41
    [Google Scholar]
  34. 34.
    Bakhle YS. 1999. Structure of COX-1 and COX-2 enzymes and their interaction with inhibitors. Drugs Today 35:237–50
    [Google Scholar]
  35. 35.
    Miciaccia M, Belviso BD, Iaselli M, Cingolani G, Ferorelli S et al. 2021. Three-dimensional structure of human cyclooxygenase (hCOX)-1. Sci. Rep. 11:4312
    [Google Scholar]
  36. 36.
    Yoon SH, Cho DY, Choi SR, Lee JY, Choi DK et al. 2021. Synthesis and biological evaluation of salicylic acid analogues of celecoxib as a new class of selective cyclooxygenase-1 inhibitor. Biol. Pharm. Bull. 44:1230–38
    [Google Scholar]
  37. 37.
    Szkatula D, Krzyzak E, Stanowska P, Duda M, Wiatrak B. 2021. A new N-substituted 1H-isoindole-1,3(2H)-dione derivative-synthesis, structure and affinity for cyclooxygenase based on in vitro studies and molecular docking. Int. J. Mol. Sci. 22:7678
    [Google Scholar]
  38. 38.
    Sobolewski C, Legrand N. 2021. Celecoxib analogues for cancer treatment: an update on OSU-03012 and 2,5-dimethyl-celecoxib. Biomolecules 11:1049
    [Google Scholar]
  39. 39.
    Mahboubi-Rabbani M, Zarghi A. 2021. Dual human carbonic anhydrase/cyclooxygenase-2 inhibitors: a promising approach for cancer treatment. Anticancer Agents Med. Chem. 21:2163–80
    [Google Scholar]
  40. 40.
    Jones Lipinski RA, Thillier Y, Morisseau C, Sebastiano CS Jr., Smith BC et al. 2021. Molecular docking-guided synthesis of NSAID-glucosamine bioconjugates and their evaluation as COX-1/COX-2 inhibitors with potentially reduced gastric toxicity. Chem. Biol. Drug Des. 98:102–13
    [Google Scholar]
  41. 41.
    El-Dash Y, Khalil NA, Ahmed EM, Hassan MSA 2021. Synthesis and biological evaluation of new nicotinate derivatives as potential anti-inflammatory agents targeting COX-2 enzyme. Bioorg. Chem. 107:104610
    [Google Scholar]
  42. 42.
    Bai HW, Yang C, Wang P, Rao S, Zhu BT. 2021. Inhibition of cyclooxygenase by blocking the reducing cosubstrate at the peroxidase site: discovery of galangin as a novel cyclooxygenase inhibitor. Eur. J. Pharmacol. 899:174036
    [Google Scholar]
  43. 43.
    Yang C, Li P, Ding X, Sui HC, Rao S et al. 2020. Mechanism for the reactivation of the peroxidase activity of human cyclooxygenases: investigation using phenol as a reducing cosubstrate. Sci. Rep. 10:15187
    [Google Scholar]
  44. 44.
    Szczukowski Ł, Krzyzak E, Zborowska A, Zajac P, Potyrak K et al. 2020. Design, synthesis and comprehensive investigations of pyrrolo[3,4-d]pyridazinone-based 1,3,4-oxadiazole as new class of selective COX-2 inhibitors. Int. J. Mol. Sci. 21:9623
    [Google Scholar]
  45. 45.
    Liao X, Lochhead P, Nishihara R, Morikawa T, Kuchiba A et al. 2012. Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival. N. Engl. J. Med. 367:1596–606
    [Google Scholar]
  46. 46.
    Bader AG, Kang S, Vogt PK. 2006. Cancer-specific mutations in PIK3CA are oncogenic in vivo. PNAS 103:1475–79
    [Google Scholar]
  47. 47.
    Wang Q, Shi YL, Zhou K, Wang LL, Yan ZX et al. 2018. PIK3CA mutations confer resistance to first-line chemotherapy in colorectal cancer. Cell Death Dis. 9:739
    [Google Scholar]
  48. 48.
    Rai A, Fang H, Claridge B, Simpson RJ, Greening DW. 2021. Proteomic dissection of large extracellular vesicle surfaceome unravels interactive surface platform. J. Extracell. Vesicles 10:e12164
    [Google Scholar]
  49. 49.
    Li J, Wen S, Li B, Li N, Zhan X. 2021. Phosphorylation-mediated molecular pathway changes in human pituitary neuroendocrine tumors identified by quantitative phosphoproteomics. Cells 10:2225
    [Google Scholar]
  50. 50.
    Walraven M, Sabrkhany S, Knol JC, Dekker H, de Reus I et al. 2021. Effects of cancer presence and therapy on the platelet proteome. Int. J. Mol. Sci. 22:8236
    [Google Scholar]
  51. 51.
    Sabrkhany S, Kuijpers MJE, Knol JC, Olde Damink SWM, Dingemans AC et al. 2018. Exploration of the platelet proteome in patients with early-stage cancer. J. Proteom.17765–74
    [Google Scholar]
  52. 52.
    Ye B, Li F, Chen M, Weng Y, Qi C et al. 2022. A panel of platelet-associated circulating long non-coding RNAs as potential biomarkers for colorectal cancer. Genomics11431–37
    [Google Scholar]
  53. 53.
    Best MG, Sol N, Kooi I, Tannous J, Westerman BA et al. 2015. RNA-seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics. Cancer Cell 28:666–76
    [Google Scholar]
  54. 54.
    Krishnan A, Thomas S. 2022. Toward platelet transcriptomics in cancer diagnosis, prognosis and therapy. Br. J. Cancer 126:316–22
    [Google Scholar]
  55. 55.
    Wurtzel JGT, Lazar S, Sikder S, Cai KQ, Astsaturov I et al. 2021. Platelet microRNAs inhibit primary tumor growth via broad modulation of tumor cell mRNA expression in ectopic pancreatic cancer in mice. PLOS ONE 16:e0261633
    [Google Scholar]
  56. 56.
    Devall MAM, Drew DA, Dampier CH, Plummer SJ, Eaton S et al. 2021. Transcriptome-wide in vitro effects of aspirin on patient-derived normal colon organoids. Cancer Prev. Res. 14:1089–100
    [Google Scholar]
  57. 57.
    Lech Pedersen N, Mertz Petersen M, Ladd JJ, Lampe PD, Bresalier RS et al. 2020. Development of blood-based biomarker tests for early detection of colorectal neoplasia: influence of blood collection timing and handling procedures. Clin. Chim. Acta 507:39–53
    [Google Scholar]
  58. 58.
    Schoeppner HL, Raz A, Ho SB, Bresalier RS. 1995. Expression of an endogenous galactose-binding lectin correlates with neoplastic progression in the colon. Cancer 75:2818–26
    [Google Scholar]
  59. 59.
    Wang D, Cabalag CS, Clemons NJ, DuBois RN. 2021. Cyclooxygenases and prostaglandins in tumor immunology and microenvironment of gastrointestinal cancer. Gastroenterology 161:1813–29
    [Google Scholar]
  60. 60.
    Ornelas A, Zacharias-Millward N, Menter DG, Davis JS, Lichtenberger L et al. 2017. Beyond COX-1: the effects of aspirin on platelet biology and potential mechanisms of chemoprevention. Cancer Metastasis Rev. 36:289–303
    [Google Scholar]
  61. 61.
    Kanikarla Marie P, Fowlkes NW, Afshar-Kharghan V, Martch SL, Sorokin A et al. 2021. The provocative roles of platelets in liver disease and cancer. Front. Oncol. 11:643815
    [Google Scholar]
  62. 62.
    Baber SR, Deng W, Rodriguez J, Master RG, Bivalacqua TJ et al. 2005. Vasoactive prostanoids are generated from arachidonic acid by COX-1 and COX-2 in the mouse. Am. J. Physiol. Heart Circ. Physiol. 289:H1476–87
    [Google Scholar]
  63. 63.
    Oshima M, Dinchuk JE, Kargman SL, Oshima H, Hancock B et al. 1996. Suppression of intestinal polyposis in ApcΔ716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 87:803–9
    [Google Scholar]
  64. 64.
    Williams CS, Luongo C, Radhika A, Zhang T, Lamps LW et al. 1996. Elevated cyclooxygenase-2 levels in Min mouse adenomas. Gastroenterology 111:1134–40
    [Google Scholar]
  65. 65.
    Fischer SM, Hawk ET, Lubet RA. 2011. Coxibs and other nonsteroidal anti-inflammatory drugs in animal models of cancer chemoprevention. Cancer Prev. Res. 4:1728–35
    [Google Scholar]
  66. 66.
    Davis JS, Kanikarla-Marie P, Gagea M, Yu PL, Fang D et al. 2020. Sulindac plus a phospholipid is effective for polyp reduction and safer than sulindac alone in a mouse model of colorectal cancer development. BMC Cancer 20:871
    [Google Scholar]
  67. 67.
    Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S, DuBois RN. 1994. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 107:1183–88
    [Google Scholar]
  68. 68.
    Phillips RK, Wallace MH, Lynch PM, Hawk E, Gordon GB et al. 2002. A randomised, double blind, placebo controlled study of celecoxib, a selective cyclooxygenase 2 inhibitor, on duodenal polyposis in familial adenomatous polyposis. Gut 50:857–60
    [Google Scholar]
  69. 69.
    Flower RJ, Blackwell GJ. 1976. The importance of phospholipase-A2 in prostaglandin biosynthesis. Biochem. Pharmacol. 25:285–91
    [Google Scholar]
  70. 70.
    Patrignani P, Sciulli MG, Manarini S, Santini G, Cerletti C, Evangelista V. 1999. COX-2 is not involved in thromboxane biosynthesis by activated human platelets. J. Physiol. Pharmacol. 50:661–67
    [Google Scholar]
  71. 71.
    Gorman RR, Bundy GL, Peterson DC, Sun FF, Miller OV, Fitzpatrick FA. 1977. Inhibition of human platelet thromboxane synthetase by 9,11-azoprosta-5,13-dienoic acid. PNAS 74:4007–11
    [Google Scholar]
  72. 72.
    Menter DG, Neagos G, Dunn J, Palazzo R, Tchen TT et al. 1982. Tumor cell induced platelet aggregation: inhibition by prostacyclin, thromboxane A2 and phosphodiesterase inhibitors. Prostaglandins and Cancer: First International Conference TJ Powles, RS Bockman, KV Honn, P Ramwell 809–13 New York: Alan R. Liss
    [Google Scholar]
  73. 73.
    Steinert BW, Tang DG, Grossi IM, Umbarger LA, Honn KV. 1993. Studies on the role of platelet eicosanoid metabolism and integrin αIIbβ3 in tumor-cell-induced platelet aggregation. Int. J. Cancer 54:92–101
    [Google Scholar]
  74. 74.
    Dogné JM, de Leval X, Kolh P, Sanna V, Rolin S et al. 2003. Pharmacological evaluation of the novel thromboxane modulator BM-567 (I/II). Effects of BM-567 on platelet function. Prostaglandins Leukot. Essent. Fatty Acids 68:49–54
    [Google Scholar]
  75. 75.
    Iizuka K, Akahane K, Momose D, Nakazawa M, Tanouchi T et al. 1981. Highly selective inhibitors of thromboxane synthetase. 1. Imidazole derivatives. J. Med. Chem. 24:1139–48
    [Google Scholar]
  76. 76.
    Uyama O, Nagatsuka K, Nakabayashi S, Isaka Y, Yoneda S et al. 1985. The effect of a thromboxane synthetase inhibitor, OKY-046, on urinary excretion of immunoreactive thromboxane B2 and 6-keto-prostaglandin F1 alpha in patients with ischemic cerebrovascular disease. Stroke 16:241–44
    [Google Scholar]
  77. 77.
    Mehta P, Lawson D, Ward MB, Lee-Ambrose L, Kimura A. 1986. Effects of thromboxane A2 inhibition on osteogenic sarcoma cell-induced platelet aggregation. Cancer Res. 46:5061–63
    [Google Scholar]
  78. 78.
    Koyama Y, Hoshino M, Yamaki T, Igarashi W, Ono T et al. 1994. [An experimental study of the efficacy of platelet aggregating inhibitor on hepatic metastasis]. Gan Kagaku Ryoho 21:2124–27 (In Japanese)
    [Google Scholar]
  79. 79.
    Aoki N, Johnson G 3rd, Siegfried MR, Lefer AM. 1989. Protective effects of a combination thromboxane synthesis inhibitor-receptor antagonist, R-68070, during murine traumatic shock. Eicosanoids 2:169–74
    [Google Scholar]
  80. 80.
    Janssens WJ, Cools FJ, Hoskens LA, Van Nueten JM. 1990. Effect of ridogrel on vascular contractions caused by vasoactive substances released during platelet activation. Thromb. Haemost. 64:91–96
    [Google Scholar]
  81. 81.
    Applova L, Karlickova J, Riha M, Filipsky T, Macakova K et al. 2017. The isoflavonoid tectorigenin has better antiplatelet potential than acetylsalicylic acid. Phytomedicine 35:11–17
    [Google Scholar]
  82. 82.
    Hamberg M, Svensson J, Samuelsson B. 1975. Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. PNAS 72:2994–98
    [Google Scholar]
  83. 83.
    Menter DG, Harkins C, Onoda J, Riorden W, Sloane BF et al. 1987. Inhibition of tumor cell induced platelet aggregation by prostacyclin and carbacyclin: an ultrastructural study. Invasion Metastasis 7:109–28
    [Google Scholar]
  84. 84.
    Haemmerle M, Stone RL, Menter DG, Afshar-Kharghan V, Sood AK. 2018. The platelet lifeline to cancer: challenges and opportunities. Cancer Cell 33:965–83
    [Google Scholar]
  85. 85.
    Werfel TA, Hicks DJ, Rahman B, Bendeman WE, Duvernay MT et al. 2020. Repurposing of a thromboxane receptor inhibitor based on a novel role in metastasis identified by phenome-wide association study. Mol. Cancer Ther. 19:2454–64
    [Google Scholar]
  86. 86.
    Zhang C, Liu Y, Gao Y, Shen J, Zheng S et al. 2009. Modified heparins inhibit integrin αIIbβ3 mediated adhesion of melanoma cells to platelets in vitro and in vivo. Int. J. Cancer 125:2058–65
    [Google Scholar]
  87. 87.
    Menter DG, Kopetz S, Hawk E, Sood AK, Loree JM et al. 2017. Platelet “first responders” in wound response, cancer, and metastasis. Cancer Metastasis Rev. 36:199–213
    [Google Scholar]
  88. 88.
    Cha YI, Kim SH, Sepich D, Buchanan FG, Solnica-Krezel L, DuBois RN. 2006. Cyclooxygenase-1-derived PGE2 promotes cell motility via the G-protein-coupled EP4 receptor during vertebrate gastrulation. Genes Dev. 20:77–86
    [Google Scholar]
  89. 89.
    Ruan DT, Tang N, Akasaka H, Lu R, Ruan KH. 2021. Engineering ‘Enzymelink’ for screening lead compounds to inhibit mPGES-1 while maintaining prostacyclin synthase activity. Future Med. Chem. 13:1091–103
    [Google Scholar]
  90. 90.
    Kim SH, Roszik J, Cho SN, Ogata D, Milton DR et al. 2019. The COX2 effector microsomal PGE2 synthase 1 is a regulator of immunosuppression in cutaneous melanoma. Clin. Cancer Res. 25:1650–63
    [Google Scholar]
  91. 91.
    Kim SH, Hashimoto Y, Cho SN, Roszik J, Milton DR et al. 2016. Microsomal PGE2 synthase-1 regulates melanoma cell survival and associates with melanoma disease progression. Pigment Cell Melanoma Res. 29:297–308
    [Google Scholar]
  92. 92.
    Sugimoto Y, Narumiya S. 2007. Prostaglandin E receptors. J. Biol. Chem. 282:11613–17
    [Google Scholar]
  93. 93.
    Friedman EA, Ogletree ML, Haddad EV, Boutaud O. 2015. Understanding the role of prostaglandin E2 in regulating human platelet activity in health and disease. Thromb. Res. 136:493–503
    [Google Scholar]
  94. 94.
    Kalinski P. 2012. Regulation of immune responses by prostaglandin E2. J. Immunol. 188:21–28
    [Google Scholar]
  95. 95.
    Ching MM, Reader J, Fulton AM. 2020. Eicosanoids in cancer: prostaglandin E2 receptor 4 in cancer therapeutics and immunotherapy. Front. Pharmacol. 11:819
    [Google Scholar]
  96. 96.
    Hong DS, Parikh A, Shapiro GI, Varga A, Naing A et al. 2020. First-in-human phase I study of immunomodulatory E7046, an antagonist of PGE2-receptor E-type 4 (EP4), in patients with advanced cancers. J. Immunother. Cancer 8:e000222
    [Google Scholar]
  97. 97.
    Rowlinson SW, Crews BC, Goodwin DC, Schneider C, Gierse JK, Marnett LJ. 2000. Spatial requirements for 15-(R)-hydroxy-5Z,8Z,11Z, 13E-eicosatetraenoic acid synthesis within the cyclooxygenase active site of murine COX-2: why acetylated COX-1 does not synthesize 15-(R)-hete. J. Biol. Chem. 275:6586–91
    [Google Scholar]
  98. 98.
    Melstrom LG, Bentrem DJ, Salabat MR, Kennedy TJ, Ding XZ et al. 2008. Overexpression of 5-lipoxygenase in colon polyps and cancer and the effect of 5-LOX inhibitors in vitro and in a murine model. Clin. Cancer Res. 14:6525–30
    [Google Scholar]
  99. 99.
    Serhan CN, Gotlinger K, Hong S, Lu Y, Siegelman J et al. 2006. Anti-inflammatory actions of neuroprotectin D1/protectin D1 and its natural stereoisomers: assignments of dihydroxy-containing docosatrienes. J. Immunol. 176:1848–59
    [Google Scholar]
  100. 100.
    Menter DG. 2021. Where is Waldo? or find the platelet. Cancer Metastasis Rev. 40:649–55
    [Google Scholar]
  101. 101.
    Dvorak HF. 1986. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315:1650–59
    [Google Scholar]
  102. 102.
    Lam M, Roszik J, Kanikarla-Marie P, Davis JS, Morris J et al. 2017. The potential role of platelets in the consensus molecular subtypes of colorectal cancer. Cancer Metastasis Rev. 36:273–88
    [Google Scholar]
  103. 103.
    Li H, Zhang Y, Liu M, Fan C, Feng C et al. 2022. Targeting PDE4 as a promising therapeutic strategy in chronic ulcerative colitis through modulating mucosal homeostasis. Acta Pharm. Sin. B 12:228–45
    [Google Scholar]
  104. 104.
    Sacco A, Bruno A, Contursi A, Dovizio M, Tacconelli S et al. 2019. Platelet-specific deletion of cyclooxygenase-1 ameliorates dextran sulfate sodium-induced colitis in mice. J. Pharmacol. Exp. Ther. 370:416–26
    [Google Scholar]
  105. 105.
    De Matteis R, Flak MB, Gonzalez-Nunez M, Austin-Williams S, Palmas F et al. 2022. Aspirin activates resolution pathways to reprogram T cell and macrophage responses in colitis-associated colorectal cancer. Sci. Adv. 8:eabl5420
    [Google Scholar]
  106. 106.
    Aoki T, Narumiya S. 2017. Prostaglandin E2-EP2 signaling as a node of chronic inflammation in the colon tumor microenvironment. Inflamm. Regen. 37:4
    [Google Scholar]
  107. 107.
    Ohnishi S, Hiramoto K, Ma N, Kawanishi S. 2021. Chemoprevention by aspirin against inflammation-related colorectal cancer in mice. J. Clin. Biochem. Nutr. 69:265–71
    [Google Scholar]
  108. 108.
    Ananthakrishnan AN, Higuchi LM, Huang ES, Khalili H, Richter JM et al. 2012. Aspirin, nonsteroidal anti-inflammatory drug use, and risk for Crohn disease and ulcerative colitis: a cohort study. Ann. Intern. Med. 156:350–59
    [Google Scholar]
  109. 109.
    Patel P, Gao G, Gulotta G, Dalal S, Cohen RD et al. 2021. Daily aspirin use does not impact clinical outcomes in patients with inflammatory bowel disease. Inflamm. Bowel Dis. 27:236–41
    [Google Scholar]
  110. 110.
    Drew DA, Schuck MM, Magicheva-Gupta MV, Stewart KO, Gilpin KK et al. 2020. Effect of low-dose and standard-dose aspirin on PGE2 biosynthesis among individuals with colorectal adenomas: a randomized clinical trial. Cancer Prev. Res. 13:877–88
    [Google Scholar]
  111. 111.
    Reyes-Uribe L, Wu W, Gelincik O, Bommi PV, Francisco-Cruz A et al. 2021. Naproxen chemoprevention promotes immune activation in Lynch syndrome colorectal mucosa. Gut 70:555–66
    [Google Scholar]
  112. 112.
    Chang K, McAllister F, Vilar E. 2022. Transcriptomic-assisted immune and neoantigen profiling in premalignancy. Methods Mol. Biol. 2435:95–105
    [Google Scholar]
  113. 113.
    Fujita M, Kohanbash G, Fellows-Mayle W, Hamilton RL, Komohara Y et al. 2011. COX-2 blockade suppresses gliomagenesis by inhibiting myeloid-derived suppressor cells. Cancer Res. 71:2664–74
    [Google Scholar]
  114. 114.
    Wang Y, Cui L, Georgiev P, Singh L, Zheng Y et al. 2021. Combination of EP4 antagonist MF-766 and anti-PD-1 promotes anti-tumor efficacy by modulating both lymphocytes and myeloid cells. Oncoimmunology 10:1896643
    [Google Scholar]
  115. 115.
    Knudsen NH, Manguso RT. 2020. Tumor-derived PGE2 gives NK cells a headache. Immunity 53:1131–32
    [Google Scholar]
  116. 116.
    Hu CD, Kosaka Y, Marcus P, Rashedi I, Keating A. 2019. Differential immunomodulatory effects of human bone marrow-derived mesenchymal stromal cells on natural killer cells. Stem. Cells Dev. 28:933–43
    [Google Scholar]
  117. 117.
    Targan SR. 1981. The dual interaction of prostaglandin E2 (PGE2) and interferon (IFN) on NK lytic activation: enhanced capacity of effector-target lytic interactions (recycling) and blockage of pre-NK cell recruitment. J. Immunol. 127:1424–28
    [Google Scholar]
  118. 118.
    Schiavon V, Duchez S, Branchtein M, How-Kit A, Cassius C et al. 2019. Microenvironment tailors nTreg structure and function. PNAS 116:6298–307
    [Google Scholar]
  119. 119.
    Buckland M, Lombardi G. 2009. Aspirin and the induction of tolerance by dendritic cells. Dendritic Cells G Lombardi, Y Riffo-Vasquez 197–213. Berlin: Springer
    [Google Scholar]
  120. 120.
    Murata T, Maehara T. 2016. Discovery of anti-inflammatory role of prostaglandin D2. J. Vet. Med. Sci. 78:1643–47
    [Google Scholar]
  121. 121.
    Hackstein H, Morelli AE, Larregina AT, Ganster RW, Papworth GD et al. 2001. Aspirin inhibits in vitro maturation and in vivo immunostimulatory function of murine myeloid dendritic cells. J. Immunol. 166:7053–62
    [Google Scholar]
  122. 122.
    Carlson LM, Rasmuson A, Idborg H, Segerstrom L, Jakobsson PJ et al. 2013. Low-dose aspirin delays an inflammatory tumor progression in vivo in a transgenic mouse model of neuroblastoma. Carcinogenesis 34:1081–88
    [Google Scholar]
  123. 123.
    Martins V, Valenca SS, Farias-Filho FA, Molinaro R, Simoes RL et al. 2009. ATLa, an aspirin-triggered lipoxin A4 synthetic analog, prevents the inflammatory and fibrotic effects of bleomycin-induced pulmonary fibrosis. J. Immunol. 182:5374–81
    [Google Scholar]
  124. 124.
    Simoes RL, De-Brito NM, Cunha-Costa H, Morandi V, Fierro IM et al. 2017. Lipoxin A4 selectively programs the profile of M2 tumor-associated macrophages which favour control of tumor progression. Int. J. Cancer 140:346–57
    [Google Scholar]
  125. 125.
    Hull MA, Rees CJ, Sharp L, Koo S 2020. A risk-stratified approach to colorectal cancer prevention and diagnosis. Nat. Rev. Gastroenterol. Hepatol. 17:773–80
    [Google Scholar]
  126. 126.
    Zhang Y, Chan AT, Meyerhardt JA, Giovannucci EL. 2021. Timing of aspirin use in colorectal cancer chemoprevention: a prospective cohort study. J. Natl. Cancer Inst. 113:841–51
    [Google Scholar]
  127. 127.
    McNeil JJ, Gibbs P, Orchard SG, Lockery JE, Bernstein WB et al. 2021. Effect of aspirin on cancer incidence and mortality in older adults. J. Natl. Cancer Inst. 113:258–65
    [Google Scholar]
  128. 128.
    Mahady SE, Margolis KL, Chan A, Polekhina G, Woods RL et al. 2021. Major GI bleeding in older persons using aspirin: incidence and risk factors in the ASPREE randomised controlled trial. Gut 70:717–24
    [Google Scholar]
  129. 129.
    Rothwell PM, Cook NR, Gaziano JM, Price JF, Belch JFF et al. 2018. Effects of aspirin on risks of vascular events and cancer according to bodyweight and dose: analysis of individual patient data from randomised trials. Lancet 392:387–99
    [Google Scholar]
  130. 130.
    Liang PS, Shaukat A, Crockett SD. 2021. AGA clinical practice update on chemoprevention for colorectal neoplasia: expert review. Clin. Gastroenterol. Hepatol. 19:1327–36
    [Google Scholar]
  131. 131.
    Petrucci G, Zaccardi F, Giaretta A, Cavalca V, Capristo E et al. 2018. Obesity is associated with impaired responsiveness to once-daily low-dose aspirin and in vivo platelet activation. J. Thromb. Haemost. 17:885–95
    [Google Scholar]
  132. 132.
    Chan AT, Arber N, Burn J, Chia WK, Elwood P et al. 2012. Aspirin in the chemoprevention of colorectal neoplasia: an overview. Cancer Prev. Res. 5:164–78
    [Google Scholar]
  133. 133.
    Hull MA, Sprange K, Hepburn T, Tan W, Shafayat A et al. 2018. Eicosapentaenoic acid and aspirin, alone and in combination, for the prevention of colorectal adenomas (seAFOod Polyp Prevention trial): a multicentre, randomised, double-blind, placebo-controlled, 2 × 2 factorial trial. Lancet 392:2583–94
    [Google Scholar]
  134. 134.
    Drew DA, Chin SM, Gilpin KK, Parziale M, Pond E et al. 2017. ASPirin Intervention for the REDuction of colorectal cancer risk (ASPIRED): a study protocol for a randomized controlled trial. Trials 18:50
    [Google Scholar]
  135. 135.
    Chan AT, Ogino S, Fuchs CS. 2007. Aspirin and the risk of colorectal cancer in relation to the expression of COX-2. N. Engl. J. Med. 356:2131–42
    [Google Scholar]
  136. 136.
    Zhao R, Coker OO, Wu J, Zhou Y, Zhao L et al. 2020. Aspirin reduces colorectal tumor development in mice and gut microbes reduce its bioavailability and chemopreventive effects. Gastroenterology 159:969–83.e4
    [Google Scholar]
  137. 137.
    Menter DG, Davis JS, Broom BM, Overman MJ, Morris J, Kopetz S. 2019. Back to the colorectal cancer consensus molecular subtype future. Curr. Gastroenterol. Rep. 21:5
    [Google Scholar]
  138. 138.
    Guinney J, Dienstmann R, Wang X, de Reynies A, Schlicker A et al. 2015. The consensus molecular subtypes of colorectal cancer. Nat. Med. 21:1350–56
    [Google Scholar]
  139. 139.
    Chang K, Willis JA, Reumers J, Taggart MW, San Lucas FA et al. 2018. Colorectal premalignancy is associated with consensus molecular subtypes 1 and 2. Ann. Oncol. 9:2061–67
    [Google Scholar]
  140. 140.
    Amitay EL, Carr PR, Jansen L, Walter V, Roth W et al. 2019. Association of aspirin and nonsteroidal anti-inflammatory drugs with colorectal cancer risk by molecular subtypes. J. Natl. Cancer Inst. 111:475–83
    [Google Scholar]
  141. 141.
    Nishihara R, Lochhead P, Kuchiba A, Jung S, Yamauchi M et al. 2013. Aspirin use and risk of colorectal cancer according to BRAF mutation status. JAMA 309:2563–71
    [Google Scholar]
  142. 142.
    Zumwalt TJ, Wodarz D, Komarova NL, Toden S, Turner J et al. 2017. Aspirin-induced chemoprevention and response kinetics are enhanced by PIK3CA mutations in colorectal cancer cells. Cancer Prev. Res. 10:208–18
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-052020-023107
Loading
/content/journals/10.1146/annurev-pharmtox-052020-023107
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error