Nearly 40 years of research on the function of the nucleus accumbens (NAc) has provided a wealth of information on its contributions to behavior but has also yielded controversies and misconceptions regarding these functions. A primary tenet of this review is that, rather than serving as a “reward” center, the NAc plays a key role in action selection, integrating cognitive and affective information processed by frontal and temporal lobe regions to augment the efficiency and vigor of appetitively or aversively motivated behaviors. Its involvement in these functions is most prominent when the appropriate course of action is ambiguous, uncertain, laden with distractors, or in a state of flux. To this end, different subregions of the NAc play dissociable roles in refining action selection, promoting approach toward motivationally relevant stimuli, suppressing inappropriate actions so that goals may be obtained more efficiently, and encoding action outcomes that guide the direction of subsequent ones.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ambroggi F, Ghazizadeh A, Nicola SM, Fields HL. 2011. Roles of nucleus accumbens core and shell in incentive-cue responding and behavioral inhibition. J. Neurosci. 31:186820–30 [Google Scholar]
  2. Ambroggi F, Ishikawa A, Fields HL, Nicola SM. 2008. Basolateral amygdala neurons facilitate reward-seeking behavior by exciting nucleus accumbens neurons. Neuron 59:4648–61 [Google Scholar]
  3. Attwell D, Iadecola C. 2002. The neural basis of functional brain imaging signals. Trends Neurosci. 25:12621–25 [Google Scholar]
  4. Baliki MN, Mansour A, Baria AT, Huang L, Berger SE. et al. 2013. Parceling human accumbens into putative core and shell dissociates encoding of values for reward and pain. J. Neurosci. 33:4116383–93 [Google Scholar]
  5. Bari AA, Pierce RC. 2005. D1-like and D2 dopamine receptor antagonists administered into the shell subregion of the rat nucleus accumbens decrease cocaine, but not food, reinforcement. Neuroscience 135:3959–68 [Google Scholar]
  6. Baudonnat M, Huber A, David V, Walton ME. 2013. Heads for learning, tails for memory: reward, reinforcement and a role of dopamine in determining behavioral relevance across multiple timescales. Front. Neurosci. 7:175 [Google Scholar]
  7. Berridge KC. 2007. The debate over dopamine's role in reward: the case for incentive salience. Psychopharmacology 1913391–431 [Google Scholar]
  8. Berridge KC, Robinson TE. 1998. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience?. Brain Res. Rev. 28:3309–69 [Google Scholar]
  9. Blaiss CA, Janak PH. 2009. The nucleus accumbens core and shell are critical for the expression, but not the consolidation, of Pavlovian conditioned approach. Behav. Brain Res. 200:22–32 [Google Scholar]
  10. Block AE, Dhanji H, Thompson-Tardif SF, Floresco SB. 2007. Thalamic-prefrontal cortical-ventral striatal circuitry mediates dissociable components of strategy set shifting. Cereb. Cortex 17:71625–36 [Google Scholar]
  11. Botvinick MM, Huffstetler S, McGuire JT. 2009. Effort discounting in human nucleus accumbens. Cogn. Affect. Behav. Neurosci. 9:16–27 [Google Scholar]
  12. Bowman EM, Brown VJ. 1998. Effects of excitotoxic lesions of the rat ventral striatum on the perception of reward cost. Exp. Brain Res. 123:4439–48 [Google Scholar]
  13. Breiter HC, Aharon I, Kahneman D, Dale A, Shizgal P. 2001. Functional imaging of neural responses to expectancy and experience of monetary gains and losses. Neuron 30:2619–39 [Google Scholar]
  14. Britt JP, Benaliouad F, McDevitt RA, Stuber GD, Wise RA, Bonci A. 2012. Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens. Neuron 76:4790–803 [Google Scholar]
  15. Brog JS, Salyapongse A, Deutch AY, Zahm DS. 1993. The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold. J. Comp. Neurol. 338:2255–78 [Google Scholar]
  16. Cardinal RN, Cheung TH. 2005. Nucleus accumbens core lesions retard instrumental learning and performance with delayed reinforcement in the rat. BMC Neurosci. 6:9 [Google Scholar]
  17. Cardinal RN, Robbins TW, Everitt BJ. 2000. The effects of d-amphetamine, chlordiazepoxide, α-flupenthixol and behavioural manipulations on choice of signalled and unsignalled delayed reinforcement in rats. Psychopharmacology 152:4362–75 [Google Scholar]
  18. Castañé A, Theobald DE, Robbins TW. 2010. Selective lesions of the dorsomedial striatum impair serial spatial reversal learning in rats. Behav. Brain Res. 210:74–83 [Google Scholar]
  19. Charara A, Grace AA. 2003. Dopamine receptor subtypes selectively modulate excitatory afferents from the hippocampus and amygdala to rat nucleus accumbens neurons. Neuropsychopharmacology 28:81412–21 [Google Scholar]
  20. Cho YT, Fromm S, Guyer AE, Detloff A, Pine DS. et al. 2012. Nucleus accumbens, thalamus and insula connectivity during incentive anticipation in typical adults and adolescents. NeuroImage 66C:508–21 [Google Scholar]
  21. Christakou A, Robbins TW, Everitt BJ. 2004. Prefrontal cortical-ventral striatal interactions involved in affective modulation of attentional performance: implications for corticostriatal circuit function. J. Neurosci. 24:4773–80 [Google Scholar]
  22. Cohen JY, Haesler S, Vong L, Lowell BB, Uchida N. 2012. Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature 482:738385–88 [Google Scholar]
  23. Corbit LH, Balleine BW. 2011. The general and outcome-specific forms of Pavlovian-instrumental transfer are differentially mediated by the nucleus accumbens core and shell. J. Neurosci. 31:3311786–94 [Google Scholar]
  24. Corbit LH, Muir JL, Balleine BW. 2001. The role of the nucleus accumbens in instrumental conditioning: evidence of a functional dissociation between accumbens core and shell. J. Neurosci. 21:93251–60 [Google Scholar]
  25. Dalton GL, Phillips AG, Floresco SB. 2014. Preferential involvement by nucleus accumbens shell in mediating probabilistic learning and reversal shifts. J. Neurosci. 34:134618–26 [Google Scholar]
  26. Day JJ, Jones JL, Carelli RM. 2011. Nucleus accumbens neurons encode predicted and ongoing reward costs in rats. Eur. J. Neurosci. 33:2308–21 [Google Scholar]
  27. Day JJ, Roitman MF, Wightman RM, Carelli RM. 2007. Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens. Nat. Neurosci. 10:81020–28 [Google Scholar]
  28. Delgado MR, Jou RL, Ledoux JE, Phelps EA. 2009. Avoiding negative outcomes: tracking the mechanisms of avoidance learning in humans during fear conditioning. Front. Behav. Neurosci. 3:33 [Google Scholar]
  29. Delgado MR, Nystrom LE, Fissell C, Noll DC, Fiez JA. 2000. Tracking the hemodynamic responses to reward and punishment in the striatum. J. Neurophysiol. 84:63072–77 [Google Scholar]
  30. Di Ciano P, Cardinal RN, Cowell RA, Little SJ, Everitt BJ. 2001. Differential involvement of NMDA, AMPA/kainate, and dopamine receptors in the nucleus accumbens core in the acquisition and performance of Pavlovian approach behavior. J. Neurosci. 21:239471–77 [Google Scholar]
  31. Di Ciano P, Robbins TW, Everitt BJ. 2008. Differential effects of nucleus accumbens core, shell, or dorsal striatal inactivations on the persistence, reacquisition, or reinstatement of responding for a drug-paired conditioned reinforcer. Neuropsychopharmacology 33:61413–25 [Google Scholar]
  32. Everitt BJ, Morris KA, O'Brien A, Robbins TW. 1991. The basolateral amygdala-ventral striatal system and conditioned place preference: further evidence of limbic-striatal interactions underlying reward-related processes. Neuroscience 42:1–18 [Google Scholar]
  33. Faure A, Richard JM, Berridge KC. 2010. Desire and dread from the nucleus accumbens: cortical glutamate and subcortical GABA differentially generate motivation and hedonic impact in the rat. PLOS ONE 5:6e11223 [Google Scholar]
  34. Feja M, Hayn L, Koch M. 2014. Nucleus accumbens core and shell inactivation differentially affects impulsive behaviours in rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 54C:31–42 [Google Scholar]
  35. Fernando AB, Murray JE, Milton AL. 2013. The amygdala: securing pleasure and avoiding pain. Front. Behav. Neurosci. 7:190 [Google Scholar]
  36. Fernando AB, Urcelay GP, Mar AC, Dickinson TA, Robbins TW. 2014. The role of the nucleus accumbens shell in the mediation of the reinforcing properties of a safety signal in free-operant avoidance: dopamine-dependent inhibitory effects of d-amphetamine. Neuropsychopharmacology 39:61420–30 [Google Scholar]
  37. FitzGerald TH, Schwartenbeck P, Dolan RJ. 2014. Reward-related activity in ventral striatum is action contingent and modulated by behavioral relevance. J. Neurosci. 34:41271–79 [Google Scholar]
  38. Floresco SB. 2007. Dopaminergic regulation of limbic-striatal interplay. J. Psychiatry Neurosci. 32:6400–11 [Google Scholar]
  39. Floresco SB, Blaha CD, Yang CR, Phillips AG. 2001a. Dopamine D1 and NMDA receptors mediate potentiation of basolateral amygdala-evoked firing of nucleus accumbens neurons. J. Neurosci. 21:6370–76 [Google Scholar]
  40. Floresco SB, Blaha CD, Yang CR, Phillips AG. 2001b. Modulation of hippocampal and amygdalar-evoked activity of nucleus accumbens neurons by dopamine: cellular mechanisms of input selection. J. Neurosci. 21:82851–60 [Google Scholar]
  41. Floresco SB, Braaksma DN, Phillips AG. 1999. Thalamic-cortical-striatal circuitry subserves working memory during delayed responding on a radial arm maze. J. Neurosci. 19:2411061–71 [Google Scholar]
  42. Floresco SB, Ghods-Sharifi S, Vexelman C, Magyar O. 2006. Dissociable roles for the nucleus accumbens core and shell in regulating set shifting. J. Neurosci. 26:92449–57 [Google Scholar]
  43. Floresco SB, McLaughlin RJ, Haluk DM. 2008. Opposing roles for the nucleus accumbens core and shell in cue-induced reinstatement of food-seeking behavior. Neuroscience 154:3877–84 [Google Scholar]
  44. Floresco SB, Phillips AG. 1999. Dopamine and hippocampal input to the nucleus accumbens play an essential role in the search for food in an unpredictable environment. Psychobiology 27:2277–86 [Google Scholar]
  45. Floresco SB, Seamans JK, Phillips AG. 1996. A selective role for dopamine in the nucleus accumbens of the rat in random foraging but not delayed spatial win-shift foraging. Behav. Brain Res. 80:161–68 [Google Scholar]
  46. Floresco SB, Seamans JK, Phillips AG. 1997. Selective roles for hippocampal, prefrontal cortical, and ventral striatal circuits in radial-arm maze tasks with or without a delay. J. Neurosci. 17:51880–90 [Google Scholar]
  47. Floresco SB, West AR, Ash B, Moore H, Grace AA. 2003. Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat. Neurosci. 6:9968–73 [Google Scholar]
  48. French SJ, Totterdell S. 2003. Individual nucleus accumbens-projection neurons receive both basolateral amygdala and ventral subicular afferents in rats. Neuroscience 119:119–31 [Google Scholar]
  49. Gal G, Joel D, Gusak O, Feldon J, Weiner I. 1997. The effects of electrolytic lesion to the shell subterritory of the nucleus accumbens on delayed non-matching-to-sample and four-arm baited eight-arm radial-maze tasks. Behav. Neurosci. 111:192–103 [Google Scholar]
  50. Gal G, Schiller D, Weiner I. 2005. Latent inhibition is disrupted by nucleus accumbens shell lesion but is abnormally persistent following entire nucleus accumbens lesion: The neural site controlling the expression and disruption of the stimulus preexposure effect. Behav. Brain Res. 162:2246–55 [Google Scholar]
  51. Ghods-Sharifi S, Floresco SB. 2010. Differential effects on effort discounting induced by inactivations of the nucleus accumbens core or shell. Behav. Neurosci. 124:2179–91 [Google Scholar]
  52. Groenewegen HJ, Berendse HW, Meredith GE, Haber SN, Voorn P. et al. 1991. Functional anatomy of the ventral, limbic system-innervated striatum. The Mesolimbic Dopamine System P Willner, J Scheel-Kruger 19–59 New York: Wiley & Sons [Google Scholar]
  53. Groenewegen HJ, Mulder AB, Beijer AVJ, Wright CI, Lopes da Silva FH, Pennartz CMA. 1999. Hippocampal and amygdaloid interactions in the nucleus accumbens. Psychobiology 27:2149–64 [Google Scholar]
  54. Groenewegen HJ, Vermeulen-Van der Zee E, te Kortschot A, Witter MP. 1987. Organization of the projections from the subiculum to the ventral striatum in the rat. A study using anterograde transport of Phaseolus vulgarus leucoagglutinin. Neuroscience 23:1103–20 [Google Scholar]
  55. Haluk DM, Floresco SB. 2009. Ventral striatal dopamine modulation of different forms of behavioral flexibility. Neuropsychopharmacology 34:82041–52 [Google Scholar]
  56. Haralambous T, Westbrook RF. 1999. An infusion of bupivacaine into the nucleus accumbens disrupts the acquisition but not the expression of contextual fear conditioning. Behav. Neurosci. 113:5925–40 [Google Scholar]
  57. Hauber W, Sommer S. 2009. Prefrontostriatal circuitry regulates effort-related decision making. Cereb. Cortex 19:102240–47 [Google Scholar]
  58. Heimer L, Wilson RD. 1975. The subcortical projections of allocortex: similarities in the neuronal associations of the hippocampus, the piriform cortex and the neocortex. Golgi Centennial Symposium Proceedings: Perspectives in Neurobiology M Santini 173–93 New York: Raven [Google Scholar]
  59. Hernández-López S, Bargas J, Surmeier DJ, Reyes A, Galarraga E. 1997. D1 receptor activation enhances evoked discharge in neostriatal medium spiny neurons by modulating an L-type Ca2+ conductance. J. Neurosci. 17:93334–42 [Google Scholar]
  60. Hjelmstad GO. 2004. Dopamine excites nucleus accumbens neurons through the differential modulation of glutamate and GABA release. J. Neurosci. 24:398621–28 [Google Scholar]
  61. Hnasko TS, Hjelmstad GO, Fields HL, Edwards RH. 2012. Ventral tegmental area glutamate neurons: electrophysiological properties and projections. J. Neurosci. 32:4315076–85 [Google Scholar]
  62. Howland JG, Taepavarapruk P, Phillips AG. 2002. Glutamate receptor-dependent modulation of dopamine efflux in the nucleus accumbens by basolateral, but not central, nucleus of the amygdala in rats. J. Neurosci. 22:31137–45 [Google Scholar]
  63. Hu XT, Wang RY. 1988. Disinhibition of nucleus accumbens neurons by the dopamine D2 receptor agonist LY-141865: prevented by 6-OHDA pretreatment. Brain Res. 444:2389–93 [Google Scholar]
  64. Humphries MD, Prescott TJ. 2010. The ventral basal ganglia, a selection mechanism at the crossroads of space, strategy, and reward. Prog. Neurobiol. 90:385–417 [Google Scholar]
  65. Ito R, Robbins TW, Pennartz CM, Everitt BJ. 2008. Functional interaction between the hippocampus and nucleus accumbens shell is necessary for the acquisition of appetitive spatial context conditioning. J. Neurosci. 28:276950–59 [Google Scholar]
  66. Ito R, Robbins TW, Everitt BJ. 2004. Differential control over cocaine-seeking behavior by nucleus accumbens core and shell. Nat. Neurosci. 7:4389–97 [Google Scholar]
  67. Jensen J, McIntosh AR, Crawley AP, Mikulis DJ, Remington G, Kapur S. 2003. Direct activation of the ventral striatum in anticipation of aversive stimuli. Neuron 40:61251–57 [Google Scholar]
  68. Jongen-Rêlo AL, Kaufmann S, Feldon J. 2003. A differential involvement of the shell and core subterritories of the nucleus accumbens of rats in memory processes. Behav. Neurosci. 117:150–68 [Google Scholar]
  69. Kang MJ, Rangel A, Camus M, Camerer CF. 2011. Hypothetical and real choice differentially activate common valuation areas. J. Neurosci. 31:2461–68 [Google Scholar]
  70. Kelley AE, Domesick VB, Nauta WJ. 1982. The amygdalostriatal projection in the rat: an anatomical study by anterograde and retrograde tracing methods. Neuroscience 7:615–30 [Google Scholar]
  71. Khamassi M, Humphries MD. 2012. Integrating cortico-limbic-basal ganglia architectures for learning model-based and model-free navigation strategies. Front. Behav. Neurosci. 6:79 [Google Scholar]
  72. Kim H, Shimojo S, O'Doherty JP. 2006. Is avoiding an aversive outcome rewarding? Neural substrates of avoidance learning in the human brain. PLOS Biol. 4:8e233 [Google Scholar]
  73. Kim H, Sul JH, Huh N, Lee D, Jung MW. 2009. Role of striatum in updating values of chosen actions. J. Neurosci. 29:4714701–12 [Google Scholar]
  74. Kiyatkin EA, Rebec GV. 1996. Dopaminergic modulation of glutamate-induced excitations of neurons in the neostriatum and nucleus accumbens of awake, unrestrained rats. J. Neurophysiol. 75:142–53 [Google Scholar]
  75. Klein-Flügge MC, Hunt LT, Bach DR, Dolan RJ, Behrens TE. 2011. Dissociable reward and timing signals in human midbrain and ventral striatum. Neuron 72:654–64 [Google Scholar]
  76. Knutson B, Adams CM, Fong GW, Hommer D. 2001. Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J. Neurosci. 21:16RC159 [Google Scholar]
  77. Krause M, German PW, Taha SA, Fields HL. 2010. A pause in nucleus accumbens neuron firing is required to initiate and maintain feeding. J. Neurosci. 30:134746–56 [Google Scholar]
  78. Kravitz AV, Tye LD, Kreitzer AC. 2012. Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat. Neurosci. 15:6816–18 [Google Scholar]
  79. Kuhnen CM, Knutson B. 2005. The neural basis of financial risk taking. Neuron 47:5763–70 [Google Scholar]
  80. Le Moine C, Bloch B. 1996. Expression of the D3 dopamine receptor in peptidergic neurons of the nucleus accumbens: comparison with the D1 and D2 dopamine receptors. Neuroscience 173:131–43 [Google Scholar]
  81. Leotti LA, Delgado MR. 2011. The inherent reward of choice. Psychol. Sci. 22:101310–18 [Google Scholar]
  82. Levita L, Dalley JW, Robbins TW. 2002. Disruption of Pavlovian contextual conditioning by excitotoxic lesions of the nucleus accumbens core. Behav. Neurosci. 116:4539–52 [Google Scholar]
  83. Levita L, Hoskin R, Champi S. 2012. Avoidance of harm and anxiety: a role for the nucleus accumbens. NeuroImage 62:189–98 [Google Scholar]
  84. Lewis AH, Niznikiewicz MA, Delamater AR, Delgado MR. 2013. Avoidance-based human Pavlovian-to-instrumental transfer. Eur. J. Neurosci. 38:123740–48 [Google Scholar]
  85. Li J, Daw ND. 2011. Signals in human striatum are appropriate for policy update rather than value prediction. J. Neurosci. 31:5504–11 [Google Scholar]
  86. Lobo MK, Covington HE 3rd, Chaudhury D, Friedman AK, Sun H. et al. 2010. Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 330:6002385–90 [Google Scholar]
  87. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. 2001. Neurophysiological investigation of the basis of the fMRI signal. Nature 412:6843150–57 [Google Scholar]
  88. Logothetis NK, Wandell BA. 2004. Interpreting the BOLD signal. Annu. Rev. Physiol. 66:735–69 [Google Scholar]
  89. Lohrenz T, McCabe K, Camerer CF, Montague PR. 2007. Neural signature of fictive learning signals in a sequential investment task. Proc. Natl. Acad. Sci. USA 104:9493–98 [Google Scholar]
  90. Maldonado-Irizarry CS, Kelley AE. 1994. Differential behavioral effects following microinjection of an NMDA antagonist into nucleus accumbens subregions. Psychopharmacology 116:65–72 [Google Scholar]
  91. Maldonado-Irizarry CS, Swanson CJ, Kelley AE. 1995. Glutamate receptors in the nucleus accumbens shell control feeding behavior via the lateral hypothalamus. J. Neurosci. 15:106779–88 [Google Scholar]
  92. Mannella F, Gurney K, Baldassarre G. 2013. The nucleus accumbens as a nexus between values and goals in goal-directed behavior: a review and a new hypothesis. Front. Behav. Neurosci. 7:135 [Google Scholar]
  93. McCullough LD, Sokolowski JD, Salamone JD. 1993. A neurochemical and behavioral investigation of the involvement of nucleus accumbens dopamine in instrumental avoidance. Neuroscience 52:4919–25 [Google Scholar]
  94. McGinty VB, Lardeux S, Taha SA, Kim JJ, Nicola SM. 2013. Invigoration of reward seeking by cue and proximity encoding in the nucleus accumbens. Neuron 78:5910–22 [Google Scholar]
  95. McLaughlin RJ, Floresco SB. 2008. The role of different subregions of the basolateral amygdala in cue-induced reinstatement and extinction of food-seeking behavior. Neuroscience 146:41484–94 [Google Scholar]
  96. Meredith GE, Pattiselanno A, Groenewegen HJ, Haber SN. 1996. Shell and core in monkey and human nucleus accumbens identified with antibodies to calbindin-D28k. J. Comp. Neurol. 365:4628–39 [Google Scholar]
  97. Mogenson GJ, Brudzynski SM, Wu M, Yang CR, Yim CY. 1993. From motivation to action: a review of dopaminergic regulation of limbic→nucleus accumbens→ventral pallidum→pedunculopontine nucleus circuitries involved with limbic-motor integration. Limbic-Motor Circuits and Neuropsychiatry PW Kalivas, CD Barnes 193–263 Boca Raton, FL: CRC Press [Google Scholar]
  98. Mogenson GJ, Jones DL, Yim CY. 1980. From motivation to action: functional interface between the limbic system and the motor system. Prog. Neurobiol. 14:2–369–97 [Google Scholar]
  99. Nicola SM. 2007. The nucleus accumbens as part of a basal ganglia action selection circuit. Psychopharmacology 1913521–50 [Google Scholar]
  100. Nicola SM. 2010. The flexible approach hypothesis: unification of effort and cue-responding hypotheses for the role of nucleus accumbens dopamine in the activation of reward-seeking behavior. J. Neurosci. 30:4916585–600 [Google Scholar]
  101. Nicola SM, Malenka RC. 1997. Dopamine depresses excitatory and inhibitory synaptic transmission by distinct mechanisms in the nucleus accumbens. J. Neurosci. 17:155697–710 [Google Scholar]
  102. Niv Y. 2007. Cost, benefit, tonic, phasic: what do response rates tell us about dopamine and motivation?. Ann. N.Y. Acad. Sci. 1104:357–76 [Google Scholar]
  103. Niznikiewicz MA, Delgado MR. 2011. Two sides of the same coin: learning via positive and negative reinforcers in the human striatum. Dev. Cogn. Neurosci. 1:4494–505 [Google Scholar]
  104. O'Donnell P. 1999. Ensemble coding in the nucleus accumbens. Psychobiology 27:2187–97 [Google Scholar]
  105. O'Donnell P. 2003. Dopamine gating of forebrain neural ensembles. Eur. J. Neurosci. 17:3429–35 [Google Scholar]
  106. O'Donnell P, Grace AA. 1994. Tonic D2-mediated attenuation of cortical excitation in nucleus accumbens neurons recorded in vitro. Brain Res. 634:105–12 [Google Scholar]
  107. O'Donnell P, Grace AA. 1996. Dopaminergic reduction of excitability in nucleus accumbens neurons recorded in vitro. Neuropsychopharmacology 15:87–97 [Google Scholar]
  108. Oleson EB, Gentry RN, Chioma VC, Cheer JF. 2012. Subsecond dopamine release in the nucleus accumbens predicts conditioned punishment and its successful avoidance. J. Neurosci. 32:4214804–8 [Google Scholar]
  109. Pan WX, Schmidt R, Wickens JR, Hyland BI. 2005. Dopamine cells respond to predicted events during classical conditioning: evidence for eligibility traces in the reward-learning network. J. Neurosci. 25:266235–42 [Google Scholar]
  110. Parkinson JA, Olmstead MC, Burns LH, Robbins TW, Everitt BJ. 1999. Dissociation in effects of lesions of the nucleus accumbens core and shell on appetitive Pavlovian approach behavior and the potentiation of conditioned reinforcement and locomotor activity by D-amphetamine. J. Neurosci. 19:62401–11 [Google Scholar]
  111. Parkinson JA, Willoughby PJ, Robbins TW, Everitt BJ. 2000. Disconnection of the anterior cingulate cortex and nucleus accumbens core impairs Pavlovian approach behavior: further evidence for limbic cortical-ventral striatopallidal systems. Behav. Neurosci. 114:42–63 [Google Scholar]
  112. Patel SR, Sheth SA, Mian MK, Gale JT, Greenberg BD. et al. 2012. Single-neuron responses in the human nucleus accumbens during a financial decision-making task. J. Neurosci. 32:217311–15 [Google Scholar]
  113. Pennartz CMA, Groenewegen HJ, Lopes Da Silva FH. 1994. The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data. Prog. Neurobiol. 42:6719–61 [Google Scholar]
  114. Peters J, LaLumiere RT, Kalivas PW. 2008. Infralimbic prefrontal cortex is responsible for inhibiting cocaine seeking in extinguished rats. J. Neurosci. 28:236046–53 [Google Scholar]
  115. Pezze MA, Dalley JW, Robbins TW. 2007. Differential roles of dopamine D1 and D2 receptors in the nucleus accumbens in attentional performance on the five-choice serial reaction time task. Neuropsychopharmacology 32:2273–83 [Google Scholar]
  116. Pezze MA, Feldon J. 2004. Mesolimbic dopaminergic pathways in fear conditioning. Prog. Neurobiol. 74:5301–20 [Google Scholar]
  117. Redgrave P, Prescott TJ, Gurney K. 1999. Is the short-latency dopamine response too short to signal reward error?. Trends Neurosci. 22:4146–51 [Google Scholar]
  118. Reynolds SM, Berridge KC. 2002. Positive and negative motivation in nucleus accumbens shell: bivalent rostrocaudal gradients for GABA-elicited eating, taste “liking”/“disliking” reactions, place preference/avoidance, and fear. J. Neurosci. 22:167308–20 [Google Scholar]
  119. Reynolds SM, Berridge KC. 2008. Emotional environments retune the valence of appetitive versus fearful functions in nucleus accumbens. Nat. Neurosci. 11:4423–25 [Google Scholar]
  120. Robinson TE, Flagel SB. 2009. Dissociating the predictive and incentive motivational properties of reward-related cues through the study of individual differences. Biol. Psychiatry 65:10869–73 [Google Scholar]
  121. Salamone JD, Correa M. 2012. The mysterious motivational functions of mesolimbic dopamine. Neuron 76:3470–85 [Google Scholar]
  122. Salamone JD, Cousins MS, Bucher S. 1994. Anhedonia or anergia? Effects of haloperidol and nucleus accumbens dopamine depletion on instrumental response selection in a T-maze cost/benefit procedure. Behav. Brain Res. 65:2221–29 [Google Scholar]
  123. Saunders BT, Robinson TE. 2012. The role of dopamine in the accumbens core in the expression of Pavlovian-conditioned responses. Eur. J. Neurosci. 36:42521–32 [Google Scholar]
  124. Schultz W. 1998. Predictive reward signal of dopamine neurons. J. Neurophysiol. 80:1–27 [Google Scholar]
  125. Schultz W, Dayan P, Montague PR. 1997. A neural substrate of prediction and reward. Science 275:53061593–99 [Google Scholar]
  126. Seamans JK, Phillips AG. 1994. Selective memory impairments produced by transient lidocaine-induced lesions of the nucleus accumbens in rats. Behav. Neurosci. 108:3456–68 [Google Scholar]
  127. Shiflett MW, Balleine BW. 2010. At the limbic-motor interface: disconnection of basolateral amygdala from nucleus accumbens core and shell reveals dissociable components of incentive motivation. Eur. J. Neurosci. 32:101735–43 [Google Scholar]
  128. St. Onge JR, Ahn S, Phillips AG, Floresco SB. 2012. Dynamic fluctuations in dopamine efflux in the prefrontal cortex and nucleus accumbens during risk-based decision making. J. Neurosci. 32:4716880–91 [Google Scholar]
  129. Stopper CM, Floresco SB. 2011. Contributions of the nucleus accumbens and its subregions to different aspects of risk-based decision making. Cogn. Affect. Behav. Neurosci. 11:97–112 [Google Scholar]
  130. Stratford TR, Kelley AE. 1997. GABA in the nucleus accumbens shell participates in the central regulation of feeding behavior. J. Neurosci. 17:114434–40 [Google Scholar]
  131. Sugam JA, Day JJ, Wightman RM, Carelli RM. 2012. Phasic nucleus accumbens dopamine encodes risk-based decision-making behavior. Biol. Psychiatry 71:3199–205 [Google Scholar]
  132. Taha SA, Fields HL. 2006. Inhibitions of nucleus accumbens neurons encode a gating signal for reward-directed behavior. J. Neurosci. 26:217–22 [Google Scholar]
  133. Talmi D, Seymour B, Dayan P, Dolan RJ. 2008. Human Pavlovian-instrumental transfer. J. Neurosci. 28:2360–68 [Google Scholar]
  134. Taylor JR, Robbins TW. 1986. 6-Hydroxydopamine lesions of the nucleus accumbens, but not of the caudate nucleus, attenuate enhanced responding with reward-related stimuli produced by intra-accumbens d-amphetamine. Psychopharmacology 90:3390–97 [Google Scholar]
  135. Uchimura N, Cherubini E, North RA. 1989. Inward rectification in rat nucleus accumbens neurons. J. Neurophysiol. 62:61280–86 [Google Scholar]
  136. Uchimura N, Higashi H, Nishi S. 1986. Hyperpolarizing and depolarizing actions of dopamine via D1 and D2 receptors on nucleus accumbens neurons. Brain Res. 375:2368–72 [Google Scholar]
  137. Voorn P, Brady LS, Schotte A, Berendse HW, Richfield EK. 1994. Evidence for two neurochemical divisions in the human nucleus accumbens. Eur. J. Neurosci. 6:121913–16 [Google Scholar]
  138. Wadenberg ML, Ericson E, Magnusson O, Ahlenius S. 1990. Suppression of conditioned avoidance behavior by the local application of (−)sulpiride into the ventral, but not the dorsal, striatum of the rat. Biol. Psychiatry 28:4297–307 [Google Scholar]
  139. Watkins CJCH, Dayan P. 1992. Q-learning. Mach. Learn. 8:279–92 [Google Scholar]
  140. Weiner I, Feldon J. 1997. The switching model of latent inhibition: an update of neural substrates. Behav. Brain Res. 88:11–25 [Google Scholar]
  141. Wendler E, Gaspar JC, Ferreira TL, Barbiero JK, Andreatini R. et al. 2014. The roles of the nucleus accumbens core, dorsomedial striatum, and dorsolateral striatum in learning: performance and extinction of Pavlovian fear-conditioned responses and instrumental avoidance responses. Neurobiol. Learn. Mem. 109:27–36 [Google Scholar]
  142. Wu M, Brudzynski SM, Mogenson GJ. 1993. Functional interaction of dopamine and glutamate in the nucleus accumbens in the regulation of locomotion. Can. J. Physiol. Pharmacol. 71:5–6407–13 [Google Scholar]
  143. Wyvell CL, Berridge KC. 2001. Incentive sensitization by previous amphetamine exposure: increased cue-triggered “wanting” for sucrose reward. J. Neurosci. 21:197831–40 [Google Scholar]
  144. Yamaguchi T, Wang HL, Li X, Ng TH, Morales M. 2011. Mesocorticolimbic glutamatergic pathway. J. Neurosci. 31:238476–90 [Google Scholar]
  145. Yang CR, Mogenson GJ. 1984. Electrophysiological responses of neurones in the nucleus accumbens to hippocampal stimulation and the attenuation of the excitatory responses by the mesolimbic dopaminergic system. Brain Res. 324:69–84 [Google Scholar]
  146. Yin HH, Ostlund SB, Balleine BW. 2008. Reward-guided learning beyond dopamine in the nucleus accumbens: the integrative functions of cortico-basal ganglia networks. Eur. J. Neurosci. 28:81437–48 [Google Scholar]
  147. Yun IA, Nicola SM, Fields HL. 2004a. Contrasting effects of dopamine and glutamate receptor antagonist injection in the nucleus accumbens suggest a neural mechanism underlying cue-evoked goal-directed behavior. Eur. J. Neurosci. 20:249–63 [Google Scholar]
  148. Yun IA, Wakabayashi KT, Fields HL, Nicola SM. 2004b. The ventral tegmental area is required for the behavioral and nucleus accumbens neuronal firing responses to incentive cues. J. Neurosci. 24:122923–33 [Google Scholar]
  149. Zaborszky L, Alheid GF, Beinfeld MC, Eiden LE, Heimer L, Palkovits M. 1985. Cholecystokinin innervation of the ventral striatum: a morphological and radioimmunological study. Neuroscience 14:427–53 [Google Scholar]
  150. Zahm DS. 2000. An integrative neuroanatomical perspective on some subcortical substrates of adaptive responding with emphasis on the nucleus accumbens. Neurosci. Biobehav. Rev. 24:85–105 [Google Scholar]
  151. Zahm DS. 2008. Accumbens in a functional-anatomical systems context. The Nucleus Accumbens: Neurotransmitters and Related Behaviors HN David 1–36 Kerala, India: Res. Signpost [Google Scholar]
  152. Zahm DS, Brog JS. 1990. On the significance of subterritories in the “accumbens” part of the rat ventral striatum. Neuroscience 50:4751–67 [Google Scholar]
  153. Zahm DS, Heimer L. 1990. Two transpallidal pathways originating in the nucleus accumbens. J. Comp. Neurol. 302:3437–46 [Google Scholar]
  154. Zink CF, Pagnoni G, Martin-Skurski ME, Chappelow JC, Berns GS. 2004. Human striatal responses to monetary reward depend on saliency. Neuron 42:3509–17 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error