1932

Abstract

Sodium-glucose cotransporter 2 (SGLT2) inhibitors improve blood glucose control by blocking renal glucose reabsorption with little subsequent risk of hypoglycemia. Consequently, there are decreases in plasma volume, body weight, and blood pressure. Additional putative benefits include improved cardiovascular energetics, decreased systemic inflammation, and less renal dysfunction. Multiple cardiovascular outcome trials in diabetic patients have demonstrated this drug class reduces the risk of adverse cardiovascular events. Reductions in heart failure (HF) hospitalization suggested that SGLT2 inhibitors might prove useful for the primary treatment of HF. Two large subsequent trials studying SGLT2 inhibitors in heart failure with reduced ejection fraction (HFrEF) demonstrated a reduction in cardiovascular mortality, HF hospitalizations, and renal-specific adverse events. This medication class is now recognized as a new pillar of therapy for patients with HFrEF. The cardiovascular and HF community await the results of ongoing trials of SGLT2 inhibition in patients with HF with preserved ejection fraction.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-052120-014725
2022-01-06
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/62/1/annurev-pharmtox-052120-014725.html?itemId=/content/journals/10.1146/annurev-pharmtox-052120-014725&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Heidenreich PA, Albert NM, Allen LA, Bluemke DA, Butler J et al. 2013. Forecasting the impact of heart failure in the United States. Circ. Heart Fail. 6:3606–19
    [Google Scholar]
  2. 2. 
    Agarwal MA, Fonarow GC, Ziaeian B. 2021. National trends in heart failure hospitalizations and readmissions from 2010 to 2017. JAMA Cardiol 2021.e207472
    [Google Scholar]
  3. 3. 
    van der Wal HH, van Deursen VM, van der Meer P, Voors AA 2017. Comorbidities in heart failure. Heart Failure J Bauersachs, J Butler, P Sandner 35–66 Cham, Switz: Springer
    [Google Scholar]
  4. 4. 
    Lloyd-Jones DM, Leip EP, Larson MG, D'Agostino RB, Beiser A et al. 2006. Prediction of lifetime risk for cardiovascular disease by risk factor burden at 50 years of age. Circulation 113:6791–98
    [Google Scholar]
  5. 5. 
    Kannel WB, McGee DL. 1979. Diabetes and cardiovascular disease: the Framingham study. JAMA 241:192035–38
    [Google Scholar]
  6. 6. 
    Jia G, Hill MA, Sowers JR. 2018. Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ. Res. 122:4624–38
    [Google Scholar]
  7. 7. 
    Tahrani AA, Barnett AH, Bailey CJ. 2016. Pharmacology and therapeutic implications of current drugs for type 2 diabetes mellitus. Nat. Rev. Endocrinol. 12:10566–92
    [Google Scholar]
  8. 8. 
    Nissen SE, Wolski K. 2007. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N. Engl. J. Med. 356:242457–71
    [Google Scholar]
  9. 9. 
    Home PD, Pocock SJ, Beck-Nielsen H, Gomis R, Hanefeld M et al. 2007. Rosiglitazone evaluated for cardiovascular outcomes—an interim analysis. N. Engl. J. Med. 357:128–38
    [Google Scholar]
  10. 10. 
    Lago RM, Singh PP, Nesto RW. 2007. Congestive heart failure and cardiovascular death in patients with prediabetes and type 2 diabetes given thiazolidinediones: a meta-analysis of randomised clinical trials. Lancet 370:95931129–36
    [Google Scholar]
  11. 11. 
    Ghezzi C, Loo DDF, Wright EM. 2018. Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2. Diabetologia 61:102087–97
    [Google Scholar]
  12. 12. 
    Kalra S. 2014. Sodium glucose co-transporter-2 (SGLT2) inhibitors: a review of their basic and clinical pharmacology. Diabetes Ther 5:2355–66
    [Google Scholar]
  13. 13. 
    Rieg T, Vallon V. 2018. Development of SGLT1 and SGLT2 inhibitors. Diabetologia 61:102079–86
    [Google Scholar]
  14. 14. 
    Garcia-Ropero A, Badimon JJ, Santos-Gallego CG. 2018. The pharmacokinetics and pharmacodynamics of SGLT2 inhibitors for type 2 diabetes mellitus: the latest developments. Expert Opin. Drug Metab. Toxicol. 14:121287–302
    [Google Scholar]
  15. 15. 
    Flores E, Santos-Gallego CG, Diaz-Mejia N, Badimon JJ. 2018. Do the SGLT-2 inhibitors offer more than hypoglycemic activity?. Cardiovasc. Drugs Ther. 32:2213–22
    [Google Scholar]
  16. 16. 
    Mazidi M, Rezaie P, Gao H, Kengne AP. 2017. Effect of sodium-glucose cotransport-2 inhibitors on blood pressure in people with type 2 diabetes mellitus: a systematic review and meta-analysis of 43 randomized control trials with 22 528 patients. J. Am. Heart Assoc. Cardiovasc. Cerebrovasc. Dis. 6:6e004007
    [Google Scholar]
  17. 17. 
    Heerspink HJL, Perkins BA, Fitchett DH, Husain M, Cherney DZI. 2016. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation 134:10752–72
    [Google Scholar]
  18. 18. 
    Cai X, Yang W, Gao X, Chen Y, Zhou L et al. 2018. The association between the dosage of SGLT2 inhibitor and weight reduction in type 2 diabetes patients: a meta-analysis. Obesity 26:170–80
    [Google Scholar]
  19. 19. 
    Lopaschuk GD, Verma S. 2020. Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors. JACC Basic Transl. Sci. 5:6632–44
    [Google Scholar]
  20. 20. 
    Ansary TM, Nakano D, Nishiyama A. 2019. Diuretic effects of sodium glucose cotransporter 2 inhibitors and their influence on the renin-angiotensin system. Int. J. Mol. Sci. 20:3629
    [Google Scholar]
  21. 21. 
    Hallow KM, Helmlinger G, Greasley PJ, McMurray JJV, Boulton DW. 2018. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis. Diabetes Obes. Metab. 20:3479–87
    [Google Scholar]
  22. 22. 
    Lawler PR, Liu H, Frankfurter C, Lovblom LE, Lytvyn Y et al. 2021. Changes in cardiovascular biomarkers associated with the sodium–glucose cotransporter 2 (SGLT2) inhibitor ertugliflozin in patients with chronic kidney disease and type 2 diabetes. Diabetes Care 44:3e45–47
    [Google Scholar]
  23. 23. 
    Ndrepepa G, Braun S, King L, Hadamitzky M, Haase H-U et al. 2012. Association of uric acid with mortality in patients with stable coronary artery disease. Metabolism 61:121780–86
    [Google Scholar]
  24. 24. 
    Bonnet F, Scheen AJ. 2018. Effects of SGLT2 inhibitors on systemic and tissue low-grade inflammation: the potential contribution to diabetes complications and cardiovascular disease. Diabetes Metab 44:6457–64
    [Google Scholar]
  25. 25. 
    Prattichizzo F, De Nigris V, Micheloni S, La Sala L, Ceriello A 2018. Increases in circulating levels of ketone bodies and cardiovascular protection with SGLT2 inhibitors: Is low-grade inflammation the neglected component?. Diabetes Obes. Metab. 20:112515–22
    [Google Scholar]
  26. 26. 
    Packer M. 2019. Reconceptualization of the molecular mechanism by which sodium-glucose cotransporter 2 inhibitors reduce the risk of heart failure events. Circulation 140:6443–45
    [Google Scholar]
  27. 27. 
    Uthman L, Baartscheer A, Schumacher CA, Fiolet JWT, Kuschma MC et al. 2018. Direct cardiac actions of sodium glucose cotransporter 2 inhibitors target pathogenic mechanisms underlying heart failure in diabetic patients. Front. Physiol. 9:1575
    [Google Scholar]
  28. 28. 
    Santos-Gallego CG, Requena-Ibanez JA, San Antonio R, Ishikawa K, Watanabe S et al. 2019. Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics. J. Am. Coll. Cardiol. 73:151931–44
    [Google Scholar]
  29. 29. 
    Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E et al. 2015. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 373:222117–28
    [Google Scholar]
  30. 30. 
    Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G et al. 2017. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med. 377:7644–57
    [Google Scholar]
  31. 31. 
    Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET et al. 2019. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 380:4347–57
    [Google Scholar]
  32. 32. 
    McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN et al. 2019. Dapagliflozin in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 381:211995–2008
    [Google Scholar]
  33. 33. 
    Jhund PS, Solomon SD, Docherty KF, Heerspink HJL, Anand IS et al. 2021. Efficacy of dapagliflozin on renal function and outcomes in patients with heart failure with reduced ejection fraction. Circulation 143:4298–309
    [Google Scholar]
  34. 34. 
    Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ et al. 2020. Cardiovascular and renal outcomes with empagliflozin in heart failure. N. Engl. J. Med. 383:151413–24
    [Google Scholar]
  35. 35. 
    Anker SD, Butler J, Filippatos G, Khan MS, Marx N et al. 2021. Effect of empagliflozin on cardiovascular and renal outcomes in patients with heart failure by baseline diabetes status. Circulation 143:4337–49
    [Google Scholar]
  36. 36. 
    Zannad F, Ferreira JP, Pocock SJ, Zeller C, Anker SD et al. 2021. Cardiac and kidney benefits of empagliflozin in heart failure across the spectrum of kidney function. Circulation 143:4310–21
    [Google Scholar]
  37. 37. 
    Maddox TM, Januzzi JL, Allen LA, Breathett K, Butler J et al. 2021. Update to the 2017 ACC expert consensus decision pathway for optimization of heart failure treatment: answers to 10 pivotal issues about heart failure with reduced ejection fraction. J. Am. Coll. Cardiol. 77:6772–810
    [Google Scholar]
  38. 38. 
    Poulsen SB, Fenton RA, Rieg T. 2015. Sodium-glucose cotransport. Curr. Opin. Nephrol. Hypertens. 24:5463–69
    [Google Scholar]
  39. 39. 
    Zambrowicz B, Freiman J, Brown PM, Frazier KS, Turnage A et al. 2012. LX4211, a dual SGLT1/SGLT2 inhibitor, improved glycemic control in patients with type 2 diabetes in a randomized, placebo-controlled trial. Clin. Pharmacol. Ther. 92:2158–69
    [Google Scholar]
  40. 40. 
    Bhatt DL, Szarek M, Steg G, Cannon CP, Leiter LA et al. 2021. Sotagliflozin in patients with diabetes and recent worsening heart failure. N. Engl. J. Med. 384:117–28
    [Google Scholar]
  41. 41. 
    Verma S, McGuire DK, Kosiborod MN. 2020. Two tales: one story. Circulation 142:232201–4
    [Google Scholar]
  42. 42. 
    Nassif ME, Qintar M, Windsor SL, Jermyn R, Shavelle DM et al. 2021. Empagliflozin effects on pulmonary artery pressure in patients with heart failure: results from the EMBRACE-HF trial. Circulation 143:171673–86
    [Google Scholar]
  43. 43. 
    Omar M, Jensen J, Ali M, Frederiksen PH, Kistorp C et al. 2021. Associations of empagliflozin with left ventricular volumes, mass, and function in patients with heart failure and reduced ejection fraction: a substudy of the Empire HF randomized clinical trial. JAMA Cardiol 6:7836–40
    [Google Scholar]
  44. 44. 
    Caffrey M. 2021. Emperor-preserved first trial to show positive results in HFpEF. AJMC July 7. https://www.ajmc.com/view/emperor-preserved-first-trial-to-show-positive-results-in-hfpef
    [Google Scholar]
  45. 45. 
    Bhatt DL, Szarek M, Pitt B, Cannon CP, Leiter LA et al. 2021. Sotagliflozin in patients with diabetes and chronic kidney disease. N. Engl. J. Med. 384:2129–39
    [Google Scholar]
  46. 46. 
    Goldenberg RM, Berard LD, Cheng AYY, Gilbert JD, Verma S et al. 2016. SGLT2 inhibitor-associated diabetic ketoacidosis: clinical review and recommendations for prevention and diagnosis. Clin. Ther. 38:122654–64.e1
    [Google Scholar]
  47. 47. 
    Unnikrishnan AG, Kalra S, Purandare V, Vasnawala H. 2018. Genital infections with sodium glucose cotransporter-2 inhibitors: occurrence and management in patients with type 2 diabetes mellitus. Indian J. Endocrinol. Metab. 22:6837–42
    [Google Scholar]
  48. 48. 
    Fang JC. 2019. Heart-failure therapy—new drugs but old habits?. N. Engl. J. Med. 381:2063–64
    [Google Scholar]
  49. 49. 
    Rehman SU, Rahman F 2020. Evidence-based clinical review on cardiovascular benefits of SGLT2 (sodium-glucose co-transporter type 2) inhibitors in type 2 diabetes mellitus. Cureus 12:8e9655
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-052120-014725
Loading
/content/journals/10.1146/annurev-pharmtox-052120-014725
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error