1932

Abstract

Stem cells are critical to maintaining steady-state organ homeostasis and regenerating injured tissues. Recent intriguing reports implicate extracellular vesicles (EVs) as carriers for the distribution of morphogens and growth and differentiation factors from tissue parenchymal cells to stem cells, and conversely, stem cell–derived EVs carrying certain proteins and nucleic acids can support healing of injured tissues. We describe approaches to make use of engineered EVs as technology platforms in therapeutics and diagnostics in the context of stem cells. For some regenerative therapies, natural and engineered EVs from stem cells may be superior to single-molecule drugs, biologics, whole cells, and synthetic liposome or nanoparticle formulations because of the ease of bioengineering with multiple factors while retaining superior biocompatibility and biostability and posing fewer risks for abnormal differentiation or neoplastic transformation. Finally, we provide an overview of current challenges and future directions of EVs as potential therapeutic alternatives to cells for clinical applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-061616-030146
2017-01-06
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/57/1/annurev-pharmtox-061616-030146.html?itemId=/content/journals/10.1146/annurev-pharmtox-061616-030146&mimeType=html&fmt=ahah

Literature Cited

  1. Colombo M, Raposo G, Théry C. 1.  2014. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 30:255–89 [Google Scholar]
  2. Yanez-Mo M, Siljander PR, Andreu Z, Zavec AB, Borras FE. 2.  et al. 2015. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 4:27066 [Google Scholar]
  3. Record M, Subra C, Silvente-Poirot S, Poirot M. 3.  2011. Exosomes as intercellular signalosomes and pharmacological effectors. Biochem. Pharmacol. 81:1171–82 [Google Scholar]
  4. Villarroya-Beltri C, Baixauli F, Gutiérrez-Vázquez C, Sánchez-Madrid F, Mittelbrunn M. 4.  2014. Sorting it out: regulation of exosome loading. Semin. Cancer Biol. 28:3–13 [Google Scholar]
  5. Mulcahy LA, Pink RC, Carter DR. 5.  2014. Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles 3:24641 [Google Scholar]
  6. Lakkaraju A, Rodriguez-Boulan E. 6.  2008. Itinerant exosomes: emerging roles in cell and tissue polarity. Trends Cell Biol. 18:199–209 [Google Scholar]
  7. Clevers H, Loh KM, Nusse R. 7.  2014. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science 346:1248012 [Google Scholar]
  8. Zhang L, Wrana JL. 8.  2014. The emerging role of exosomes in Wnt secretion and transport. Curr. Opin. Genet. Dev. 27:14–19 [Google Scholar]
  9. Camussi G, Deregibus MC, Cantaluppi V. 9.  2013. Role of stem-cell-derived microvesicles in the paracrine action of stem cells. Biochem. Soc. Trans. 41:283–87 [Google Scholar]
  10. Quesenberry P, Aliotta J, Dooner M, Chatterjee D, Ramratnam B. 10.  et al. 2014. Extracellular vesicles and tissue organ regeneration. Adult Stem Cell Therapies: Alternatives to Plasticity MZ Ratajczak 245–50 New York: Springer [Google Scholar]
  11. Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J. 11.  et al. 2009. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5:54–63 [Google Scholar]
  12. Walker PA, Letourneau PA, Bedi S, Shah SK, Jimenez F, Cox CS Jr. 12.  2011. Progenitor cells as remote “bioreactors”: neuroprotection via modulation of the systemic inflammatory response. World J. Stem Cells 3:9–18 [Google Scholar]
  13. Kourembanas S. 13.  2015. Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy. Annu. Rev. Physiol. 77:13–27 [Google Scholar]
  14. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM. 14.  et al. 2001. Bone marrow cells regenerate infarcted myocardium. Nature 410:701–5 [Google Scholar]
  15. Nygren JM, Jovinge S, Breitbach M, Sawen P, Roll W. 15.  et al. 2004. Bone marrow–derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat. Med. 10:494–501 [Google Scholar]
  16. Gnecchi M, He HM, Liang OD, Melo LG, Morello F. 16.  et al. 2005. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat. Med. 11:367–68 [Google Scholar]
  17. Belting M, Wittrup A. 17.  2008. Nanotubes, exosomes, and nucleic acid–binding peptides provide novel mechanisms of intercellular communication in eukaryotic cells: implications in health and disease. J. Cell Biol. 183:1187–91 [Google Scholar]
  18. Lim K, Hyun YM, Lambert-Emo K, Capece T, Bae S. 18.  et al. 2015. Neutrophil trails guide influenza-specific CD8+ T cells in the airways. Science 349:aaa4352 [Google Scholar]
  19. György B, Hung ME, Breakefield XO, Leonard JN. 19.  2015. Therapeutic applications of extracellular vesicles: clinical promise and open questions. Annu. Rev. Pharmacol. Toxicol. 55:439–64 [Google Scholar]
  20. Quesenberry PJ, Aliotta J, Deregibus MC, Camussi G. 20.  2015. Role of extracellular RNA-carrying vesicles in cell differentiation and reprogramming. Stem Cell Res. Ther. 6:153 [Google Scholar]
  21. Wang AZ, Langer R, Farokhzad OC. 21.  2012. Nanoparticle delivery of cancer drugs. Annu. Rev. Med. 63:185–98 [Google Scholar]
  22. Torchilin VP. 22.  2014. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov. 13:813–27 [Google Scholar]
  23. Lötvall J, Hill AF, Hochberg F, Buzas EI, Di Vizio D. 23.  et al. 2014. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J. Extracell. Vesicles 3:26913 [Google Scholar]
  24. Pan BT, Teng K, Wu C, Adam M, Johnstone RM. 24.  1985. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J. Cell Biol. 101:942–48 [Google Scholar]
  25. Zomer A, Maynard C, Verweij FJ, Kamermans A, Schafer R. 25.  et al. 2015. In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell 161:1046–57 [Google Scholar]
  26. Kanada M, Bachmann MH, Hardy JW, Frimannson DO, Bronsart L. 26.  et al. 2015. Differential fates of biomolecules delivered to target cells via extracellular vesicles. PNAS 112:E1433–42 [Google Scholar]
  27. Andreu Z, Yanez-Mo M. 27.  2014. Tetraspanins in extracellular vesicle formation and function. Front. Immunol. 5:442 [Google Scholar]
  28. Roberts CT Jr., Kurre P. 28.  2013. Vesicle trafficking and RNA transfer add complexity and connectivity to cell-cell communication. Cancer Res. 73:3200–5 [Google Scholar]
  29. Cocucci E, Meldolesi J. 29.  2015. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol. 25:364–72 [Google Scholar]
  30. Henson PM, Bratton DL. 30.  2013. Antiinflammatory effects of apoptotic cells. J. Clin. Investig. 123:2773–74 [Google Scholar]
  31. Getts DR, McCarthy DP, Miller SD. 31.  2013. Exploiting apoptosis for therapeutic tolerance induction. J. Immunol. 191:5341–46 [Google Scholar]
  32. Robbins PD, Morelli AE. 32.  2014. Regulation of immune responses by extracellular vesicles. Nat. Rev. Immunol. 14:195–208 [Google Scholar]
  33. Bissig C, Gruenberg J. 33.  2013. Lipid sorting and multivesicular endosome biogenesis. Cold Spring Harb. Perspect. Biol. 5:a016816 [Google Scholar]
  34. Marzesco AM. 34.  2013. Prominin-1-containing membrane vesicles: origins, formation, and utility. Adv. Exp. Med. Biol. 777:41–54 [Google Scholar]
  35. Fargeas CA. 35.  2013. Prominin-2 and other relatives of CD133. Adv. Exp. Med. Biol. 777:25–40 [Google Scholar]
  36. Pattabiraman DR, Weinberg RA. 36.  2014. Tackling the cancer stem cells – what challenges do they pose?. Nat. Rev. Drug Discov. 13:497–512 [Google Scholar]
  37. Zhang XA, Huang C. 37.  2012. Tetraspanins and cell membrane tubular structures. Cell. Mol. Life Sci. 69:2843–52 [Google Scholar]
  38. Calò A, Reguera D, Oncins G, Persuy MA, Sanz G. 38.  et al. 2014. Force measurements on natural membrane nanovesicles reveal a composition-independent, high Young's modulus. Nanoscale 6:2275–85 [Google Scholar]
  39. Mittelbrunn M, Sánchez-Madrid F. 39.  2012. Intercellular communication: diverse structures for exchange of genetic information. Nat. Rev. Mol. Cell Biol. 13:328–35 [Google Scholar]
  40. Diehl P, Fricke A, Sander L, Stamm J, Bassler N. 40.  et al. 2012. Microparticles: major transport vehicles for distinct microRNAs in circulation. Cardiovasc. Res. 93:633–44 [Google Scholar]
  41. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. 41.  2007. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9:654–59 [Google Scholar]
  42. Fatica A, Bozzoni I. 42.  2014. Long non-coding RNAs: new players in cell differentiation and development. Nat. Rev. Genet. 15:7–21 [Google Scholar]
  43. Ha M, Kim VN. 43.  2014. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell. Biol. 15:509–24 [Google Scholar]
  44. Morris KV, Mattick JS. 44.  2014. The rise of regulatory RNA. Nat. Rev. Genet. 15:423–37 [Google Scholar]
  45. Kholodenko BN, Hancock JF, Kolch W. 45.  2010. Signalling ballet in space and time. Nat. Rev. Mol. Cell. Biol. 11:414–26 [Google Scholar]
  46. Vieira AV, Lamaze C, Schmid SL. 46.  1996. Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274:2086–89 [Google Scholar]
  47. Sigismund S, Confalonieri S, Ciliberto A, Polo S, Scita G. Fiore PP. 47. , Di 2012. Endocytosis and signaling: cell logistics shape the eukaryotic cell plan. Physiol. Rev. 92:273–366 [Google Scholar]
  48. Marjon KD, Gillette JM. 48.  2014. Measurement of intercellular transfer to signaling endosomes. Methods Enzymol. 534:207–21 [Google Scholar]
  49. Denzer K, Kleijmeer MJ, Heijnen HF, Stoorvogel W, Geuze HJ. 49.  2000. Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J. Cell Sci. 113:3365–74 [Google Scholar]
  50. Mause SF, Weber C. 50.  2010. Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ. Res. 107:1047–57 [Google Scholar]
  51. Corrado C, Raimondo S, Chiesi A, Ciccia F. Leo G, Alessandro R. 51. , De 2013. Exosomes as intercellular signaling organelles involved in health and disease: basic science and clinical applications. Intl. J. Mol. Sci. 14:5338–66 [Google Scholar]
  52. Gangoda L, Boukouris S, Liem M, Kalra H, Mathivanan S. 52.  2015. Extracellular vesicles including exosomes are mediators of signal transduction: Are they protective or pathogenic?. Proteomics 15:260–71 [Google Scholar]
  53. Singh B, Coffey RJ. 53.  2014. Trafficking of epidermal growth factor receptor ligands in polarized epithelial cells. Annu. Rev. Physiol. 76:275–300 [Google Scholar]
  54. Poss KD. 54.  2010. Advances in understanding tissue regenerative capacity and mechanisms in animals. Nat. Rev. Genet. 11:710–22 [Google Scholar]
  55. Mittelbrunn M, Vicente-Manzanares M, Sánchez-Madrid F. 55.  2015. Organizing polarized delivery of exosomes at synapses. Traffic 16:327–37 [Google Scholar]
  56. Gross JC, Chaudhary V, Bartscherer K, Boutros M. 56.  2012. Active Wnt proteins are secreted on exosomes. Nat. Cell Biol. 14:1036–45 [Google Scholar]
  57. van Niel G, Raposo G, Candalh C, Boussac M, Hershberg R. 57.  et al. 2001. Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterology 121:337–49 [Google Scholar]
  58. Rodriguez-Boulan E, Macara IG. 58.  2014. Organization and execution of the epithelial polarity programme. Nat. Rev. Mol. Cell. Biol. 15:225–42 [Google Scholar]
  59. Gradilla AC, Guerrero I. 59.  2013. Cytoneme-mediated cell-to-cell signaling during development. Cell Tissue Res 352:59–66 [Google Scholar]
  60. Graham TR, Kozlov MM. 60.  2010. Interplay of proteins and lipids in generating membrane curvature. Curr. Opin. Cell Biol. 22:430–36 [Google Scholar]
  61. Kornberg TB, Roy S. 61.  2014. Cytonemes as specialized signaling filopodia. Development 141:729–36 [Google Scholar]
  62. Stanganello E, Hagemann AI, Mattes B, Sinner C, Meyen D. 62.  et al. 2015. Filopodia-based Wnt transport during vertebrate tissue patterning. Nat. Commun. 6:5846 [Google Scholar]
  63. Plotnikov EY, Khryapenkova TG, Vasileva AK, Marey MV, Galkina SI. 63.  et al. 2008. Cell-to-cell cross-talk between mesenchymal stem cells and cardiomyocytes in co-culture. J. Cell. Mol. Med. 12:1622–31 [Google Scholar]
  64. Cismasiu VB, Popescu LM. 64.  2015. Telocytes transfer extracellular vesicles loaded with microRNAs to stem cells. J. Cell Mol. Med. 19:351–58 [Google Scholar]
  65. Tersteeg C, Heijnen HF, Eckly A, Pasterkamp G, Urbanus RT. 65.  et al. 2014. FLow-induced PRotrusions (FLIPRs): a platelet-derived platform for the retrieval of microparticles by monocytes and neutrophils. Circ. Res. 114:780–91 [Google Scholar]
  66. Sørensen OE, Borregaard N. 66.  2016. Neutrophil extracellular traps – the dark side of neutrophils. J. Clin. Investig. 126:1612–20 [Google Scholar]
  67. Arraud N, Linares R, Tan S, Gounou C, Pasquet JM. 67.  et al. 2014. Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. J. Thromb. Haemost. 12:614–27 [Google Scholar]
  68. Wood CR, Rosenbaum JL. 68.  2015. Ciliary ectosomes: transmissions from the cell's antenna. Trends Cell Biol 25:276–85 [Google Scholar]
  69. Wang J, Silva M, Haas LA, Morsci NS, Nguyen KC. 69.  et al. 2014. C. elegans ciliated sensory neurons release extracellular vesicles that function in animal communication. Curr. Biol. 24:519–25 [Google Scholar]
  70. Korkut C, Ataman B, Ramachandran P, Ashley J, Barria R. 70.  et al. 2009. Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless. Cell 139:393–404 [Google Scholar]
  71. Koles K, Nunnari J, Korkut C, Barria R, Brewer C. 71.  et al. 2012. Mechanism of evenness interrupted (Evi)-exosome release at synaptic boutons. J. Biol. Chem. 287:16820–34 [Google Scholar]
  72. Panáková D, Sprong H, Marois E, Thiele C, Eaton S. 72.  2005. Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature 435:58–65 [Google Scholar]
  73. Greco V, Hannus M, Eaton S. 73.  2001. Argosomes: a potential vehicle for the spread of morphogens through epithelia. Cell 106:633–45 [Google Scholar]
  74. Beckett K, Monier S, Palmer L, Alexandre C, Green H. 74.  et al. 2013. Drosophila S2 cells secrete wingless on exosome-like vesicles but the wingless gradient forms independently of exosomes. Traffic 14:82–96 [Google Scholar]
  75. Tanaka Y, Okada Y, Hirokawa N. 75.  2005. FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left–right determination. Nature 435:172–77 [Google Scholar]
  76. Vyas N, Walvekar A, Tate D, Lakshmanan V, Bansal D. 76.  et al. 2014. Vertebrate Hedgehog is secreted on two types of extracellular vesicles with different signaling properties. Sci. Rep. 4:7357 [Google Scholar]
  77. Liégeois S, Benedetto A, Garnier JM, Schwab Y, Labouesse M. 77.  2006. The V0-ATPase mediates apical secretion of exosomes containing Hedgehog-related proteins in Caenorhabditis elegans. J. Cell Biol. 173:949–61 [Google Scholar]
  78. Taelman VF, Dobrowolski R, Plouhinec JL, Fuentealba LC, Vorwald PP. 78.  et al. 2010. Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Cell 143:1136–48 [Google Scholar]
  79. Cruciat CM, Ohkawara B, Acebron SP, Karaulanov E, Reinhard C. 79.  et al. 2010. Requirement of prorenin receptor and vacuolar H+-ATPase-mediated acidification for Wnt signaling. Science 327:459–63 [Google Scholar]
  80. Sheldon H, Heikamp E, Turley H, Dragovic R, Thomas P. 80.  et al. 2010. New mechanism for Notch signaling to endothelium at a distance by Delta-like 4 incorporation into exosomes. Blood 116:2385–94 [Google Scholar]
  81. Sharghi-Namini S, Tan EV, Ong LLS, Ge RW, Asada HH. 81.  2014. Dll4-containing exosomes induce capillary sprout retraction in a 3D microenvironment. Sci. Rep. 4:4031 [Google Scholar]
  82. Guruharsha KG, Kankel MW, Artavanis-Tsakonas S. 82.  2012. The Notch signalling system: recent insights into the complexity of a conserved pathway. Nat. Rev. Genet. 13:654–66 [Google Scholar]
  83. Ryoo HD, Bergmann A. 83.  2012. The role of apoptosis-induced proliferation for regeneration and cancer. Cold Spring Harb. Perspect. Biol. 4:a008797 [Google Scholar]
  84. Poon IK, Lucas CD, Rossi AG, Ravichandran KS. 84.  2014. Apoptotic cell clearance: basic biology and therapeutic potential. Nat. Rev. Immunol. 14:166–80 [Google Scholar]
  85. Janssen WJ, Henson PM. 85.  2012. Cellular regulation of the inflammatory response. Toxicol. Pathol. 40:166–73 [Google Scholar]
  86. Tso GH, Law HK, Tu W, Chan GC, Lau YL. 86.  2010. Phagocytosis of apoptotic cells modulates mesenchymal stem cells osteogenic differentiation to enhance IL-17 and RANKL expression on CD4+ T cells. Stem Cells 28:939–54 [Google Scholar]
  87. Deregibus MC, Iavello A, Tetta C, Camussi G. 87.  2014. Role of extracellular vesicles in tissue/organ regeneration. Adult Stem Cell Therapies: Alternatives to Plasticity MZ Ratajczak 231–44 New York: Springer [Google Scholar]
  88. Aliotta JM, Sanchez-Guijo FM, Dooner GJ, Johnson KW, Dooner MS. 88.  et al. 2007. Alteration of marrow cell gene expression, protein production, and engraftment into lung by lung-derived microvesicles: a novel mechanism for phenotype modulation. Stem Cells 25:2245–56 [Google Scholar]
  89. Aliotta JM, Pereira M, Johnson KW, de Paz N, Dooner MS. 89.  et al. 2010. Microvesicle entry into marrow cells mediates tissue-specific changes in mRNA by direct delivery of mRNA and induction of transcription. Exp. Hematol. 38:233–45 [Google Scholar]
  90. Renzulli JF II, Del Tatto M, Dooner G, Aliotta J, Goldstein L. 90.  et al. 2010. Microvesicle induction of prostate specific gene expression in normal human bone marrow cells. J. Urol. 184:2165–71 [Google Scholar]
  91. Aliotta JM, Lee D, Puente N, Faradyan S, Sears EH. 91.  et al. 2012. Progenitor/stem cell fate determination: interactive dynamics of cell cycle and microvesicles. Stem Cells Dev 21:1627–38 [Google Scholar]
  92. Aliotta JM, Pereira M, Li M, Amaral A, Sorokina A. 92.  et al. 2012. Stable cell fate changes in marrow cells induced by lung-derived microvesicles. J. Extracell. Vesicles 1:18163 [Google Scholar]
  93. Aliotta JM, Pereira M, Amaral A, Sorokina A, Igbinoba Z. 93.  et al. 2013. Induction of pulmonary hypertensive changes by extracellular vesicles from monocrotaline-treated mice. Cardiovasc. Res. 100:354–62 [Google Scholar]
  94. O'Brien LE, Bilder D. 94.  2013. Beyond the niche: tissue-level coordination of stem cell dynamics. Annu. Rev. Cell Dev. Biol. 29:107–36 [Google Scholar]
  95. Ben-David U, Benvenisty N. 95.  2011. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat. Rev. Cancer 11:268–77 [Google Scholar]
  96. Zakrzewski JL, van den Brink MR, Hubbell JA. 96.  2014. Overcoming immunological barriers in regenerative medicine. Nat. Biotechnol. 32:786–94 [Google Scholar]
  97. Cvjetkovic A, Lötvall J, Lässer C. 97.  2014. The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles. J. Extracell. Vesicles 3:23111 [Google Scholar]
  98. Nordin JZ, Lee Y, Vader P, Mäger I, Johansson HJ. 98.  et al. 2015. Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties. Nanomedicine 11:879–83 [Google Scholar]
  99. Heinemann ML, Ilmer M, Silva LP, Hawke DH, Recio A. 99.  et al. 2014. Benchtop isolation and characterization of functional exosomes by sequential filtration. J. Chromatogr. A 1371C:125–35 [Google Scholar]
  100. Kilpinen L, Impola U, Sankkila L, Ritamo I, Aatonen M. 100.  et al. 2013. Extracellular membrane vesicles from umbilical cord blood-derived MSC protect against ischemic acute kidney injury, a feature that is lost after inflammatory conditioning. J. Extracell. Vesicles 2:21927 [Google Scholar]
  101. Wahlgren J, De L, Karlson T, Brisslert M, Vaziri Sani F, Telemo E. 101.  et al. 2012. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic. Acids. Res. 40:e130 [Google Scholar]
  102. Smyth T, Petrova K, Payton NM, Persaud I, Redzic JS. 102.  et al. 2014. Surface functionalization of exosomes using click chemistry. Bioconjug. Chem. 25:1777–84 [Google Scholar]
  103. Vallhov H, Gutzeit C, Johansson SM, Nagy N, Paul M. 103.  et al. 2011. Exosomes containing glycoprotein 350 released by EBV-transformed B cells selectively target B cells through CD21 and block EBV infection in vitro. J. Immunol. 186:73–82 [Google Scholar]
  104. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. 104.  2011. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29:341–45 [Google Scholar]
  105. Clayton A, Harris CL, Court J, Mason MD, Morgan BP. 105.  2003. Antigen-presenting cell exosomes are protected from complement-mediated lysis by expression of CD55 and CD59. Eur. J. Immunol. 33:522–31 [Google Scholar]
  106. Chao MP, Weissman IL, Majeti R. 106.  2012. The CD47-SIRPα pathway in cancer immune evasion and potential therapeutic implications. Curr. Opin. Immunol. 24:225–32 [Google Scholar]
  107. Perycz M, Urbanska AS, Krawczyk PS, Parobczak K, Jaworski J. 107.  2011. Zipcode binding protein 1 regulates the development of dendritic arbors in hippocampal neurons. J. Neurosci. 31:5271–85 [Google Scholar]
  108. Juliano C, Wang J, Lin H. 108.  2011. Uniting germline and stem cells: the function of Piwi proteins and the piRNA pathway in diverse organisms. Annu. Rev. Genet. 45:447–69 [Google Scholar]
  109. Tian Y, Li S, Song J, Ji T, Zhu M. 109.  et al. 2014. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 35:2383–90 [Google Scholar]
  110. Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S. 110.  et al. 2011. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol. Ther. 19:1769–79 [Google Scholar]
  111. Katsuda T, Kosaka N, Takeshita F, Ochiya T. 111.  2013. The therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Proteomics 13:1637–53 [Google Scholar]
  112. Lee JK, Jang JY, Jeon YK, Kim CW. 112.  2014. Extracellular vesicles as an emerging paradigm of cell-to-cell communication in stem cell biology. J. Stem. Cell Res. Ther. 4:206 [Google Scholar]
  113. Lamichhane TN, Sokic S, Schardt JS, Raiker RS, Lin JW, Jay SM. 113.  2015. Emerging roles for extracellular vesicles in tissue engineering and regenerative medicine. Tissue Eng. Part B Rev. 21:45–54 [Google Scholar]
  114. Rani S, Ryan AE, Griffin MD, Ritter T. 114.  2015. Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol. Ther. 23:812–23 [Google Scholar]
  115. Katsman D, Stackpole EJ, Domin DR, Farber DB. 115.  2012. Embryonic stem cell-derived microvesicles induce gene expression changes in Müller cells of the retina. PLOS ONE 7:e50417 [Google Scholar]
  116. Khan M, Nickoloff E, Abramova T, Johnson J, Verma SK. 116.  et al. 2015. Embryonic stem cell–derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circ. Res. 117:52–64 [Google Scholar]
  117. Deregibus MC, Cantaluppi V, Calogero R, Lo Iacono M, Tetta C. 117.  et al. 2007. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 110:2440–48 [Google Scholar]
  118. Cantaluppi V, Biancone L, Figliolini F, Beltramo S, Medica D. 118.  et al. 2012. Microvesicles derived from endothelial progenitor cells enhance neoangiogenesis of human pancreatic islets. Cell Transplant 21:1305–20 [Google Scholar]
  119. Ibrahim AGE, Cheng K, Marban E. 119.  2014. Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Rep 2:606–19 [Google Scholar]
  120. Cahan P, Daley GQ. 120.  2013. Origins and implications of pluripotent stem cell variability and heterogeneity. Nat. Rev. Mol. Cell Biol. 14:357–68 [Google Scholar]
  121. Lalu MM, McIntyre L, Pugliese C, Fergusson D, Winston BW. 121.  et al. 2012. Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLOS ONE 7:e47559 [Google Scholar]
  122. Heldring N, Mäger I, Wood MJA, Le Blanc K, Andaloussi SEL. 122.  2015. Therapeutic potential of multipotent mesenchymal stromal cells and their extracellular vesicles. Hum. Gene Ther. 26:506–17 [Google Scholar]
  123. Stuckey DW, Shah K. 123.  2014. Stem cell-based therapies for cancer treatment: separating hope from hype. Nat. Rev. Cancer 14:683–91 [Google Scholar]
  124. Sordi V, Melzi R, Mercalli A, Formicola R, Doglioni C. 124.  et al. 2010. Mesenchymal cells appearing in pancreatic tissue culture are bone marrow-derived stem cells with the capacity to improve transplanted islet function. Stem Cells 28:140–51 [Google Scholar]
  125. Singer NG, Caplan AI. 125.  2011. Mesenchymal stem cells: mechanisms of inflammation. Annu. Rev. Pathol. Mech. Dis. 6:457–78 [Google Scholar]
  126. Frenette PS, Pinho S, Lucas D, Scheiermann C. 126.  2013. Mesenchymal stem cell: keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine. Annu. Rev. Immunol. 31:285–316 [Google Scholar]
  127. He J, Wang Y, Sun S, Yu M, Wang C. 127.  et al. 2012. Bone marrow stem cells-derived microvesicles protect against renal injury in the mouse remnant kidney model. Nephrology 17:493–500 [Google Scholar]
  128. Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S. 128.  et al. 2009. Mesenchymal stem cell–derived microvesicles protect against acute tubular injury. J. Am. Soc. Nephrol. 20:1053–67 [Google Scholar]
  129. Tan CY, Lai RC, Wong W, Dan YY, Lim SK, Ho HK. 129.  2014. Mesenchymal stem cell–derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res. Ther. 5:76 [Google Scholar]
  130. Zhang B, Wang M, Gong A, Zhang X, Wu X. 130.  et al. 2014. HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing. Stem Cells 33:2158–68 [Google Scholar]
  131. Zhu YG, Feng XM, Abbott J, Fang XH, Hao Q. 131.  et al. 2014. Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. Stem Cells 32:116–25 [Google Scholar]
  132. Lee C, Mitsialis SA, Aslam M, Vitali SH, Vergadi E. 132.  et al. 2012. Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation 126:2601–11 [Google Scholar]
  133. Arslan F, Lai RC, Smeets MB, Akeroyd L, Choo A. 133.  et al. 2013. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res 10:301–12 [Google Scholar]
  134. Xin H, Li Y, Liu Z, Wang X, Shang X. 134.  et al. 2013. MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells 31:2737–46 [Google Scholar]
  135. Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG, Chopp M. 135.  2013. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J. Cereb. Blood Flow Metab. 33:1711–15 [Google Scholar]
  136. Kordelas L, Rebmann V, Ludwig AK, Radtke S, Ruesing J. 136.  et al. 2014. MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia 28:970–73 [Google Scholar]
  137. Arwert EN, Hoste E, Watt FM. 137.  2012. Epithelial stem cells, wound healing and cancer. Nat. Rev. Cancer 12:170–80 [Google Scholar]
  138. Minciacchi VR, Freeman MR, Di Vizio D. 138.  2015. Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes. Semin. Cell Dev. Biol. 40:41–51 [Google Scholar]
  139. Webber J, Yeung V, Clayton A. 139.  2015. Extracellular vesicles as modulators of the cancer microenvironment. Sem. Cell Dev. Biol. 40:27–34 [Google Scholar]
  140. Kalluri R. 140.  2016. The biology and function of exosomes in cancer. J. Clin. Investig. 126:1208–15 [Google Scholar]
  141. Valent P, Bonnet D, De Maria R, Lapidot T, Copland M. 141.  et al. 2012. Cancer stem cell definitions and terminology: The devil is in the details. Nat. Rev. Cancer 12:767–75 [Google Scholar]
  142. Stange DE, Clevers H. 142.  2013. Concise review: the yin and yang of intestinal (cancer) stem cells and their progenitors. Stem Cells 31:2287–95 [Google Scholar]
  143. Medema JP. 143.  2013. Cancer stem cells: the challenges ahead. Nat. Cell Biol. 15:338–44 [Google Scholar]
  144. Rycaj K, Tang DG. 144.  2015. Cell-of-origin of cancer versus cancer stem cells: assays and interpretations. Cancer Res. 75:4003–11 [Google Scholar]
  145. Hannafon BN, Ding WQ. 145.  2015. Cancer stem cells and exosome signaling. Stem Cell Investig 2:11 [Google Scholar]
  146. Muralidharan-Chari V, Clancy JW, Sedgwick A, D'Souza-Schorey C. 146.  2010. Microvesicles: mediators of extracellular communication during cancer progression. J. Cell Sci. 123:1603–11 [Google Scholar]
  147. Plaks V, Kong NW, Werb Z. 147.  2015. The cancer stem cell niche: How essential is the niche in regulating stemness of tumor cells?. Cell Stem Cell 16:225–38 [Google Scholar]
  148. Egeblad M, Nakasone ES, Werb Z. 148.  2010. Tumors as organs: complex tissues that interface with the entire organism. Dev. Cell 18:884–901 [Google Scholar]
  149. Bissell MJ, Hines WC. 149.  2011. Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat. Med. 17:320–29 [Google Scholar]
  150. McAllister SS, Weinberg RA. 150.  2014. The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat. Cell Biol. 16:717–27 [Google Scholar]
  151. Vallabhaneni KC, Penfornis P, Dhule S, Guillonneau F, Adams KV. 151.  et al. 2015. Extracellular vesicles from bone marrow mesenchymal stem/stromal cells transport tumor regulatory microRNA, proteins, and metabolites. Oncotarget 6:4953–67 [Google Scholar]
  152. Grange C, Tapparo M, Collino F, Vitillo L, Damasco C. 152.  et al. 2011. Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res 71:5346–56 [Google Scholar]
  153. Fonsato V, Collino F, Herrera MB, Cavallari C, Deregibus MC. 153.  et al. 2012. Human liver stem cell-derived microvesicles inhibit hepatoma growth in SCID mice by delivering antitumor microRNAs. Stem Cells 30:1985–98 [Google Scholar]
  154. Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C. 154.  et al. 1998. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat. Med. 4:594–600 [Google Scholar]
  155. Del Tatto M, Ng T, Aliotta JM, Colvin GA, Dooner MS. 155.  et al. 2011. Marrow cell genetic phenotype change induced by human lung cancer cells. Exp. Hematol. 39:1072–80 [Google Scholar]
  156. Andreola G, Rivoltini L, Castelli C, Huber V, Perego P. 156.  et al. 2002. Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. J. Exp. Med. 195:1303–16 [Google Scholar]
  157. Azmi AS, Bao B, Sarkar FH. 157.  2013. Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis Rev 32:623–42 [Google Scholar]
  158. Aung T, Chapuy B, Vogel D, Wenzel D, Oppermann M. 158.  et al. 2011. Exosomal evasion of humoral immunotherapy in aggressive B-cell lymphoma modulated by ATP-binding cassette transporter A3. PNAS 108:15336–41 [Google Scholar]
  159. Munoz JL, Bliss SA, Greco SJ, Ramkissoon SH, Ligon KL, Rameshwar P. 159.  2013. Delivery of functional anti-miR-9 by mesenchymal stem cell–derived exosomes to glioblastoma multiforme cells conferred chemosensitivity. Mol. Ther. Nucleic Acids 2:e126 [Google Scholar]
  160. Aiastui A. 160.  2015. Should cell culture platforms move towards EV therapy requirements?. Front. Immunol. 6:8 [Google Scholar]
  161. Smith A, Ng K, Mead E, Dopson S, Reeve B. 161.  et al. 2015. Extracellular vesicles commercial potential as byproducts of cell manufacturing for research and therapeutic use. Bioprocess Int 13:20–28 [Google Scholar]
  162. Furman NET, Lupu-Haber Y, Bronshtein T, Kaneti L, Letko N. 162.  et al. 2013. Reconstructed stem cell nanoghosts: a natural tumor targeting platform. Nano Lett 13:3248–55 [Google Scholar]
  163. Hu CMJ, Zhang L, Aryal S, Cheung C, Fang RH, Zhang LF. 163.  2011. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. PNAS 108:10980–85 [Google Scholar]
  164. Hu CM, Fang RH, Wang KC, Luk BT, Thamphiwatana S. 164.  et al. 2015. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526:118–21 [Google Scholar]
  165. Shelke GV, Lässer C, Gho YS, Lötvall J. 165.  2014. Importance of exosome depletion protocols to eliminate functional and RNA-containing extracellular vesicles from fetal bovine serum. J. Extracell. Vesicles 3:24783 [Google Scholar]
  166. Stacey GN. 166.  2014. The challenge of standardization in stem cell research and development. Stem Cell Banking D Ilic 11–18 New York: Springer-Verlag [Google Scholar]
  167. Jiang XR, Song A, Bergelson S, Arroll T, Parekh B. 167.  et al. 2011. Advances in the assessment and control of the effector functions of therapeutic antibodies. Nat. Rev. Drug Discov. 10:101–11 [Google Scholar]
  168. Tyndall A. 168.  2014. Mesenchymal stem cell treatments in rheumatology: a glass half full?. Nat. Rev. Rheumatol. 10:117–24 [Google Scholar]
  169. Sahin U, Kariko K, Tureci O. 169.  2014. mRNA-based therapeutics—developing a new class of drugs. Nat. Rev. Drug Discov. 13:759–80 [Google Scholar]
  170. Lener T, Gimona M, Aigner L, Borger V, Buzas E. 170.  et al. 2015. Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper. J. Extracell. Vesicles 4:30087 [Google Scholar]
  171. Gardner CR, Walsh CT, Almarsson O. 171.  2004. Drugs as materials: valuing physical form in drug discovery. Nat. Rev. Drug Discov. 3:926–34 [Google Scholar]
  172. van der Meel R, Krawczyk-Durka M, van Solinge WW, Schiffelers RM. 172.  2014. Toward routine detection of extracellular vesicles in clinical samples. Int. J. Lab. Hematol. 36:244–53 [Google Scholar]
  173. Sáenz-Cuesta M, Arbelaiz A, Oregi A, Irizar H, Osorio-Querejeta I. 173.  et al. 2015. Methods for extracellular vesicles isolation in a hospital setting. Front. Immunol. 6:50 [Google Scholar]
  174. Lin J, Li J, Huang B, Liu J, Chen X. 174.  et al. 2015. Exosomes: novel biomarkers for clinical diagnosis. Sci. World J. 2015:657086 [Google Scholar]
  175. De Toro J, Herschlik L, Waldner C, Mongini C. 175.  2015. Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications. Front. Immunol. 6:203 [Google Scholar]
  176. Schwarzenbach H, Hoon DSB, Pantel K. 176.  2011. Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer 11:426–37 [Google Scholar]
  177. Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A. 177.  2013. Liquid biopsy: monitoring cancer-genetics in the blood. Nat. Rev. Clin. Oncol. 10:472–84 [Google Scholar]
  178. de Gramont A, Watson S, Ellis LM, Rodon J, Tabernero J. 178.  et al. 2015. Pragmatic issues in biomarker evaluation for targeted therapies in cancer. Nat. Rev. Clin. Oncol. 12:197–212 [Google Scholar]
  179. Srivastava A, Filant J, Moxley KM, Sood A, McMeekin S, Ramesh R. 179.  2015. Exosomes: a role for naturally occurring nanovesicles in cancer growth, diagnosis and treatment. Curr. Gene Ther. 15:182–92 [Google Scholar]
  180. Whiteside TL. 180.  2015. The potential of tumor-derived exosomes for noninvasive cancer monitoring. Expert Rev. Mol. Diagn. 15:1293–310 [Google Scholar]
  181. Bellingham SA, Coleman BM, Hill AF. 181.  2012. Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. Nucleic Acids Res. 40:10937–49 [Google Scholar]
  182. Lashuel HA, Overk CR, Oueslati A, Masliah E. 182.  2013. The many faces of α-synuclein: from structure and toxicity to therapeutic target. Nat. Rev. Neurosci. 14:38–48 [Google Scholar]
  183. Fiandaca MS, Kapogiannis D, Mapstone M, Boxer A, Eitan E. 183.  et al. 2015. Identification of preclinical Alzheimer's disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case-control study. Alzheimer's Dement. 11:600–7.e1 [Google Scholar]
  184. Lo YMD, Chiu RWK. 184.  2012. Genomic analysis of fetal nucleic acids in maternal blood. Annu. Rev. Genom. Hum. Genet. 13:285–306 [Google Scholar]
  185. Gregg AR, Van den Veyver IB, Gross SJ, Madankumar R, Rink BD, Norton ME. 185.  2014. Noninvasive prenatal screening by next-generation sequencing. Annu. Rev. Genom. Hum. Genet. 15:327–47 [Google Scholar]
  186. Beyer C, Pisetsky DS. 186.  2010. The role of microparticles in the pathogenesis of rheumatic diseases. Nat. Rev. Rheumatol. 6:21–29 [Google Scholar]
  187. Buzas EI, György B, Nagy G, Falus A, Gay S. 187.  2014. Emerging role of extracellular vesicles in inflammatory diseases. Nat. Rev. Rheumatol. 10:356–64 [Google Scholar]
  188. Hu L, Wickline SA, Hood JL. 188.  2014. Magnetic resonance imaging of melanoma exosomes in lymph nodes. Magn. Reson. Med. 74:266–71 [Google Scholar]
  189. Lai CP, Mardini O, Ericsson M, Prabhakar S, Maguire CA. 189.  et al. 2014. Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. ACS Nano 8:483–94 [Google Scholar]
  190. Calò A, Sanmartí-Espinal M, Iavicoli P, Persuy MA, Pajot-Augy E. 190.  et al. 2012. Diffusion-controlled deposition of natural nanovesicles containing G-protein coupled receptors for biosensing platforms. Soft Matter 8:11632–43 [Google Scholar]
  191. Yuan A, Farber EL, Rapoport AL, Tejada D, Deniskin R. 191.  et al. 2009. Transfer of microRNAs by embryonic stem cell microvesicles. PLOS ONE 4:e4722 [Google Scholar]
  192. Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R. 192.  et al. 2006. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20:847–56 [Google Scholar]
  193. Wang Y, Zhang L, Li Y, Chen L, Wang X. 193.  et al. 2015. Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. Int. J. Cardiol. 192:61–69 [Google Scholar]
  194. Chou J, Mackman N, Merrill-Skoloff G, Pedersen B, Furie BC, Furie B. 194.  2004. Hematopoietic cell-derived microparticle tissue factor contributes to fibrin formation during thrombus propagation. Blood 104:3190–97 [Google Scholar]
  195. Aoki J, Ohashi K, Mitsuhashi M, Murakami T, Oakes M. 195.  et al. 2014. Posttransplantation bone marrow assessment by quantifying hematopoietic cell-derived mRNAs in plasma exosomes/microvesicles. Clin. Chem. 60:675–82 [Google Scholar]
  196. Baglio SR, Rooijers K, Koppers-Lalic D, Verweij FJ, Pérez Lanzón M. 196.  et al. 2015. Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem. Cell Res. Ther. 6:127 [Google Scholar]
  197. Herrera MB, Fonsato V, Gatti S, Deregibus MC, Sordi A. 197.  et al. 2010. Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomized rats. J. Cell Mol. Med. 14:1605–18 [Google Scholar]
  198. Cossetti C, Iraci N, Mercer TR, Leonardi T, Alpi E. 198.  et al. 2014. Extracellular vesicles from neural stem cells transfer IFN-γ via Ifngr1 to activate Stat1 signaling in target cells. Mol. Cell 56:193–204 [Google Scholar]
  199. Matusek T, Wendler F, Poles S, Pizette S, D'Angelo G. 199.  et al. 2014. The ESCRT machinery regulates the secretion and long-range activity of Hedgehog. Nature 516:99–103 [Google Scholar]
  200. Gradilla AC, Gonzalez E, Seijo I, Andres G, Bischoff M. 200.  et al. 2014. Exosomes as Hedgehog carriers in cytoneme-mediated transport and secretion. Nat. Commun. 5:5649 [Google Scholar]
  201. Pironti G, Strachan RT, Abraham D, Mon-Wei Yu S, Chen M. 201.  et al. 2015. Circulating exosomes induced by cardiac pressure overload contain functional angiotensin II type 1 receptors. Circulation 131:2120–30 [Google Scholar]
  202. Masyuk AI, Masyuk TV, Larusso NF. 202.  2013. Exosomes in the pathogenesis, diagnostics and therapeutics of liver diseases. J. Hepatol. 59:621–25 [Google Scholar]
  203. Street JM, Birkhoff W, Menzies RI, Webb DJ, Bailey MA, Dear JW. 203.  2011. Exosomal transmission of functional aquaporin 2 in kidney cortical collecting duct cells. J. Physiol. 589:6119–27 [Google Scholar]
  204. Lopez-Verrilli MA, Court FA. 204.  2012. Transfer of vesicles from Schwann cells to axons: a novel mechanism of communication in the peripheral nervous system. Front. Physiol. 3:205 [Google Scholar]
  205. Sharma P, Schiapparelli L, Cline HT. 205.  2013. Exosomes function in cell-cell communication during brain circuit development. Curr. Opin. Neurobiol. 23:997–1004 [Google Scholar]
  206. Hunter MP, Ismail N, Zhang X, Aguda BD, Lee EJ. 206.  et al. 2008. Detection of microRNA expression in human peripheral blood microvesicles. PLOS ONE 3:e3694 [Google Scholar]
  207. Théry C, Duban L, Segura E, Véron P, Lantz O, Amigorena S. 207.  2002. Indirect activation of naïve CD4+ T cells by dendritic cell–derived exosomes. Nat. Immunol. 3:1156–62 [Google Scholar]
  208. Buschow SI, Nolte-'t Hoen ENM, van Niel G, Pols MS, ten Broeke T. 208.  et al. 2009. MHC II in dendritic cells is targeted to lysosomes or T cell-induced exosomes via distinct multivesicular body pathways. Traffic 10:1528–42 [Google Scholar]
  209. Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV. 209.  et al. 1996. B lymphocytes secrete antigen-presenting vesicles. J. Exp. Med. 183:1161–72 [Google Scholar]
  210. Admyre C, Bohle B, Johansson SM, Focke-Tejkl M, Valenta R. 210.  et al. 2007. B cell–derived exosomes can present allergen peptides and activate allergen-specific T cells to proliferate and produce TH2-like cytokines. J. Allerg. Clin. Immunol. 120:1418–24 [Google Scholar]
  211. Mittelbrunn M, Gutiérrez-Vazquez C, Villarroya-Beltri C, González S, Sánchez-Cabo F. 211.  et al. 2011. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat. Commun. 2:282 [Google Scholar]
  212. Ekström K, Valadi H, Sjöstrand M, Malmhall C, Bossios A. 212.  et al. 2012. Characterization of mRNA and microRNA in human mast cell-derived exosomes and their transfer to other mast cells and blood CD34 progenitor cells. J. Extracell. Vesicles 1:18389 [Google Scholar]
  213. Xiao H, Lässer C, Shelke GV, Wang J, Rådinger M. 213.  et al. 2014. Mast cell exosomes promote lung adenocarcinoma cell proliferation – role of KIT-stem cell factor signaling. Cell Commun. Signal. 12:64 [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-061616-030146
Loading
/content/journals/10.1146/annurev-pharmtox-061616-030146
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error