1932

Abstract

Since prehistory, human species have depended on plants for both food and medicine. Even in countries with ready access to modern medicines, alternative treatments are still highly regarded and commonly used. Unlike modern pharmaceuticals, many botanical medicines are in widespread use despite a lack of safety and efficacy data derived from controlled clinical trials and often unclear mechanisms of action. Contributing to this are the complex and undefined composition and likely multifactorial mechanisms of action and multiple targets of many botanical medicines. Here, we review the newfound importance of the ubiquitous KCNQ subfamily of voltage-gated potassium channels as targets for botanical medicines, including basil, capers, cilantro, lavender, fennel, chamomile, ginger, and , , and species. We discuss the implications for the traditional use of these plants for disorders such as seizures, hypertension, and diabetes and the molecular mechanisms of plant secondary metabolite effects on KCNQ channels.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-052120-104249
2022-01-06
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/62/1/annurev-pharmtox-052120-104249.html?itemId=/content/journals/10.1146/annurev-pharmtox-052120-104249&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Tapsell LC, Hemphill I, Cobiac L, Sullivan DR, Fenech M. 2006. Health benefits of herbs and spices: the past, the present, the future. Med. J. Aust. 185:S1–24
    [Google Scholar]
  2. 2. 
    Van Duyn MA, Pivonka E. 2000. Overview of the health benefits of fruit and vegetable consumption for the dietetics professional: selected literature. J. Am. Diet. Assoc. 100:1511–21
    [Google Scholar]
  3. 3. 
    Yip SCS, Chan W, Fielding R 2019. The association of fruit and vegetable intakes with burden of diseases: a systematic review of meta-analyses. J. Acad. Nutr. Diet. 119:464–81
    [Google Scholar]
  4. 4. 
    Poiroux-Gonord F, Bidel LPR, Fanciullino A-L, Gautier H, Lauri-Lopez F, Urban L. 2010. Health benefits of vitamins and secondary metabolites of fruits and vegetables and prospects to increase their concentrations by agronomic approaches. J. Agric. Food Chem. 58:12065–82
    [Google Scholar]
  5. 5. 
    Cook NC, Samman S. 1996. Flavonoids—chemistry, metabolism, cardioprotective effects, and dietary sources. Nutr. Biochem. 7:66–76
    [Google Scholar]
  6. 6. 
    Agati G, Azzarello E, Pollastri S, Tattini M 2012. Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196:67–76
    [Google Scholar]
  7. 7. 
    Melamed Y, Kislev ME, Geffen E, Lev-Yadun S, Goren-Inbar N. 2016. The plant component of an Acheulian diet at Gesher Bonet Ya'aqov, Israel. PNAS 113:14674–79
    [Google Scholar]
  8. 8. 
    Hardy K, Buckley S, Collins MJ, Estalrrich A, Brothwell D et al. 2012. Neanderthal medics? Evidence for food, cooking, and medicinal plants entrapped in dental calculus. Naturwissenschaften 99:617–26
    [Google Scholar]
  9. 9. 
    Weyrich LS, Duchene S, Soubrier J, Arriola L, Llamas B et al. 2017. Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature 544:357–61
    [Google Scholar]
  10. 10. 
    Vlachojannis J, Magora F, Chrubasik S. 2011. Willow species and aspirin: different mechanism of actions. Phytother. Res. 25:1102–4
    [Google Scholar]
  11. 11. 
    Nunn JF. 1996. Ancient Egyptian Medicine Norman: Univ. Oklahoma Press
    [Google Scholar]
  12. 12. 
    Halberstein RA. 2005. Medicinal plants: historical and cross-cultural usage patterns. Ann. Epidemiol. 15:686–99
    [Google Scholar]
  13. 13. 
    Levesque H, Lafont O. 2000. L'aspirine à travers les siècles: rappel historique [Aspirin throughout the ages: a historical review]. Rev. Med. Interne 21:Suppl. 1S8–17
    [Google Scholar]
  14. 14. 
    Desborough MJR, Keeling DM. 2017. The aspirin story—from willow to wonder drug. Br. J. Haematol. 177:674–83
    [Google Scholar]
  15. 15. 
    Wood JN. 2015. From plant extract to molecular panacea: a commentary on Stone (1763) ‘An account of the success of the bark of the willow in the cure of the agues. ’. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370:20140317
    [Google Scholar]
  16. 16. 
    Norn S, Kruse PR, Kruse E. 2005. Opiumsvalmuen og morfin gennem tiderne [History of opium poppy and morphine]. Dan. Med. Årbog 33:171–84
    [Google Scholar]
  17. 17. 
    Veeresham C. 2012. Natural products derived from plants as a source of drugs. J. Adv. Pharm. Technol. Res. 3:200–1
    [Google Scholar]
  18. 18. 
    Eisenberg DM, Davis RB, Ettner SL, Appel S, Wilkey S et al. 1998. Trends in alternative medicine use in the United States, 1990–1997. J. Am. Med. Assoc. 280:1569–75
    [Google Scholar]
  19. 19. 
    Plotkin MJ. 1994. Tales of a Shaman's Apprentice: An Ethnobotanist Searches for New Medicines in the Rain Forest New York: Penguin
    [Google Scholar]
  20. 20. 
    Abbott GW. 2020. KCNQs: ligand- and voltage-gated potassium channels. Front. Physiol. 11:583
    [Google Scholar]
  21. 21. 
    Abbott GW. 2014. Biology of the KCNQ1 potassium channel. N. J. Sci. 2014:237431
    [Google Scholar]
  22. 22. 
    Brown DA, Adams PR. 1980. Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature 283:673–76
    [Google Scholar]
  23. 23. 
    Brown DA, Hughes SA, Marsh SJ, Tinker A. 2007. Regulation of M(Kv7.2/7.3) channels in neurons by PIP2 and products of PIP2 hydrolysis: significance for receptor-mediated inhibition. J. Physiol. 582:917–25
    [Google Scholar]
  24. 24. 
    Selyanko AA, Stansfeld CE, Brown DA. 1992. Closure of potassium M-channels by muscarinic acetylcholine-receptor stimulants requires a diffusible messenger. Proc. Biol. Sci. 250:119–25
    [Google Scholar]
  25. 25. 
    Singh NA, Charlier C, Stauffer D, DuPont BR, Leach RJ et al. 1998. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat. Genet. 18:25–29
    [Google Scholar]
  26. 26. 
    Wang HS, Pan Z, Shi W, Brown BS, Wymore RS et al. 1998. KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science 282:1890–93
    [Google Scholar]
  27. 27. 
    Kim RY, Yau MC, Galpin JD, Seebohm G, Ahern CA et al. 2015. Atomic basis for therapeutic activation of neuronal potassium channels. Nat. Commun. 6:8116
    [Google Scholar]
  28. 28. 
    Schenzer A, Friedrich T, Pusch M, Saftig P, Jentsch TJ et al. 2005. Molecular determinants of KCNQ (Kv7) K+ channel sensitivity to the anticonvulsant retigabine. J. Neurosci. 25:5051–60
    [Google Scholar]
  29. 29. 
    Gunthorpe MJ, Large CH, Sankar R. 2012. The mechanism of action of retigabine (ezogabine), a first-in-class K+ channel opener for the treatment of epilepsy. Epilepsia 53:412–24
    [Google Scholar]
  30. 30. 
    Wickenden AD, Yu W, Zou A, Jegla T, Wagoner PK 2000. Retigabine, a novel anti-convulsant, enhances activation of KCNQ2/Q3 potassium channels. Mol. Pharmacol. 58:591–600
    [Google Scholar]
  31. 31. 
    Jepps TA, Olesen SP, Greenwood IA. 2013. One man's side effect is another man's therapeutic opportunity: targeting Kv7 channels in smooth muscle disorders. Br. J. Pharmacol. 168:19–27
    [Google Scholar]
  32. 32. 
    Manville RW, Abbott GW. 2020. Potassium channels act as chemosensors for solute transporters. Commun. Biol. 3:90
    [Google Scholar]
  33. 33. 
    Manville RW, Papanikolaou M, Abbott GW 2018. Direct neurotransmitter activation of voltage-gated potassium channels. Nat. Commun. 9:1847
    [Google Scholar]
  34. 34. 
    Manville RW, Papanikolaou M, Abbott GW 2020. M-channel activation contributes to the anticonvulsant action of the ketone body β-hydroxybutyrate. J. Pharmacol. Exp. Ther. 372:148–56
    [Google Scholar]
  35. 35. 
    Manville RW, Abbott GW. 2018. Gabapentin is a potent activator of KCNQ3 and KCNQ5 potassium channels. Mol. Pharmacol. 94:1155–63
    [Google Scholar]
  36. 36. 
    Brueggemann LI, Moran CJ, Barakat JA, Yeh JZ, Cribbs LL et al. 2007. Vasopressin stimulates action potential firing by protein kinase C-dependent inhibition of KCNQ5 in A7r5 rat aortic smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 292:H1352–63
    [Google Scholar]
  37. 37. 
    Mackie AR, Brueggemann LI, Henderson KK, Shiels AJ, Cribbs LL et al. 2008. Vascular KCNQ potassium channels as novel targets for the control of mesenteric artery constriction by vasopressin, based on studies in single cells, pressurized arteries, and in vivo measurements of mesenteric vascular resistance. J. Pharmacol. Exp. Ther. 325:475–83
    [Google Scholar]
  38. 38. 
    Yeung SY, Pucovsky V, Moffatt JD, Saldanha L, Schwake M et al. 2007. Molecular expression and pharmacological identification of a role for KV7 channels in murine vascular reactivity. Br. J. Pharmacol. 151:758–70
    [Google Scholar]
  39. 39. 
    Kubisch C, Schroeder BC, Friedrich T, Lutjohann B, El-Amraoui A et al. 1999. KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 96:437–46
    [Google Scholar]
  40. 40. 
    Igwe KK, Madubuike AJ, Otuokere IE, Amaku FJ, Chika I. 2016. GC-MS analysis for structural identification and bioactive compounds in methanolic leaf extract of Mallotus oppositifolius. Int. J. Sci. Res. Manag. 4:4123–29
    [Google Scholar]
  41. 41. 
    Nwaehujor CO, Ezeja MI, Udeh NE, Okoye DN, Udegbunam RI. 2014. Anti-inflammatory and anti-oxidant activities of Mallotus oppositifolius (Geisel) methanol leaf extracts. Arabian J. Chem. 7:805–10
    [Google Scholar]
  42. 42. 
    Kukuia KKE, Ameyaw EO, Mante PK, Adongo DW, Woode E. 2012. Screening of central effects of the leaves of Mallotus oppositifolius (Geiseler) mull. arg. in mice. Pharmacologia 3:683–92
    [Google Scholar]
  43. 43. 
    Matschke V, Piccini I, Schubert J, Wrobel E, Lang F et al. 2016. The natural plant product rottlerin activates Kv7.1/KCNE1 channels. Cell Physiol. Biochem. 40:1549–58
    [Google Scholar]
  44. 44. 
    Manville RW, Abbott GW. 2018. Ancient and modern anticonvulsants act synergistically in a KCNQ potassium channel binding pocket. Nat. Commun. 9:3845
    [Google Scholar]
  45. 45. 
    Grieve M. 1971. A Modern Herbal: The Medicinal, Culinary, Cosmetic and Economic Properties, Cultivation and Folklore of Herbs, Grasses, Fungi, Shrubs, & Trees with All Their Modern Scientific Uses New York: Dover
    [Google Scholar]
  46. 46. 
    Turner W. 1562, 1568. A New Herball, Parts II and III London: Steven Mierdman
    [Google Scholar]
  47. 47. 
    De Silva AM, Manville RW, Abbott GW. 2018. Deconstruction of an African folk medicine uncovers a novel molecular strategy for therapeutic potassium channel activation. Sci. Adv. 4:eaav0824
    [Google Scholar]
  48. 48. 
    Friedman AK, Juarez B, Ku SM, Zhang H, Calizo RC et al. 2016. KCNQ channel openers reverse depressive symptoms via an active resilience mechanism. Nat. Commun. 7:11671
    [Google Scholar]
  49. 49. 
    Cumo C. 2013. Encyclopedia of Cultivated Plants: From Acacia to Zinnia Santa Barbara, CA: ABC-CLIO
    [Google Scholar]
  50. 50. 
    Sahib NG, Anwar F, Gilani AH, Hamid AA, Saari N, Alkharfy KM. 2013. Coriander (Coriandrum sativum L.): a potential source of high-value components for functional foods and nutraceuticals—a review. Phytother. Res. 27:1439–56
    [Google Scholar]
  51. 51. 
    Pourzaki M, Homayoun M, Sadeghi S, Seghatoleslam M, Hosseini M, Bideskan AE. 2017. Preventive effect of Coriandrum sativum on neuronal damages in pentylentetrazole-induced seizure in rats. Avicenna J. Phytomed. 7:116–28
    [Google Scholar]
  52. 52. 
    Karami R, Hosseini M, Mohammadpour T, Ghorbani A, Sadeghnia HR et al. 2015. Effects of hydroalcoholic extract of Coriandrum sativum on oxidative damage in pentylenetetrazole-induced seizures in rats. Iran. J. Neurol. 14:59–66
    [Google Scholar]
  53. 53. 
    Manville RW, Abbott GW. 2019. Cilantro leaf harbors a potent potassium channel-activating anticonvulsant. FASEB J 33:11349–63
    [Google Scholar]
  54. 54. 
    Potter TL. 1996. Essential oil composition of cilantro. J. Agric. Food Chem. 44:1824–26
    [Google Scholar]
  55. 55. 
    Saklayen MG, Deshpande NV. 2016. Timeline of history of hypertension treatment. Front. Cardiovasc. Med. 3:3
    [Google Scholar]
  56. 56. 
    Tabassum N, Ahmad F. 2011. Role of natural herbs in the treatment of hypertension. Pharmacognosy Rev 5:30–40
    [Google Scholar]
  57. 57. 
    Manville RW, van der Horst J, Redford KE, Katz BB, Jepps TA, Abbott GW 2019. KCNQ5 activation is a unifying molecular mechanism shared by genetically and culturally diverse botanical hypotensive folk medicines. PNAS 116:21236–45
    [Google Scholar]
  58. 58. 
    Caminos E, Garcia-Pino E, Juiz JM. 2015. Loss of auditory activity modifies the location of potassium channel KCNQ5 in auditory brainstem neurons. J. Neurosci. Res. 93:604–14
    [Google Scholar]
  59. 59. 
    Caminos E, Garcia-Pino E, Martinez-Galan JR, Juiz JM. 2007. The potassium channel KCNQ5/Kv7.5 is localized in synaptic endings of auditory brainstem nuclei of the rat. J. Comp. Neurol. 505:363–78
    [Google Scholar]
  60. 60. 
    Caminos E, Vaquero CF, Martinez-Galan JR. 2015. Relationship between rat retinal degeneration and potassium channel KCNQ5 expression. Exp. Eye Res. 131:1–11
    [Google Scholar]
  61. 61. 
    Fidzinski P, Korotkova T, Heidenreich M, Maier N, Schuetze S et al. 2015. KCNQ5 K+ channels control hippocampal synaptic inhibition and fast network oscillations. Nat. Commun. 6:6254
    [Google Scholar]
  62. 62. 
    Garcia-Pino E, Caminos E, Juiz JM 2010. KCNQ5 reaches synaptic endings in the auditory brainstem at hearing onset and targeting maintenance is activity-dependent. J. Comp. Neurol. 518:1301–14
    [Google Scholar]
  63. 63. 
    Jepps TA, Greenwood IA, Moffatt JD, Sanders KM, Ohya S. 2009. Molecular and functional characterization of Kv7 K+ channel in murine gastrointestinal smooth muscles. Am. J. Physiol. Gastrointest. Liver Physiol. 297:G107–15
    [Google Scholar]
  64. 64. 
    Lehman A, Thouta S, Mancini GMS, Naidu S, van Slegtenhorst M et al. 2017. Loss-of-function and gain-of-function mutations in KCNQ5 cause intellectual disability or epileptic encephalopathy. Am. J. Hum. Genet. 101:65–74
    [Google Scholar]
  65. 65. 
    Mackie AR, Brueggemann LI, Henderson KK, Shiels AJ, Cribbs LL et al. 2008. Vascular KCNQ potassium channels as novel targets for the control of mesenteric artery constriction by vasopressin, based on studies in single cells, pressurized arteries, and in vivo measurements of mesenteric vascular resistance. J. Pharmacol. Exp. Ther. 325:475–83
    [Google Scholar]
  66. 66. 
    Yang C, Yu Y, Wu F, Wu Y, Feng J et al. 2018. Vasodilatory effects of aloperine in rat aorta and its possible mechanisms. Chin. J. Physiol. 61:293–301
    [Google Scholar]
  67. 67. 
    Bouzid A, Smeti I, Dhouib L, Roche M, Achour I et al. 2018. Down-expression of P2RX2, KCNQ5, ERBB3 and SOCS3 through DNA hypermethylation in elderly women with presbycusis. Biomarkers 23:347–56
    [Google Scholar]
  68. 68. 
    Redford KE, Rognant S, Jepps TA, Abbott GW 2021. KCNQ5 potassium channel activation underlies vasodilation by tea. Cell Physiol. Biochem. 55:46–64
    [Google Scholar]
  69. 69. 
    Kang J, Cheng H, Ji J, Incardona J, Rampe D 2010. In vitro electrocardiographic and cardiac ion channel effects of (−)-epigallocatechin-3-gallate, the main catechin of green tea. J. Pharmacol. Exp. Ther. 334:619–26
    [Google Scholar]
  70. 70. 
    Leenen R, Roodenburg AJ, Tijburg LB, Wiseman SA. 2000. A single dose of tea with or without milk increases plasma antioxidant activity in humans. Eur. J. Clin. Nutr. 54:87–92
    [Google Scholar]
  71. 71. 
    Li Y, Yao J, Han C, Yang J, Chaudhry MT et al. 2016. Quercetin, inflammation and immunity. Nutrients 8:167
    [Google Scholar]
  72. 72. 
    Bhagwat S, Haytowitz DB, Holden JM. 2013. USDA database for the flavonoid content of selected foods: release 3.1 USDA database, Agric. Res. Serv., US Dep. Agric. Beltsville, MD:
    [Google Scholar]
  73. 73. 
    Inocencio C, Rivera D, Alcaraz F, Tomas-Barberan FA 2000. Flavonoid content of commercial capers (Capparis spinosa, C. sicula and C. orientalis) produced in Mediterranean countries. Eur. Food Res. Technol. 212:70–74
    [Google Scholar]
  74. 74. 
    Rivera D, Inocencio C, Obon C, Carreno E, Reales A, Alcaraz F 2002. Archaeobotany of capers (Capparis) (Capparaceae). Veg. Hist. Archaeobot. 11:295–313
    [Google Scholar]
  75. 75. 
    Redford KE, Abbott GW 2020. The ubiquitous flavonoid quercetin is an atypical KCNQ potassium channel activator. Commun. Biol. 3:356
    [Google Scholar]
  76. 76. 
    Panaghie G, Purtell K, Tai KK, Abbott GW 2008. Voltage-dependent C-type inactivation in a constitutively open K+ channel. Biophys. J. 95:2759–78
    [Google Scholar]
  77. 77. 
    [Google Scholar]
  78. 78. 
    Zhaung H, Zheng FM. 2018. Phytochemical and pharmacological properties of Capparis spinosa as a medicinal plant. Nutrients 10:116
    [Google Scholar]
  79. 79. 
    Kharkovets T, Dedek K, Maier H, Schweizer M, Khimich D et al. 2006. Mice with altered KCNQ4 K+ channels implicate sensory outer hair cells in human progressive deafness. EMBO J 25:642–52
    [Google Scholar]
  80. 80. 
    Kharkovets T, Hardelin JP, Safieddine S, Schweizer M, El-Amraoui A et al. 2000. KCNQ4, a K+ channel mutated in a form of dominant deafness, is expressed in the inner ear and the central auditory pathway. PNAS 97:4333–38
    [Google Scholar]
  81. 81. 
    Neyroud N, Tesson F, Denjoy I, Leibovici M, Donger C et al. 1997. A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Nat. Genet. 15:186–89
    [Google Scholar]
  82. 82. 
    Schulze-Bahr E, Wang Q, Wedekind H, Haverkamp W, Chen Q et al. 1997. KCNE1 mutations cause Jervell and Lange-Nielsen syndrome. Nat. Genet. 17:267–68
    [Google Scholar]
  83. 83. 
    Tyson J, Tranebjaerg L, Bellman S, Wren C, Taylor JF et al. 1997. IsK and KvLQT1: mutation in either of the two subunits of the slow component of the delayed rectifier potassium channel can cause Jervell and Lange-Nielsen syndrome. Hum. Mol. Genet. 6:2179–85
    [Google Scholar]
  84. 84. 
    Rivas A, Francis HW. 2005. Inner ear abnormalities in a Kcnq1 (Kvlqt1) knockout mouse: a model of Jervell and Lange-Nielsen syndrome. Otol. Neurotol. 26:415–24
    [Google Scholar]
  85. 85. 
    Hirose Y, Sugahara K, Kanagawa E, Takemoto Y, Hashimoto M, Yamashita H. 2016. Quercetin protects against hair cell loss in the zebrafish lateral line and guinea pig cochlea. Hear. Res. 342:80–85
    [Google Scholar]
  86. 86. 
    Bientinesi R, Mancuso C, Martire M, Bassi PF, Sacco E, Curro D. 2017. KV7 channels in the human detrusor: channel modulator effects and gene and protein expression. Naunyn Schmiedebergs Arch. Pharmacol. 390:127–37
    [Google Scholar]
  87. 87. 
    Svalo J, Bille M, Parameswaran Theepakaran N, Sheykhzade M, Nordling J, Bouchelouche P 2013. Bladder contractility is modulated by Kv7 channels in pig detrusor. Eur. J. Pharmacol. 715:312–20
    [Google Scholar]
  88. 88. 
    Pang R, Ali A. 2015. The Chinese approach to complementary and alternative medicine treatment for interstitial cystitis/bladder pain syndrome. Transl. Androl. Urol. 4:653–61
    [Google Scholar]
  89. 89. 
    Serban MC, Sahebkar A, Zanchetti A, Mikhailidis DP, Howard G et al. 2016. Effects of quercetin on blood pressure: a systematic review and meta-analysis of randomized controlled trials. J. Am. Heart Assoc. 5:e002713
    [Google Scholar]
  90. 90. 
    Abbott GW, Jepps TA. 2016. Kcne4 deletion sex-dependently alters vascular reactivity. J. Vasc. Res. 53:138–48
    [Google Scholar]
  91. 91. 
    Chadha PS, Jepps TA, Carr G, Stott JB, Zhu HL et al. 2014. Contribution of Kv7.4/Kv7.5 heteromers to intrinsic and calcitonin gene-related peptide-induced cerebral reactivity. Arterioscler. Thromb. Vasc. Biol. 34:887–93
    [Google Scholar]
  92. 92. 
    Jepps TA, Carr G, Lundegaard PR, Olesen SP, Greenwood IA. 2015. Fundamental role for the KCNE4 ancillary subunit in Kv7.4 regulation of arterial tone. J. Physiol. 593:5325–40
    [Google Scholar]
  93. 93. 
    Jepps TA, Chadha PS, Davis AJ, Harhun MI, Cockerill GW et al. 2011. Downregulation of Kv7.4 channel activity in primary and secondary hypertension. Circulation 124:602–11
    [Google Scholar]
  94. 94. 
    Khanamiri S, Soltysinska E, Jepps TA, Bentzen BH, Chadha PS et al. 2013. Contribution of Kv7 channels to basal coronary flow and active response to ischemia. Hypertension 62:1090–97
    [Google Scholar]
  95. 95. 
    Zhang W, Wang Y, Yang Z, Qiu J, Ma J et al. 2011. Antioxidant treatment with quercetin ameliorates erectile dysfunction in streptozotocin-induced diabetic rats. J. Biosci. Bioeng. 112:215–18
    [Google Scholar]
  96. 96. 
    Zhang Y, Huang C, Liu S, Bai J, Fan X et al. 2015. Effects of quercetin on intracavernous pressure and expression of nitrogen synthase isoforms in arterial erectile dysfunction rat model. Int. J. Clin. Exp. Med. 8:7599–605
    [Google Scholar]
  97. 97. 
    Lee SM, Baik J, Nguyen D, Nguyen V, Liu S et al. 2017. Kcne2 deletion impairs insulin secretion and causes type 2 diabetes mellitus. FASEB J 31:2674–85
    [Google Scholar]
  98. 98. 
    Yamagata K, Senokuchi T, Lu M, Takemoto M, Karim MF et al. 2011. Voltage-gated K+ channel KCNQ1 regulates insulin secretion in MIN6 β-cell line. Biochem. Biophys. Res. Commun. 407:620–25
    [Google Scholar]
  99. 99. 
    Unoki H, Takahashi A, Kawaguchi T, Hara K, Horikoshi M et al. 2008. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat. Genet. 40:1098–102
    [Google Scholar]
  100. 100. 
    Yasuda K, Miyake K, Horikawa Y, Hara K, Osawa H et al. 2008. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat. Genet. 40:1092–97
    [Google Scholar]
  101. 101. 
    Coskun O, Kanter M, Korkmaz A, Oter S 2005. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and β-cell damage in rat pancreas. Pharmacol. Res. 51:117–23
    [Google Scholar]
  102. 102. 
    Yang DK, Kang HS. 2018. Anti-diabetic effect of cotreatment with quercetin and resveratrol in streptozotocin-induced diabetic rats. Biomol. Ther. 26:130–38
    [Google Scholar]
  103. 103. 
    den Uil SH, Coupe VM, Linnekamp JF, van den Broek E, Goos JA et al. 2016. Loss of KCNQ1 expression in stage II and stage III colon cancer is a strong prognostic factor for disease recurrence. Br. J. Cancer 115:1565–74
    [Google Scholar]
  104. 104. 
    Than BL, Goos JA, Sarver AL, O'Sullivan MG, Rod A et al. 2014. The role of KCNQ1 in mouse and human gastrointestinal cancers. Oncogene 33:3861–68
    [Google Scholar]
  105. 105. 
    Zhang XA, Zhang S, Yin Q, Zhang J 2015. Quercetin induces human colon cancer cells apoptosis by inhibiting the nuclear factor-kappa B pathway. Pharmacogn. Mag. 11:404–9
    [Google Scholar]
  106. 106. 
    Hashemzaei M, Delarami Far A, Yari A, Heravi RE, Tabrizian K et al. 2017. Anticancer and apoptosis inducing effects of quercetin in vitro and in vivo. Oncol. Rep. 38:819–28
    [Google Scholar]
  107. 107. 
    Cermak R, Kuhn G, Wolffram S. 2002. The flavonol quercetin activates basolateral K+ channels in rat distal colon epithelium. Br. J. Pharmacol. 135:1183–90
    [Google Scholar]
  108. 108. 
    Grosdidier A, Zoete V, Michielin O. 2011. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res 39:W270–77
    [Google Scholar]
  109. 109. 
    Grosdidier A, Zoete V, Michielin O. 2011. Fast docking using the CHARMM force field with EADock DSS. J. Comput. Chem. 32:2149–59
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-052120-104249
Loading
/content/journals/10.1146/annurev-pharmtox-052120-104249
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error