1932

Abstract

Over the past 30 years there has been a surge of research on the placebo effect using a neuroscientific approach. The interesting aspects of this effort are related to the identification of several biological mechanisms of both the placebo and nocebo effects, the latter of which is defined as a negative placebo effect. Some important translational implications have emerged both in the setting of clinical trials and in routine medical practice. One of the principal contributions of neuroscience has been to draw the attention of the scientific and medical communities to the important role of psychobiological factors in therapeutic outcomes, be they drug related or not. Indeed, many biological mechanisms triggered by placebos and nocebos resemble those modulated by drugs, suggesting a possible interaction between psychological factors and drug action. Unfortunately, this new knowledge regarding placebos has the potential of being dangerously exploited by pseudoscience.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-052120-104536
2022-01-06
2024-10-07
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/62/1/annurev-pharmtox-052120-104536.html?itemId=/content/journals/10.1146/annurev-pharmtox-052120-104536&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Levine JD, Gordon NC, Fields HL 1978. The mechanisms of placebo analgesia. Lancet 2:654–57
    [Google Scholar]
  2. 2. 
    Benedetti F. 2020. Placebo Effects. Oxford, UK: Oxford Univ. Press. , 3rd ed..
    [Google Scholar]
  3. 3. 
    Benedetti F, Enck P, Frisaldi E, Schedlowski M 2014. Handbook of Experimental Pharmacology, Vol. 225 Placebo Berlin: Springer
    [Google Scholar]
  4. 4. 
    Colloca L, Flaten MA, Meissner K 2014. Placebo and Pain: From Bench to Bedside London: Academic
    [Google Scholar]
  5. 5. 
    Mitsikostas D, Benedetti F. 2019. Placebos and Nocebos in Headache Heidelberg: Springer
    [Google Scholar]
  6. 6. 
    Colloca L, Benedetti F. 2005. Placebos and painkillers: Is mind as real as matter?. Nat. Rev. Neurosci. 6:545–52
    [Google Scholar]
  7. 7. 
    Benedetti F. 2008. Mechanisms of placebo and placebo-related effects across diseases and treatments. Annu. Rev. Pharmacol. Toxicol. 48:33–60
    [Google Scholar]
  8. 8. 
    Price DD, Finniss DG, Benedetti F. 2008. A comprehensive review of the placebo effect: recent advances and current thought. Annu. Rev. Psychol. 59:565–90
    [Google Scholar]
  9. 9. 
    Finniss DG, Miller F, Kaptchuk T, Benedetti F 2010. Biological, clinical, and ethical advances of placebo effects. Lancet 375:686–95
    [Google Scholar]
  10. 10. 
    Tracey I. 2010. Getting the pain you expect: mechanisms of placebo, nocebo and reappraisal effects in humans. Nat. Med. 16:1277–83
    [Google Scholar]
  11. 11. 
    Benedetti F. 2013. Placebo and the new physiology of the doctor-patient relationship. Physiol. Rev. 93:1207–46
    [Google Scholar]
  12. 12. 
    Enck P, Bingel U, Schedlowski M, Rief W. 2013. The placebo response in medicine: minimize, maximize or personalize?. Nat. Rev. Drug Discov. 12:191–204
    [Google Scholar]
  13. 13. 
    Benedetti F. 2014. Placebo effects: from the neurobiological paradigm to translational implications. Neuron 84:623–37
    [Google Scholar]
  14. 14. 
    Wager TD, Atlas LY. 2015. The neuroscience of placebo effects: connecting context, learning and health. Nat. Rev. Neurosci. 16:403–18
    [Google Scholar]
  15. 15. 
    Shaibani A, Frisaldi E, Benedetti F 2017. Placebo response in pain, fatigue, and performance: possible implications for neuromuscular disorders. Muscle Nerve 56:358–67
    [Google Scholar]
  16. 16. 
    Colloca L. 2019. The placebo effect in pain therapies. Annu. Rev. Pharmacol. Toxicol. 59:191–211
    [Google Scholar]
  17. 17. 
    Petrie KJ, Rief W. 2019. Psychobiological mechanisms of placebo and nocebo effects: pathways to improve treatments and reduce side effects. Annu. Rev. Psychol. 70:599–625
    [Google Scholar]
  18. 18. 
    Colloca L, Barsky AJ. 2020. Placebo and nocebo effects. N. Engl. J. Med. 382:554–61
    [Google Scholar]
  19. 19. 
    Evers AWM, Colloca L, Blease C, Annoni M, Atlas LY et al. 2018. Implications of placebo and nocebo effects for clinical practice: expert consensus. Psychother. Psychosomat. 87:204–10
    [Google Scholar]
  20. 20. 
    Kirsch I. 1985. Response expectancy as a determinant of experience and behavior. Am. Psychol. 40:1189
    [Google Scholar]
  21. 21. 
    Colloca L, Benedetti F. 2007. Nocebo hyperalgesia: how anxiety is turned into pain. Curr. Opin. Anaesthesiol. 20:435–39
    [Google Scholar]
  22. 22. 
    Finniss D, Nicholas M, Brooker C, Cousins M, Benedetti F. 2019. Magnitude, response, and psychological determinants of placebo effects in chronic low back pain: a randomised, double-blinded, controlled trial. Pain Rep. 4:e744
    [Google Scholar]
  23. 23. 
    de la Fuente-Fernández R, Ruth TJ, Sossi V, Schulzer M, Calne DB et al. 2001. Expectation and dopamine release: mechanism of the placebo effect in Parkinson's disease. Science 293:1164–66
    [Google Scholar]
  24. 24. 
    de la Fuente-Fernández R, Phillips AG, Zamburlini M, Sossi V, Calne DB et al. 2002. Dopamine release in human ventral striatum and expectation of reward. Behav. Brain Res. 136:359–63
    [Google Scholar]
  25. 25. 
    Scott DJ, Stohler CS, Egnatuk CM, Wang H, Koeppe RA et al. 2007. Individual differences in reward responding explains placebo-induced expectations and effects. Neuron 55:325–36
    [Google Scholar]
  26. 26. 
    Amanzio M, Benedetti F. 1999. Neuropharmacological dissection of placebo analgesia: expectation-activated opioid systems versus conditioning-activated specific sub-systems. J. Neurosci. 19:484–94
    [Google Scholar]
  27. 27. 
    Büchel C, Geuter S, Sprenger C, Eippert F. 2014. Placebo analgesia: a predictive coding perspective. Neuron 81:1223–39
    [Google Scholar]
  28. 28. 
    Eippert F, Bingel U, Schoell ED, Yacubian J, Klinger R et al. 2009. Activation of the opioidergic descending pain control system underlies placebo analgesia. Neuron 63:533–43
    [Google Scholar]
  29. 29. 
    Benedetti F, Amanzio M, Maggi G 1995. Potentiation of placebo analgesia by proglumide. Lancet 346:1231
    [Google Scholar]
  30. 30. 
    Benedetti F. 1996. The opposite effects of the opiate antagonist naloxone and the cholecystokinin antagonist proglumide on placebo analgesia. Pain 64:535–43
    [Google Scholar]
  31. 31. 
    Benedetti F, Amanzio M, Thoen W 2011. Disruption of opioid-induced placebo responses by activation of cholecystokinin type-2 receptors. Psychopharmachology 213:791–97
    [Google Scholar]
  32. 32. 
    Petrovic P, Kalso E, Petersson KM, Ingvar M. 2002. Placebo and opioid analgesia—imaging a shared neuronal network. Science 295:1737–40
    [Google Scholar]
  33. 33. 
    Zubieta JK, Bueller JA, Jackson LR, Scott DJ, Xu Y et al. 2005. Placebo effects mediated by endogenous opioid activity on μ-opioid receptors. J. Neurosci. 25:7754–62
    [Google Scholar]
  34. 34. 
    Wager TD, Scott DJ, Zubieta JK. 2007. Placebo effects on human μ-opioid activity during pain. PNAS 104:11056–61
    [Google Scholar]
  35. 35. 
    Benedetti F, Amanzio M, Casadio C, Oliaro A, Maggi G 1997. Blockade of nocebo hyperalgesia by the cholecystokinin antagonist proglumide. Pain 71:135–40
    [Google Scholar]
  36. 36. 
    Benedetti F, Amanzio M, Vighetti S, Asteggiano G. 2006. The biochemical and neuroendocrine bases of the hyperalgesic nocebo effect. J. Neurosci. 26:12014–22
    [Google Scholar]
  37. 37. 
    Andre J, Zeau B, Pohl M, Cesselin F, Benoliel JJ et al. 2005. Involvement of cholecystokininergic systems in anxiety-induced hyperalgesia in male rats: behavioural and biochemical studies. J. Neurosci. 25:7896–904
    [Google Scholar]
  38. 38. 
    Benedetti F, Amanzio M, Rosato R, Blanchard C 2011. Nonopioid placebo analgesia is mediated by CB1 cannabinoid receptors. Nat. Med. 17:1228–30
    [Google Scholar]
  39. 39. 
    Peciña M, Martínez-Jauand M, Hodgkinson C, Stohler CS, Goldman D et al. 2014. FAAH selectively influences placebo effects. Mol. Psychiatry 19:385–91
    [Google Scholar]
  40. 40. 
    Benedetti F, Durando J, Vighetti S. 2014. Nocebo and placebo modulation of hypobaric hypoxia headache involves the cyclooxygenase-prostaglandins pathway. Pain 155:921–28
    [Google Scholar]
  41. 41. 
    Benedetti F, Durando J, Giudetti L, Pampallona A, Vighetti S 2015. High altitude headache: the effects of real versus sham oxygen administration. Pain 156:2326–36
    [Google Scholar]
  42. 42. 
    Benedetti F, Dogue 2015. Different placebos, different mechanisms, different outcomes: lessons for clinical trials. PLOS ONE 10:e0140967
    [Google Scholar]
  43. 43. 
    Scott DJ, Stohler CS, Egnatuk CM, Wang H, Koeppe RA et al. 2008. Placebo and nocebo effects are defined by opposite opioid and dopaminergic responses. Arch. Gen. Psychiatry 65:220–31
    [Google Scholar]
  44. 44. 
    Lidstone SC, Schulzer M, Dinelle K, Mak E, Sossi V et al. 2010. Effects of expectation on placebo induced dopamine release in Parkinson disease. Arch. Gen. Psychiatry 67:857–65
    [Google Scholar]
  45. 45. 
    Benedetti F, Colloca L, Torre E, Lanotte M, Melcarne A et al. 2004. Placebo-responsive Parkinson patients show decreased activity in single neurons of subthalamic nucleus. Nat. Neurosci. 7:587–88
    [Google Scholar]
  46. 46. 
    Benedetti F, Lanotte M, Colloca L, Ducati A, Zibetti M et al. 2009. Electrophysiological properties of thalamic, subthalamic and nigral neurons during the anti-parkinsonian placebo response. J. Physiol. 587:3869–83
    [Google Scholar]
  47. 47. 
    Benedetti F, Frisaldi E, Carlino E, Giudetti L, Pampallona A et al. 2016. Teaching neurons to respond to placebos. J. Physiol. 594:5647–60
    [Google Scholar]
  48. 48. 
    Frisaldi E, Carlino E, Lopiano L, Lanotte M, Benedetti F 2014. Characterization of the thalamic-subthalamic circuit involved in the placebo response through single-neuron recording in Parkinson patients. Cortex 60:3–9
    [Google Scholar]
  49. 49. 
    Amanzio M, Benedetti F, Porro CA, Palermo S, Cauda F. 2013. Activation likelihood estimation meta-analysis of brain correlates of placebo analgesia in human experimental pain. Hum. Brain Map. 34:738–52
    [Google Scholar]
  50. 50. 
    Zunhammer M, Bingel U, Wager TDPlacebo Imaging Consort 2018. Placebo effects on the neurologic pain signature: a meta-analysis of individual participant functional magnetic resonance imaging data. JAMA Neurol. 75:1321–30
    [Google Scholar]
  51. 51. 
    Zunhammer M, Spisák T, Wager TD, Bingel U Placebo Imaging Consort. 2021. Meta-analysis of neural systems underlying placebo analgesia from individual participant fMRI data. Nat. Commun. 12:1391
    [Google Scholar]
  52. 52. 
    Faria V, Appel L, Åhs F, Linnman C, Pissiota A et al. 2012. Amygdala subregions tied to SSRI and placebo response in patients with social anxiety disorder. Neuropsychopharmacology 37:2222–32
    [Google Scholar]
  53. 53. 
    Faria V, Åhs F, Appel L, Linnman C, Bani M et al. 2014. Amygdala-frontal couplings characterizing SSRI and placebo response in social anxiety disorder. Int. J. Neuropsychopharmacol. 17:1149–57
    [Google Scholar]
  54. 54. 
    Pacheco-López G, Niemi MB, Kou W, Härting M, Fandrey J et al. 2005. Neural substrates for behaviourally conditioned immunosuppression in the rat. J. Neurosci. 25:2330–37
    [Google Scholar]
  55. 55. 
    Hadamitzky M, Lückemann L, Pacheco-López G, Schedlowski M. 2020. Pavlovian conditioning of immunological and neuroendocrine functions. Physiol. Rev. 100:357–405
    [Google Scholar]
  56. 56. 
    Benedetti F, Pollo A, Lopiano L, Lanotte M, Vighetti S et al. 2003. Conscious expectation and unconscious conditioning in analgesic, motor and hormonal placebo/nocebo responses. J. Neurosci. 23:4315–23
    [Google Scholar]
  57. 57. 
    Kessner S, Sprenger C, Wrobel N, Wiech K, Bingel U 2013. Effect of oxytocin on placebo analgesia: a randomized study. JAMA 310:1733–35
    [Google Scholar]
  58. 58. 
    Colloca L, Pine DS, Ernst M, Miller FG, Grillon C. 2016. Vasopressin boosts placebo analgesic effects in women: a randomized trial. Biol. Psychiatry 79:794–802
    [Google Scholar]
  59. 59. 
    Rausch JL, Johnson ME, Fei YJ, Li JQ, Shendarkar N et al. 2002. Initial conditions of serotonin transporter kinetics and genotype: influence on SSRI treatment trial outcome. Biol. Psychiatry 51:723–32
    [Google Scholar]
  60. 60. 
    Furmark T, Appel L, Henningsson S, Ahs F, Faria V et al. 2008. A link between serotonin-related gene polymorphisms, amygdala activity, and placebo-induced relief from social anxiety. J. Neurosci. 28:13066–74
    [Google Scholar]
  61. 61. 
    Leuchter AF, McCracken JT, Hunter AM, Cook IA, Alpert JE. 2009. Monoamine oxidase a and catechol-O-methyltransferase functional polymorphisms and the placebo response in major depressive disorder. J. Clin. Psychopharmacol. 29:372–77
    [Google Scholar]
  62. 62. 
    Hall KT, Lembo AJ, Kirsch I, Ziogas DC, Douaiher J et al. 2012. Catechol-O-methyltransferase val158met polymorphism predicts placebo effect in irritable bowel syndrome. PLOS ONE 7:e48135
    [Google Scholar]
  63. 63. 
    Colloca L, Wang Y, Martinez PE, Chang YC, Ryan KA et al. 2019. OPRM1 rs1799971, COMT rs4680, and FAAH rs324420 genes interact with placebo procedures to induce hypoalgesia. Pain 160:1824–34
    [Google Scholar]
  64. 64. 
    Herrnstein RJ. 1962. Placebo effect in the rat. Science 138:677–78
    [Google Scholar]
  65. 65. 
    Bryant CD, Roberts KW, Culbertson CS, Le A, Evans CJ et al. 2009. Pavlovian conditioning of multiple opioid-like responses in mice. Drug Alcohol Dependence 103:74–83
    [Google Scholar]
  66. 66. 
    Guo JY, Wang JY, Luo F 2010. Dissection of placebo analgesia in mice: the conditions for activation of opioid and non-opioid systems. J. Psychopharmacol. 24:1561–67
    [Google Scholar]
  67. 67. 
    Nolan TA, Price DD, Caudle RM, Murphy NP, Neubert JK 2012. Placebo-induced analgesia in an operant pain model in rats. Pain 153:2009–16
    [Google Scholar]
  68. 68. 
    Zhang RR, Zhang WC, Wang JY, Guo JY 2013. The opioid placebo analgesia is mediated exclusively through mu-opioid receptor in rat. Int. J. Neuropsychopharmacol. 16:849–56
    [Google Scholar]
  69. 69. 
    Colloca L, Benedetti F. 2006. How prior experience shapes placebo analgesia. Pain 124:126–33
    [Google Scholar]
  70. 70. 
    Lipman JJ, Miller BE, Mays KS, Miller MN, North WC et al. 1990. Peak B endorphin concentration in cerebrospinal fluid: reduced in chronic pain patients and increased during the placebo response. Psychopharmacology 102:112–16
    [Google Scholar]
  71. 71. 
    Benedetti F, Carlino E, Piedimonte A 2016. Placebo, nocebo, Hawthorne effects and the increasing uncertainty in clinical trials. Lancet Neurol 15:736–47
    [Google Scholar]
  72. 72. 
    Bartfai T, Lees GV. 2011. Pharma TARP: a troubled asset relief program for novel, abandoned projects in the pharmaceutical industry. Sci. World J. 11:454–57
    [Google Scholar]
  73. 73. 
    Dolgin E. 2010. Fluctuating baseline pain implicated in failure of clinical trials. Nat. Med. 16:1053
    [Google Scholar]
  74. 74. 
    Katz J, Finnerup NB, Dworkin RH. 2008. Clinical trial outcome in neuropathic pain: relationship to study characteristics. Neurology 70:263–72
    [Google Scholar]
  75. 75. 
    Tuttle AH, Tohyama S, Ramsay T, Kimmelman J, Schweinhardt P et al. 2015. Increasing placebo responses over time in U.S. clinical trials of neuropathic pain. Pain 156:2616–26
    [Google Scholar]
  76. 76. 
    Walsh BT, Seidman SN, Sysko R, Gould M. 2002. Placebo response in studies of major depression: variable, substantial, and growing. JAMA 287:1840–47
    [Google Scholar]
  77. 77. 
    Dworkin RH, Katz J, Gitlin MJ. 2005. Placebo response in clinical trials of depression and its implications for research on chronic neuropathic pain. Neurology 65:S7–19
    [Google Scholar]
  78. 78. 
    Younger J, Gandhi V, Hubbard E, Mackey S. 2012. Development of the Stanford Expectations of Treatment Scale (SETS): a tool for measuring patient outcome expectancy in clinical trials. Clin. Trials 9:767–76
    [Google Scholar]
  79. 79. 
    Sneed JR, Rutherford BR, Rindskopf D, Lane DT, Sackeim HA et al. 2008. Design makes a difference: a meta-analysis of antidepressant response rates in placebo-controlled versus comparator trials in late-life depression. Am. J. Geriatr. Psychiatry 16:65–73
    [Google Scholar]
  80. 80. 
    Rutherford BR, Sneed JR, Roose SP. 2009. Does study design influence outcome? The effects of placebo control and treatment duration in antidepressant trials. Psychother. Psychosom. 78:172–81
    [Google Scholar]
  81. 81. 
    Rutherford BR, Wall MM, Brown PJ, Choo TH, Wager TD et al. 2017. Patient expectancy as a mediator of placebo effects in antidepressant clinical trials. Am. J. Psychiatry 174:135–42
    [Google Scholar]
  82. 82. 
    Bausell RB, Lao L, Bergman S, Lee WL, Berman BM 2005. Is acupuncture analgesia an expectancy effect? Preliminary evidence based on participants’ perceived assignments in two placebo-controlled trials. Eval. Health Prof. 28:9–26
    [Google Scholar]
  83. 83. 
    Linde K, Witt CM, Streng A, Weidenhammer W, Wagenpfeil S et al. 2007. The impact of patient expectations on outcomes in four randomized controlled trials of acupuncture in patients with chronic pain. Pain 128:264–71
    [Google Scholar]
  84. 84. 
    Pollo A, Torre E, Lopiano L, Rizzone M, Lanotte M et al. 2002. Expectation modulates the response to subthalamic nucleus stimulation in Parkinsonian patients. NeuroReport 13:1383–86
    [Google Scholar]
  85. 85. 
    McRae C, Cherin E, Yamazaki TG, Diem G, Vo AH et al. 2004. Effects of perceived treatment on quality of life and medical outcomes in a double-blind placebo surgery trial. Arch. Gen. Psychiatry 61:412–20
    [Google Scholar]
  86. 86. 
    Rief W, Shedden-Mora MC, Laferton JAC, Auer C, Petrie KJ et al. 2017. Preoperative optimization of patient expectations improves long-term outcome in heart surgery patients: results of the randomized controlled PSY-HEART trial. BMC Med 15:4
    [Google Scholar]
  87. 87. 
    Daniels AM, Sallie R. 1981. Headache, lumbar puncture, and expectation. Lancet 1:1003
    [Google Scholar]
  88. 88. 
    Amanzio M, Corazzini LL, Vase L, Benedetti F. 2009. A systematic review of adverse events in placebo groups of anti-migraine clinical trials. Pain 146:261–69
    [Google Scholar]
  89. 89. 
    Giustini D. 2012. Social media and clinical trials recruitment: potential benefits and challenges. J. Can. Health Libr. Assoc. 33:140–45
    [Google Scholar]
  90. 90. 
    Allison M. 2009. Can web 2.0 reboot clinical trials?. Nat. Biotech. 27:895–902
    [Google Scholar]
  91. 91. 
    Coons S. 2012. Communication through social media: its potential and pitfalls. Res. Pract. 13:44–50
    [Google Scholar]
  92. 92. 
    Benedetti F. 2005. The importance of considering the effects of perceived group assignment in placebo-controlled trials. Eval. Health Prof. 28:5–6
    [Google Scholar]
  93. 93. 
    Benedetti F. 2007. What do you expect from this treatment? Changing our mind about clinical trials. Pain 128:193–94
    [Google Scholar]
  94. 94. 
    Levine JD, Gordon NC. 1984. Influence of the method of drug administration on analgesic response. Nature 312:755–56
    [Google Scholar]
  95. 95. 
    Levine JD, Gordon NC, Smith R, Fields HL 1981. Analgesic responses to morphine and placebo in individuals with postoperative pain. Pain 10:379–89
    [Google Scholar]
  96. 96. 
    Amanzio M, Pollo A, Maggi G, Benedetti F 2001. Response variability to analgesics: a role for non-specific activation of endogenous opioids. Pain 90:205–15
    [Google Scholar]
  97. 97. 
    Benedetti F, Maggi G, Lopiano L, Lanotte M, Rainero I et al. 2003. Open versus hidden medical treatments: The patient's knowledge about a therapy affects the therapy outcome. Prev. Treat. 6:1a
    [Google Scholar]
  98. 98. 
    Colloca L, Lopiano L, Lanotte M, Benedetti F 2004. Overt versus covert treatment for pain, anxiety and Parkinson's disease. Lancet Neurol 3:679–84
    [Google Scholar]
  99. 99. 
    Benedetti F, Carlino E, Pollo A 2011. Hidden administration of drugs. Clin. Pharmacol. Ther. 90:651–61
    [Google Scholar]
  100. 100. 
    Bingel U, Wanigasekera V, Wiech K, Ni Mhuircheartaigh R, Lee MC et al. 2013. The effect of treatment expectation on drug efficacy: imaging the analgesic benefit of the opioid remifentanil. Sci. Transl. Med. 3:70ra14
    [Google Scholar]
  101. 101. 
    Atlas LY, Whittington RA, Lindquist MA, Wielgosz J, Sonty N et al. 2012. Dissociable influences of opiates and expectations on pain. J. Neurosci. 32:8053–64
    [Google Scholar]
  102. 102. 
    Carlino E, Piedimonte A, Romagnolo A, Guerra G, Frisaldi E et al. 2019. Verbal communication about drug dosage balances drug reduction in Parkinson's disease: behavioral and electrophysiological evidences. Parkinsonism Relat. Disord. 65:184–89
    [Google Scholar]
  103. 103. 
    Benedetti F. 2019. The dangerous side of placebo research: Is hard science boosting pseudoscience?. Clin. Pharmacol. Ther. 106:1166–68
    [Google Scholar]
  104. 104. 
    Kaptchuk TJ, Friedlander E, Kelley JM, Sanchez MN, Kokkotou E et al. 2010. Placebos without deception: a randomized controlled trial in irritable bowel syndrome. PLOS ONE 5:e15591
    [Google Scholar]
  105. 105. 
    Kelley JM, Kaptchuk TJ, Cusin C, Lipkin S, Fava M 2012. Open-label placebo for major depressive disorder: a pilot randomized controlled trial. Psychother. Psychosomat. 81:312–14
    [Google Scholar]
  106. 106. 
    Carvalho C, Caetano JM, Cunha L, Rebouta P, Kaptchuk TJ et al. 2016. Open-label placebo treatment in chronic low back pain: a randomized controlled trial. Pain 157:2766–72
    [Google Scholar]
  107. 107. 
    Locher C, Frey Nascimento A, Kirsch I, Kossowsky J, Meyer A et al. 2017. Is the rationale more important than deception? A randomized controlled trial of open-label placebo analgesia. Pain 158:2320–28
    [Google Scholar]
  108. 108. 
    Colloca L, Howick J. 2018. Placebos without deception: outcomes, mechanisms, and ethics. Int. Rev. Neurobiol. 138:219–40
    [Google Scholar]
  109. 109. 
    Hoenemeyer TW, Kaptchuk TJ, Mehta TS, Fontaine KR. 2018. Open-label placebo treatment for cancer-related fatigue: a randomized-controlled clinical trial. Sci. Rep. 8:2784
    [Google Scholar]
  110. 110. 
    Kaptchuk TJ. 2018. Open-label placebo: reflections on a research agenda. Persp. Biol. Med. 61:311–34
    [Google Scholar]
  111. 111. 
    Kaptchuk TJ, Miller FG. 2018. Open label placebo: Can honestly prescribed placebos evoke meaningful therapeutic benefits?. Br. Med. J. 363:k3889
    [Google Scholar]
  112. 112. 
    Meeuwis SH, van Middendorp H, Veldhuijzen DS, van Laarhoven AIM, De Houwer J et al. 2018. Placebo effects of open-label verbal suggestions on itch. Acta Derm. Venereol. 98:268–74
    [Google Scholar]
  113. 113. 
    Leibowitz KA, Hardebeck EJ, Goyer JP, Crum AJ. 2019. The role of patient beliefs in open-label placebo effects. Health Psychol 38:613–22
    [Google Scholar]
  114. 114. 
    Guevarra DA, Moser JS, Wager TD, Kross E. 2020. Placebos without deception reduce self-report and neural measures of emotional distress. Nat. Commun. 11:3785
    [Google Scholar]
  115. 115. 
    Charlesworth JEG, Petkovic G, Kelley JM, Hunter M, Onakpoya I et al. 2017. Effects of placebos without deception compared with no treatment: a systematic review and meta-analysis. J. Evid. Based Med. 10:97–107
    [Google Scholar]
  116. 116. 
    Barnes K, Yu A, Josupeit J, Colagiuri B 2019. Deceptive but not open label placebos attenuate motion-induced nausea. J. Psychosom. Res. 125:109808
    [Google Scholar]
  117. 117. 
    Torres-Peralta R, Losa-Reyna J, Morales-Alamo D, González-Izal M, Pérez-Suárez I et al. 2016. Increased PIO2 at exhaustion in hypoxia enhances muscle activation and swiftly relieves fatigue: a placebo or a PIO2 dependent effect?. Front. Physiol. 7:333
    [Google Scholar]
  118. 118. 
    Benedetti F, Barbiani D, Camerone E. 2018. Critical life functions: Can placebo replace oxygen?. Int. Rev. Neurobiol. 138:201–18
    [Google Scholar]
  119. 119. 
    Barbiani D, Camerone E, Benedetti F 2018. What is the relative contribution of biological and psychosocial factors to the generation of hypoxia headache? Can. . J. Pain 2:160–68
    [Google Scholar]
  120. 120. 
    Benedetti F, Frisaldi E, Barbiani D, Camerone E, Shaibani A 2020. Nocebo and the contribution of psychosocial factors to the generation of pain. J. Neural Transm. 127:687–96
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-052120-104536
Loading
/content/journals/10.1146/annurev-pharmtox-052120-104536
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error