1932

Abstract

Over the past 20 years, the field of cognitive neuroscience has relied heavily on hemodynamic measures of blood oxygenation in local regions of the brain to make inferences about underlying cognitive processes. These same functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS) techniques have recently been adapted for use with human infants. We review the advantages and disadvantages of these two neuroimaging methods for studies of infant cognition, with a particular emphasis on their technical limitations and the linking hypotheses that are used to draw conclusions from correlational data. In addition to summarizing key findings in several domains of infant cognition, we highlight the prospects of improving the quality of fNIRS data from infants to address in a more sophisticated way how cognitive development is mediated by changes in underlying neural mechanisms.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-psych-010213-115108
2015-01-03
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/psych/66/1/annurev-psych-010213-115108.html?itemId=/content/journals/10.1146/annurev-psych-010213-115108&mimeType=html&fmt=ahah

Literature Cited

  1. Aguiar A, Baillargeon R. 1999. 2.5-month-old infants' reasoning about when objects should and should not be occluded. Cogn. Psychol 39:116–57 [Google Scholar]
  2. Akiyama L, Richards T, Imada T, Dager S, Wroblewski L, Kuhl P. 2013. Age-specific average head template for typically developing 6-month-old infants. PLoS ONE 8:e73821 [Google Scholar]
  3. Altman NR, Bernal B. 2001. Brain activation in sedated children: auditory and visual functional MR imaging. Radiology 221:156–63 [Google Scholar]
  4. Anderson AW, Marois R, Colson ER, Peterson BS, Duncan CC. et al. 2001. Neonatal auditory activation detected by functional magnetic resonance imaging. Magn. Reson. Imaging 19:11–5 [Google Scholar]
  5. Arichi T, Fagiolo G, Varela M, Melendez-Calderon A, Allievi A. et al. 2012. Development of BOLD signal hemodynamic responses in the human brain. NeuroImage 63:663–673 [Google Scholar]
  6. Arichi T, Moraux A, Melendez A, Doria V, Groppo M. et al. 2010. Somatosensory cortical activation identified by functional MRI in preterm and term infants. NeuroImage 49:2063–2071 [Google Scholar]
  7. Arimitsu T, Uchida-Ota M, Yagihashi T, Kojima S, Watanabe S. et al. 2011. Functional hemispheric specialization in processing phonemic and prosodic auditory changes in neonates. Front. Psychol 2:202 [Google Scholar]
  8. Aslin RN. 2012. Questioning the questions that have been asked about the infant brain using near-infrared spectroscopy. Cogn. Neuropsychol 29:7–33 [Google Scholar]
  9. Aslin RN, Fiser J. 2005. Methodological challenges for understanding cognitive development in infants. Trends Cogn. Sci 9:92–98 [Google Scholar]
  10. Atsumori H, Kiguchi M, Katura T, Funane T, Obata A. et al. 2010. Noninvasive imaging of prefrontal activation during attention-demanding tasks performed while walking using a wearable optical topography system. J. Biomed. Opt 15:046002 [Google Scholar]
  11. Baird AA, Kagan J, Gaudette T, Walz KA, Hershlag N, Boas DA. 2002. Frontal lobe activation during object permanence: data from near-infrared spectroscopy. NeuroImage 16:1120–25 [Google Scholar]
  12. Beauchamp MS, Beurlot MR, Fava E, Nath AR, Parikh NA. et al. 2011. The developmental trajectory of brain-scalp distance from birth through childhood: implications for functional neuroimaging. PLoS ONE 6:e24981A detailed analysis of the anatomy of the developing brain using structural MRI, showing that the distance from the surface of the scalp, where fNIRS signals are sampled, to underlying cortex varies across the skull and across age. [Google Scholar]
  13. Benavides-Varela S, Gómez DM, Mehler J. 2011. Studying neonates' language and memory capacities with functional near-infrared spectroscopy. Front. Psychol 2:64 [Google Scholar]
  14. Benavides-Varela S, Hochmann JR, Macagno F, Nespor M, Mehler J. 2012. Newborn's brain activity signals the origin of word memories. Proc. Natl. Acad. Sci. USA 109:17908–13 [Google Scholar]
  15. Blaser E, Kaldy Z. 2010. Infants get five stars on iconic memory tests: a partial-report test of 6-month-old infants' iconic memory capacity. Psycholog. Sci. 21:1643–45 [Google Scholar]
  16. Blasi A, Mercure E, Lloyd-Fox S, Thomson A, Brammer M. et al. 2011. Early specialization for voice and emotion processing in the infant brain. Curr. Biol 21:1220–24 [Google Scholar]
  17. Boas DA, Elwell CE, Ferrari M, Taga G. 2014. Twenty years of functional near-infrared spectroscopy: introduction for the special issue. NeuroImage 85:Pt. 11–5 [Google Scholar]
  18. Born A, Law I, Lund T, Rostrup E, Hanson L. et al. 2002. Cortical deactivation induced by visual stimuliation in human slow-wave sleep. NeuroImage 17:1325–35 [Google Scholar]
  19. Born A, Miranda M, Rostrup E, Toft P, Peitersen B. et al. 2000. Functional magnetic resonance imaging of the normal and abnormal visual system in early life. Neuropediatrics 31:24–32 [Google Scholar]
  20. Bortfeld H, Fava E, Boas DA. 2009. Identifying cortical lateralization of speech processing in infants using near-infrared spectroscopy. Dev. Neuropsychol 34:52–65 [Google Scholar]
  21. Bortfeld H, Wruck E, Boas DA. 2007. Assessing infants' cortical response to speech using near-infrared spectroscopy. NeuroImage 34:407–15 [Google Scholar]
  22. Boynton GM, Engel SA, Glover GH, Heeger DJ. 1996. Linear systems analysis of functional magnetic resonance imaging in human v1. J. Neurosci 16:4207–21 [Google Scholar]
  23. Büchel C, Holmes A, Rees G, Friston K. 1998. Characterizing stimulus-response functions using nonlinear regressors in parametric fMRI experiments. NeuroImage 8:140–48 [Google Scholar]
  24. Buckner RL, Andrews-Hanna JR, Schacter DL. 2008. The brain's default network: anatomy, function and relevance to disease. Ann. N. Y. Acad. Sci 1124:1–38 [Google Scholar]
  25. Cantlon J, Li R. 2013. Neural activity during natural viewing of Sesame Street statistically predicts test scores in early childhood. PLoS Biol 11:1e1001462 [Google Scholar]
  26. Cantlon J, Pinel P, Dehaene S, Pelphrey K. 2011. Cortical representations of symbols, objects, and faces are pruned back during early childhood. Cereb. Cortex 21:191–99 [Google Scholar]
  27. Cheour M, Imada T, Taulu S, Ahonen A, Salonen J, Kuhl P. 2004. Magnetoencephalography is feasible for infant assessment of auditory discrimination. Exp. Neurol 190:Suppl. 1S44–51 [Google Scholar]
  28. Chugani HT, Phelps ME, Mazziotta JC. 1987. Positron emission tomography study of human brain functional development. Ann. Neurol 22:487–97 [Google Scholar]
  29. Cohen D, Halgren E. 2009. Magnetoencephalography. Encyclopedia of Neuroscience LR Squire 5615–22 Oxford, UK: Acad. Press [Google Scholar]
  30. Cui X, Bray S, Bryant DM, Glover GH, Reiss AL. 2011. A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. Neuroimage 54:2808–21 [Google Scholar]
  31. Dale AM, Buckner RL. 1997. Selective averaging of rapidly presented individual trials using fMRI. Hum. Brain Mapp 5:329–40 [Google Scholar]
  32. Damaraju E, Phillips JR, Lowe JR, Ohls R, Calhoun VD, Caprihan A. 2010. Resting-state functional connectivity differences in premature children. Front. Syst. Neurosci 4:0023 [Google Scholar]
  33. Damoiseaux JS, Greicius MD. 2009. Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity. Brain Struct. Funct 213:525–33 [Google Scholar]
  34. Dehaene-Lambertz G, Dehaene S, Hertz-Pannier L. 2002. Functional neuroimaging of speech perception in infants. Science 298:2013–15The first fMRI study with human infants that reported differential cortical activation to speech and speech-like sounds. [Google Scholar]
  35. den Ouden H, Daunizeau J, Roiser J, Friston K, Stephan K. 2010. Striatal prediction error modulates cortical coupling. J. Neurosci 30:3210–19 [Google Scholar]
  36. Endress AD, Bonatti LL. 2007. Rapid learning of syllable classes from a perceptually continuous speech stream. Cognition 105:247–99 [Google Scholar]
  37. Erberich SG, Panigrahy A, Friedlich P, Seri I, Nelson MD, Gilles F. 2006. Somatosensory lateralization in the newborn brain. NeuroImage 29:155–61 [Google Scholar]
  38. Farroni T, Johnson MH, Menon E, Zulian L, Faraguna D, Csibra G. 2005. Newborns' preference for face-relevant stimuli: effects of contrast polarity. Proc. Natl. Acad. Sci. USA 102:17245–50 [Google Scholar]
  39. Fazli S, Mehnert J, Steinbrink J, Curio G, Villringer A. et al. 2012. Enhanced performance by a hybrid NIRS–EEG brain computer interface. NeuroImage 59:519–29 [Google Scholar]
  40. Fekete T, Rubin D, Carlson JM, Mujica-Parodi LR. 2014. The NIRS analysis package: noise reduction and statistical inference. PLoS ONE 6:9e24322 doi:10.1371/journal.pone.0024322 [Google Scholar]
  41. Ferradal S, Eggebrecht A, Hassanpour M, Snyder A, Culver J. 2014. Atlas-based head modeling and spatial normalization for high-density diffuse optical tomography: in vivo validation against fMRI. NeuroImage 85:117–26 [Google Scholar]
  42. Ferrari M, Quaresima V. 2012. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage 63:921–35 [Google Scholar]
  43. Fox M, Corbetta M, Snyder A, Vincent J, Raichle M. 2006. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc. Natl. Acad. Sci. USA 103:10046–51 [Google Scholar]
  44. Fox S, Wagner J, Shrock C, Tager-Flusberg H, Nelson C. 2013. Neural processing of facial identity and emotion in infants at high-risk for autism spectrum disorders. Front. Hum. Neurosci 7:89 [Google Scholar]
  45. Fransson P. 2005. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum. Brain Mapp 26:15–29 [Google Scholar]
  46. Fransson P, Åden U, Blennow M, Lagercrantz H. 2011. The functional architecture of the infant brain as revealed by resting-state fMRI. Cereb. Cortex 21:145–54 [Google Scholar]
  47. Fransson P, Skiöld B, Engström M, Hallberg B, Mosskin M. et al. 2009. Spontaneous brain activity in the newborn brain during natural sleep—an fMRI study in infants born at full term. Pediatr. Res 66:301–5 [Google Scholar]
  48. Fransson P, Skiöld B, Horsch S, Nordell A, Blennow M. et al. 2007. Resting-state networks in the infant brain. Proc. Natl. Acad. Sci 104:15531–36A pioneering study of spontaneous brain activation in early infancy using fMRI during sleep. [Google Scholar]
  49. Gagnon L, Yucel M, Boas D, Cooper R. 2014. Further improvement in reducing superficial contamination in NIRS using double short separation measurements. NeuroImage 85:127–35 [Google Scholar]
  50. Gao W, Gilmore JH, Giovanello KS, Smith JK, Shen D. et al. 2011. Temporal and spatial evolution of brain network topology during the first two years of life. PLoS ONE 6:e25278 [Google Scholar]
  51. Gauthier I, Tarr M, Moylan J, Skudlarski P, Gore J, Anderson A. 2000. The fusiform “face area” is part of a network that processes faces at the individual level. J. Cogn. Neurosci 12:495–504 [Google Scholar]
  52. Gerken L, Dawson C, Chatila R, Tenenbaum J. 2014. Surprise! Infants consider possible bases of generalization for a single input example. Dev. Sci In press. doi: 10.1111/desc.12183 [Google Scholar]
  53. Gervain J, Berent I, Werker JF. 2012. Binding at birth: the newborn brain detects identity relations and sequential position in speech. J. Cogn. Neurosci. 24:564–74 [Google Scholar]
  54. Gervain J, Macagno F, Cogoi S, Peña M, Mehler J. 2008. The neonate brain detects speech structure. Proc. Natl. Acad. Sci. USA 105:14222–27A fNIRS study showing that newborns can extract temporal repetition structure embedded in sequences of speech. [Google Scholar]
  55. Gervain J, Mehler J, Werker JF, Nelson CA, Csibra G. et al. 2011. Near-infrared spectroscopy: a report from the McDonnell infant methodology consortium. Dev. Cogn. Neurosci 1:22–46 [Google Scholar]
  56. Goense JBM, Logothetis NK. 2008. Neurophysiology of the BOLD fMRI signal in awake monkeys. Curr. Biol. 18:631–40 [Google Scholar]
  57. Gómez RL. 2002. Variability and detection of invariant structure. Psychol. Sci. 13:431–36 [Google Scholar]
  58. Goren CC, Sarty M, Wu PY. 1975. Visual following and pattern discrimination of face-like stimuli by newborn infants. Pediatrics 56:544–49 [Google Scholar]
  59. Graham AM, Fisher PA, Pfeifer JH. 2013. What sleeping babies hear: a functional MRI study of interparental conflict and infants' emotion processing. Psychol. Sci. 24:782–89 [Google Scholar]
  60. Greicius MD. 2012. Resting-state functional connectivity in neuropsychiatric disorders. Curr. Opin. Neurol. 4:424–30 [Google Scholar]
  61. Grossmann T, Johnson MH, Lloyd-Fox S, Blasi A, Deligianni F. et al. 2008. Early cortical specialization for face-to-face communication in human infants. Proc. Biol. Sci. 275:2803–11 [Google Scholar]
  62. Grossmann T, Parise E, Friederici AD. 2010. The detection of communicative signals directed at the self in infant prefrontal cortex. Front. Hum. Neurosci. 4:201 [Google Scholar]
  63. Hasson U, Malach R, Heeger D. 2009. Reliability of cortical activity during natural stimulation. Trends Cogn. Sci. 14:40–48 [Google Scholar]
  64. Hickok G, Poeppel D. 2007. The cortical organization of speech processing. Nat. Rev. Neurosci. 8:393–402 [Google Scholar]
  65. Homae F, Watanabe H, Otobe T, Nakano T, Go T. et al. 2010. Development of global cortical networks in early infancy. J. Neurosci. 30:4877–82The first fNIRS study to use a large number of channels around the entire skull to record functional connectivity during sleep. [Google Scholar]
  66. Hyde DC, Boas DA, Blair C, Carey S. 2010. Near-infrared spectroscopy shows right parietal specialization for number in pre-verbal infants. NeuroImage 53:647–52 [Google Scholar]
  67. Ichikawa H, Otsuka Y, Kanazawa S, Yamaguchi MK, Kakigi R. 2013. Contrast reversal of the eyes impairs infants' face processing: a near-infrared spectroscopic study. Neuropsychologia 51:132556–61 [Google Scholar]
  68. Imada T, Zhang Y, Cheour M, Taulu S, Ahonen A, Kuhl PK. 2006. Infant speech perception activates Broca's area: a developmental magnetoencephalography study. NeuroReport 17:957–62 [Google Scholar]
  69. Jöbsis FF. 1977. Non-invasive, infra-red monitoring of cerebral O2 sufficiency, blood volume, HbO2-Hb shifts and blood flow. Acta Neurol. Scand. Suppl 64:452–53 [Google Scholar]
  70. Kafkas A, Montaldi D. 2014. Two separate, but interacting, neural systems for familiarity and novelty detection: a dual route mechanism. Hippocampus 24:516–27 [Google Scholar]
  71. Kanwisher N, McDermott J, Chun MM. 1997. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17:4302–11 [Google Scholar]
  72. Keehn B, Wagner JB, Tager-Flusberg H, Nelson CA. 2013. Functional connectivity in the first year of life in infants at-risk for autism: a preliminary near-infrared spectroscopy study. Front. Hum. Neurosci. 7:444 [Google Scholar]
  73. Kehrer M, Schöning M. 2009. A longitudinal study of cerebral blood flow over the first 30 months. Pediatr. Res. 66:560–64 [Google Scholar]
  74. Keil B, Blau JN, Biber S, Hoecht P, Tountcheva V. et al. 2013. A 64-channel 3T array coil for accelerated brain MRI. Magn. Reson. Med. 70:248–58 [Google Scholar]
  75. Kidd C, Piantadosi S, Aslin R. 2012. The Goldilocks effect: human infants allocate attention to visual sequences that are neither too simple nor too complex. PLoS ONE 7:e36399 [Google Scholar]
  76. Kobayashi M, Otsuka Y, Kanazawa S, Yamaguchi MK, Kakigi R. 2012. Size-invariant representation of face in infant brain: an fNIRS-adaptation study. NeuroReport 23:984–88 [Google Scholar]
  77. Kobayashi M, Otsuka Y, Nakato E, Kanazawa S, Yamaguchi MK, Kakigi R. 2011. Do infants represent the face in a viewpoint-invariant manner? Neural adaptation study as measured by near-infrared spectroscopy. Front. Hum. Neurosci. 5:153 [Google Scholar]
  78. Kotilahti K, Nissilä I, Huotilainen M, Mäkelä R, Gavrielides N. et al. 2005. Bilateral hemodynamic responses to auditory stimulation in newborn infants. NeuroReport 16:1373–77 [Google Scholar]
  79. Kozberg MG, Chen BR, DeLeo SE, Bouchard MB, Hillman EM. 2013. Resolving the transition from negative to positive blood oxygen level-dependent responses in the developing brain. Proc. Natl. Acad. Sci. 110:4380–85 [Google Scholar]
  80. Kumar A, Chugani HT. 2013. Functional imaging: PET. Handb. Clin. Neurol. 111:767–76 [Google Scholar]
  81. Kusaka T, Isobe K, Miki T, Ueno M, Koyano K. et al. 2011. Functional lateralization of sensorimotor cortex in infants measured using multichannel near-infrared spectroscopy. Pediatr. Res. 69:430–35 [Google Scholar]
  82. Lee W, Donner EJ, Nossin-Manor R, Whyte HE, Sled JG, Taylor MJ. 2012. Visual functional magnetic resonance imaging of preterm infants. Dev. Med. Child Neurol. 54:724–29 [Google Scholar]
  83. Lee W, Morgan BR, Shroff MM, Sled JG, Taylor MJ. 2013. The development of regional functional connectivity in preterm infants into early childhood. Neuroradiology 55:105–11 [Google Scholar]
  84. Lenartowicz A, Poldrack RA. 2010. Brain imaging. Encyclopedia of Behavioral Neuroscience GF Koob, M Le Moal, RF Thompson 187–93 Amsterdam: Elsevier [Google Scholar]
  85. Liao S, Ferradal S, White B, Gregg N, Inder T, Culver J. 2012. High-density diffuse optical tomography of term infant visual cortex in the nursery. J. Biomed. Opt. 17:8081414 [Google Scholar]
  86. Liu J, Harris A, Kanwisher N. 2009. Perception of face parts and face configurations: an fMRI study. J. Cogn. Neurosci. 22:203–11 [Google Scholar]
  87. Lloyd-Fox S, Blasi A, Elwell CE. 2010. Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy. Neurosci. Biobehav. Rev. 34:269–84 [Google Scholar]
  88. Lloyd-Fox S, Blasi A, Elwell CE, Charman T, Murphy D, Johnson MH. 2013. Reduced neural sensitivity to social stimuli in infants at risk for autism. Proc. Biol. Sci. 280:20123026 [Google Scholar]
  89. Lloyd-Fox S, Blasi A, Volein A, Everdell N, Elwell CE, Johnson MH. 2009. Social perception in infancy: a near infrared spectroscopy study. Child Dev. 80:986–99 [Google Scholar]
  90. Lloyd-Fox S, Richards JE, Blasi A, Murphy DGM, Elwell CE, Johnson MH. 2014. Coregistering functional near-infrared spectroscopy with underlying cortical areas in infants. Neurophotonics 1:025006–16 [Google Scholar]
  91. Luck S. 2005. An Introduction to The Event-Related Potential Technique. Cambridge, MA: MIT Press [Google Scholar]
  92. Mahmoudzadeh M, Dehaene-Lambertz G, Fournier M, Kongolo G, Goudjil S. et al. 2013. Syllabic discrimination in premature human infants prior to complete formation of cortical layers. Proc. Natl. Acad. Sci. USA 110:4846–51 [Google Scholar]
  93. Malonek D, Grinvald A. 1996. Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science 272:551–54 [Google Scholar]
  94. Marchetto E, Bonatti LL. 2013. Words and possible words in early language acquisition. Cogn. Psychol. 67:130–50 [Google Scholar]
  95. Marcus GF, Vijayan S, Bandi Rao S, Vishton PM. 1999. Rule learning by seven-month-old infants. Science 283:77–80 [Google Scholar]
  96. Matuz T, Govindan RB, Preissl H, Siegel ER, Muenssinger J. et al. 2012. Habituation of visual evoked responses in neonates and fetuses: a MEG study. Dev. Cogn. Neurosci. 2:303–16 [Google Scholar]
  97. Meek JH, Firbank M, Elwell CE, Atkinson J, Braddick O, Wyatt JS. 1998. Regional hemodynamic responses to visual stimulation in awake infants. Pediatr. Res. 43:840–43 [Google Scholar]
  98. Minagawa-Kawai Y, Matsuoka S, Dan I, Naoi N, Nakamura K, Kojima S. 2009. Prefrontal activation associated with social attachment: facial-emotion recognition in mothers and infants. Cereb. Cortex 19:284–92 [Google Scholar]
  99. Minagawa-Kawai Y, Mori K, Hebden JC, Dupoux E. 2008. Optical imaging of infants' neurocognitive development: recent advances and perspectives. Dev. Neurobiol. 68:712–28 [Google Scholar]
  100. Minagawa-Kawai Y, van der Lely H, Ramus F, Sato Y, Mazuka R, Dupoux E. 2011. Optical brain imaging reveals general auditory and language-specific processing in early infant development. Cereb. Cortex 21:254–61A comprehensive fNIRS study that estimated the hemodynamic response function (HRF) in newborns and used SPM for analysis of the fNIRS signals. [Google Scholar]
  101. Nakano T, Homae F, Watanabe H, Taga G. 2008. Anticipatory cortical activation precedes auditory events in sleeping infants. PLoS ONE 3:e3912 [Google Scholar]
  102. Nakano T, Watanabe H, Homae F, Taga G. 2009. Prefrontal cortical involvement in young infants' analysis of novelty. Cereb. Cortex 19:455–63The first fNIRS study to use the habituation and recovery-to-novelty paradigm to study speech sound discrimination. [Google Scholar]
  103. Nakato E, Otsuka Y, Kanazawa S, Yamaguchi MK, Kakigi R. 2011. Distinct differences in the pattern of hemodynamic response to happy and angry facial expressions in infants—a near-infrared spectroscopic study. NeuroImage 54:1600–6 [Google Scholar]
  104. Nelson CA 3rd, McCleery JP. 2008. Use of event-related potentials in the study of typical and atypical development. J. Am. Acad. Child Adolesc. Psychiatry 47:1252–61 [Google Scholar]
  105. Nilsson J, Ferrier IN, Coventry K, Bester A, Finkelmeyer A. 2013. Negative BOLD response in the hippocampus during short-term spatial memory retrieval. J. Cogn. Neurosci. 25:1358–71 [Google Scholar]
  106. Norman K, Polyn S, Detre G, Haxby J. 2006. Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci. 10:424–30 [Google Scholar]
  107. Ogawa S, Lee TM, Nayak AS, Glynn P. 1990. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn. Reson. Med. 14:68–78 [Google Scholar]
  108. Otsuka Y, Nakato E, Kanazawa S, Yamaguchi MK, Watanabe S, Kakigi R. 2007. Neural activation to upright and inverted faces in infants measured by near infrared spectroscopy. NeuroImage 34:399–406One of the first fNIRS studies to record activations in the lateral occipital-temporal areas to face stimuli. [Google Scholar]
  109. Ozonoff S, Young GS, Carter A, Messinger D, Yirmiya N. et al. 2011. Recurrence risk for autism spectrum disorders: a Baby Siblings Research Consortium study. Pediatrics 128:e488–95 [Google Scholar]
  110. Park H, Friston K. 2013. Structural and functional brain networks: from connections to cognition. Science 342:6158 [Google Scholar]
  111. Peña M, Maki A, Kovacić D, Dehaene-Lambertz G, Koizumi H. et al. 2003. Sounds and silence: an optical topography study of language recognition at birth. Proc. Natl. Acad. Sci. USA 100:11702–5The first fNIRS study to record cortical activations from newborns in temporal and frontal areas to speech and speech-like sounds. [Google Scholar]
  112. Piper S, Krueger A, Koch S, Mehnert J, Habermehl C. et al. 2014. A wearable multi-channel fNIRS system for brain imaging in freely moving subjects. NeuroImage 85:64–71 [Google Scholar]
  113. Plichta M, Heinzel S, Ehlis A, Pauli P, Fallgatter A. 2007. Model-based analysis of rapid event-related functional near-infrared spectroscopy (NIRS) data: a parametric validation study. NeuroImage 35:625–34 [Google Scholar]
  114. Poeppel D. 2003. The analysis of speech in different temporal integration windows: cerebral lateralization as `asymmetric sampling in time.'. Speech Commun. 41:245–55 [Google Scholar]
  115. Redcay E, Courchesne E. 2008. Deviant functional magnetic resonance imaging patterns of brain activity to speech in 2–3-year-old children with autism spectrum disorder. Biol. Psychiatry 64:589–98 [Google Scholar]
  116. Redcay E, Haist F, Courchesne E. 2008. Functional neuroimaging of speech perception during a pivotal period in language acquisition. Dev. Sci. 11:237–52 [Google Scholar]
  117. Redcay E, Kennedy DP, Courchesne E. 2007. fMRI during natural sleep as a method to study brain function during early childhood. NeuroImage 38:696–707 [Google Scholar]
  118. Reynolds GD, Richards JE. 2009. Cortical source localization of infant cognition. Dev. Neuropsychol. 34:312–29 [Google Scholar]
  119. Roche-Labarbe N, Fenoglio A, Aggarwal A, Dehaes M, Carp SA. et al. 2012. Near-infrared spectroscopy assessment of cerebral oxygen metabolism in the developing premature brain. J. Cereb. Blood Flow Metab. 32:481–88A recent study that provides evidence of substantial developmental change in neurovascular coupling of the brain. [Google Scholar]
  120. Ross-Sheehy S, Oakes L, Luck S. 2004. The development of visual short-term memory capacity in infants. Child Dev. 74:1807–22 [Google Scholar]
  121. Saager R, Berger A. 2005. Direct characterization and removal of interfering absorption trends in two-layer turbid media. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 22:1874–82 [Google Scholar]
  122. Saager R, Berger A. 2008. Measurement of layer-like hemodynamic trends in scalp and cortex: implications for physiological baseline suppression in functional near-infrared spectroscopy. J. Biomed. Opt. 13:034017 [Google Scholar]
  123. Saager R, Telleri N, Berger A. 2011. Two-detector corrected near infrared spectroscopy (c-NIRS) detects hemodynamic activation responses more robustly than single-detector NIRS. NeuroImage 55:1679–85Evaluation of a scheme for using a short-distance fNIRS channel to obtain a direct measure of surface vascular signals that can be regressed out of the longer-distance fNIRS signals obtained from the cortex. [Google Scholar]
  124. Safaie J, Grebe R, Moghaddam H, Wallois F. 2013. Toward a fully integrated wireless wearable EEG-NIRS bimodal acquisition system. J. Neural Eng. 10:056001 [Google Scholar]
  125. Saffran JR, Aslin RN, Newport EL. 1996. Statistical learning by 8-month-old infants. Science 274:1926–28 [Google Scholar]
  126. Sakatani K, Chen S, Lichty W, Zuo H, Wang YP. 1999. Cerebral blood oxygenation changes induced by auditory stimulation in newborn infants measured by near infrared spectroscopy. Early Hum. Dev. 55:229–36 [Google Scholar]
  127. Sanchez C, Richards J, Almli R. 2012. Neurodevelopmental MRI brain templates for children from 2 weeks to 4 years of age. Dev. Psychobiol. 37:379–399The first comprehensive brain atlas obtained at 3T from structural MRI data across infancy and early childhood. [Google Scholar]
  128. Sasai S, Homae F, Watanabe H, Sasaki A, Tanabe H. et al. 2012. A NIRS-fMRI study of resting state network. NeuroImage 63:179–93 [Google Scholar]
  129. Sasai S, Homae F, Watanabe H, Taga G. 2011. Frequency-specific functional connectivity in the brain during resting state revealed by NIRS. NeuroImage 56:252–57 [Google Scholar]
  130. Scholkmann F, Kleiser S, Jaakko Metz A, Zimmermann R, Mata Pavia J. et al. 2014. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. NeuroImage 85:6–27 [Google Scholar]
  131. Seghier ML, Lazeyras F, Huppi PS. 2006. Functional MRI of the newborn. Semin. Fetal Neonatal Med. 11:479–88 [Google Scholar]
  132. Shmuel A, Yacoub E, Chaimow D, Logothetis NK, Ugurbil K. 2007. Spatio-temporal point-spread function of fMRI signal in human gray matter at 7 Tesla. NeuroImage 35:539–52 [Google Scholar]
  133. Sitaram R, Caria A, Birbaumer N. 2009. Hemodynamic brain–computer interfaces for communication and rehabilitation. Neural Netw. 22:1320–28 [Google Scholar]
  134. Smyser CD, Inder TE, Shimony JS, Hill JE, Degnan AJ. et al. 2010. Longitudinal analysis of neural network development in preterm infants. Cereb. Cortex 20:2852–62 [Google Scholar]
  135. Smyser CD, Snyder AZ, Shimony JS, Blazey TM, Inder TE, Neil JJ. 2013. Effects of white matter injury on resting state fMRI measures in prematurely born infants. PLoS ONE 8:e68098 [Google Scholar]
  136. Southgate V, Begus K, Lloyd-Fox S, Gangi V, Hamilton A. 2014. Goal representation in the infant brain. NeuroImage 85:294–301 [Google Scholar]
  137. Srinivasan R, Nunez PL. 2012. Electroencephalography. Encyclopedia of Human Behavior VS Ramachandran 15–23 Burlington, MA: Acad. Press, 2nd ed.. [Google Scholar]
  138. Stiles J. 2008. The Fundamentals of Brain Development: Integrating Nature and Nurture Cambridge, MA: Harvard Univ. Press [Google Scholar]
  139. Strangman GE, Li Z, Zhang Q. 2013. Depth sensitivity and source-detector separations for near infrared spectroscopy based on the colin27 brain template. PLoS ONE 8:e66319 [Google Scholar]
  140. Summerfield C, Trittschuh E, Monti J, Mesulam M, Egners T. 2008. Neural repetition suppression reflects fulfilled perceptual expectations. Nat. Neurosci 11:1004–6 [Google Scholar]
  141. Taga G, Asakawa K, Hirasawa K, Konishi Y. 2003. Hemodynamic responses to visual stimulation in occipital and frontal cortex of newborn infants: a near-infrared optical topography study. Early Hum. Dev. 75:Suppl.S203–10The first comprehensive fNIRS study of awake infants as they viewed a variety of visual stimuli. [Google Scholar]
  142. Taga G, Homae F, Watanabe H. 2007. Effects of source-detector distance of near infrared spectroscopy on the measurement of the cortical hemodynamic response in infants. NeuroImage 38:452–60 [Google Scholar]
  143. Taga G, Watanabe H, Homae F. 2011. Spatiotemporal properties of cortical haemodynamic response to auditory stimuli in sleeping infants revealed by multi-channel near-infrared spectroscopy. Philos. Trans. A Math. Phys. Eng. Sci. 369:4495–511 [Google Scholar]
  144. Tak S, Ye J. 2014. Statistical analysis of fNIRS data: a comprehensive review. NeuroImage 85:72–91An up-to-date review of software packages used to analyze fNIRS data. [Google Scholar]
  145. Telkemeyer S, Rossi S, Koch S, Nierhaus T, Steinbrink J. et al. 2009. Sensitivity of newborn auditory cortex to the temporal structure of sounds. J. Neurosci. 29:14726–33 [Google Scholar]
  146. Telkemeyer S, Rossi S, Nierhaus T, Steinbrink J, Obrig H, Wartenburger I. 2011. Acoustic processing of temporally modulated sounds in infants: evidence from a combined near-infrared spectroscopy and EEG study. Front. Psychol. 1:62 [Google Scholar]
  147. Thomason ME, Dassanayake MT, Shen S, Katkuri Y, Alexis M. et al. 2013. Cross-hemispheric functional connectivity in the human fetal brain. Sci. Transl. Med. 5:173ra24 [Google Scholar]
  148. Tong F, Pratte M. 2012. Decoding patterns of human brain activity. Annu. Rev. Psychol. 63:483–509 [Google Scholar]
  149. Torricelli A, Contini D, Pifferi A, Caffini M, Re R. et al. 2014. Time domain functional NIRS imaging for human brain mapping. NeuroImage 85:28–50 [Google Scholar]
  150. Tsuzuki D, Dan I. 2014. Spatial registration for functional near-infrared spectroscopy: from channel position on the scalp to cortical location in individual and group analyses. NeuroImage 85:92–103A comprehensive evaluation of the issues involved in spatial co-registration of fNIRS channels to the underlying brain anatomy. [Google Scholar]
  151. Turk-Browne N. 2013. Functional interactions as big data in the human brain. Science 342:580–84 [Google Scholar]
  152. Turk-Browne N, Scholl B, Chun M. 2008. Babies and brains: habituation in infant cognition and functional neuroimaging. Front. Hum. Neurosci. 2:1–11 [Google Scholar]
  153. Wagner JB, Fox SE, Tager-Flusberg H, Nelson CA. 2011. Neural processing of repetition and non-repetition grammars in 7- and 9-month-old infants. Front. Psychol. 2:168 [Google Scholar]
  154. Wandell B, Dumoulin S, Brewer A. 2007. Visual field maps in visual cortex. Neuron 55:366–83 [Google Scholar]
  155. Wang G, Tanaka K, Tanifuji M. 1996. Optical imaging of functional organization in the monkey inferotemporal cortex. Science 262:1665–68 [Google Scholar]
  156. Watanabe H, Homae F, Nakano T, Taga G. 2008. Functional activation in diverse regions of the developing brain of human infants. NeuroImage 43:346–57 [Google Scholar]
  157. Watanabe H, Homae F, Nakano T, Tsuzuki D, Enkhtur L. et al. 2013. Effect of auditory input on activations in infant diverse cortical regions during audiovisual processing. Hum. Brain. Mapp. 34:543–65 [Google Scholar]
  158. Watanabe H, Homae F, Taga G. 2010. General to specific development of functional activation in the cerebral cortexes of 2- to 3-month-old infants. NeuroImage 50:1536–44 [Google Scholar]
  159. Watson JD. 1997. Images of the working brain: understanding human brain function with positron emission tomography. J. Neurosci. Methods 74:245–56 [Google Scholar]
  160. White BR, Culver JP. 2010. Phase-encoded retinotopy as an evaluation of diffuse optical neuroimaging. NeuroImage 49:568–77 [Google Scholar]
  161. Wilcox T. 1999. Object individuation: infants' use of shape, size, pattern, and color. Cognition 72:125–66 [Google Scholar]
  162. Wilcox T, Bortfeld H, Woods R, Wruck E, Armstrong J, Boas D. 2009. Hemodynamic changes in the infant cortex during the processing of featural and spatiotemporal information. Neuropsychologia 47:657–62 [Google Scholar]
  163. Wilcox T, Bortfeld H, Woods R, Wruck E, Boas DA. 2008. Hemodynamic response to featural changes in the occipital and inferior temporal cortex in infants: a preliminary methodological exploration. Dev. Sci. 11:361–70 [Google Scholar]
  164. Wilcox T, Chapa C. 2004. Priming infants to attend to color and pattern information in an individuation task. Cognition 90:265–302 [Google Scholar]
  165. Wilcox T, Haslup JA, Boas DA. 2010. Dissociation of processing of featural and spatiotemporal information in the infant cortex. NeuroImage 53:1256–63 [Google Scholar]
  166. Wilcox T, Hirshkowitz A, Hawkins L, Boas DA. 2014. The effect of color priming on infant brain and behavior. NeuroImage 85:Pt. 1302–13 [Google Scholar]
  167. Wilcox T, Woods R, Chapa C. 2008. Color-function categories that prime infants to use color information in an object individuation task. Cogn. Psychol. 57:220–61 [Google Scholar]
  168. Wynn K. 1992. Addition and subtraction by human infants. Nature 358:749–50 [Google Scholar]
  169. Ye J, Tak S, Jang K, Jung J, Jang J. 2010. NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy. NeuroImage 44:428–47 [Google Scholar]
  170. Zaramella P, Freato F, Amigoni A, Salvadori S, Marangoni P. et al. 2001. Brain auditory activation measured by near-infrared spectroscopy (NIRS) in neonates. Pediatr. Res. 49:213–19 [Google Scholar]
  171. Zhang Y, Brooks D, Franceschini M, Boas D. 2005. Eigenvector-based spatial filtering for reduction of physiological interference in diffuse optical imaging. J. Biomed. Opt. 10:11014 [Google Scholar]
/content/journals/10.1146/annurev-psych-010213-115108
Loading
/content/journals/10.1146/annurev-psych-010213-115108
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error