A major goal of memory research is to understand how cognitive processes in memory are supported at the level of brain systems and network representations. Especially promising in this direction are new findings in humans and animals that converge in indicating a key role for the hippocampus in the systematic organization of memories. New findings also indicate that the prefrontal cortex may play an equally important role in the active control of memory organization during both encoding and retrieval. Observations about the dialog between the hippocampus and prefrontal cortex provide new insights into the operation of the larger brain system that serves memory.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Anderson MC, Weaver C. 2009. Inhibitory control over action and memory. Encyclopedia of Neuroscience L Squire 153–63 Amsterdam, Neth.: Elsevier [Google Scholar]
  2. Bachevalier J, Nemanic S, Alvarado MC. 2015. The influence of context on recognition memory in monkeys: effects of hippocampal, parahippocampal, and perirhinal lesions. Behav. Brain Res. 285:89–98 [Google Scholar]
  3. Barker GRI, Bird F, Alexander V, Warburton EC. 2007. Recognition memory for objects, place, and temporal order: a disconnection analysis of the role of the medial prefrontal cortex and perirhinal cortex. J. Neurosci. 27:2948–57 [Google Scholar]
  4. Bartlett FC. 1932. Remembering London: Cambridge Univ. Press [Google Scholar]
  5. Bayley PJ, O'Reilly RC, Curran T, Squire LR. 2008. New semantic learning in patients with large medial temporal lobe lesions. Hippocampus 8:575–83 [Google Scholar]
  6. Benchenane K, Peyrache A, Khamassi M, Tierney PL, Gioanni Y. et al. 2010. Coherent theta oscillations and reorganization of spike timing in the hippocampal-prefrontal network upon learning. Neuron 66:921–36 [Google Scholar]
  7. Birrell JM, Brown VJ. 2000. Medial frontal cortex mediates perceptual attentional set shifting in the rat. J. Neurosci. 20:4320–24 [Google Scholar]
  8. Bower GH. 1970. Organizational factors in human memory. Cogn. Psychol. 1:18–46 [Google Scholar]
  9. Bowles B, Crupi C, Mirsattari SM, Pigott SE, Parrent AG. et al. 2007. Impaired familiarity with reserved recollection after anterior-temporal lobe resection that spares the hippocampus. PNAS 104:16382–87 [Google Scholar]
  10. Brassen S, Weber-Fahr W, Sommer T, Lahrnbeck JT, Braus DF. 2006. Research report: Hippocampal-prefrontal encoding activation predicts whether words can be successfully recalled or only recognized. Behav. Brain Res. 171:271–78 [Google Scholar]
  11. Brincat SL, Miller EK. 2015. Frequency-specific hippocampal-prefrontal interactions during associative learning. Nat. Neurosci. 18:576–81 [Google Scholar]
  12. Brown VJ, Bowman EM. 2002. Rodent models of prefrontal cortical function. Trends Neurosci 25:340–43 [Google Scholar]
  13. Buckner RL, Wheeler ME. 2001. The cognitive neuroscience of remembering. Nat. Rev. Neurosci. 2:624–34 [Google Scholar]
  14. Bunge SA, Burrows B, Wagner AD. 2004. Prefrontal and hippocampal contributions to visual associative recognition: interactions between cognitive control and episodic retrieval. Brain Cogn 56:141–52 [Google Scholar]
  15. Bunsey M, Eichenbaum H. 1996. Conservation of hippocampal memory function in rats and humans. Nature 379:255–57 [Google Scholar]
  16. Buzsaki G, Moser EI. 2013. Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat. Neurosci. 16:130–38 [Google Scholar]
  17. Cheung A, Ball D, Milford M, Wyeth G, Wiles J. 2012. Maintaining a cognitive map in darkness: the need to fuse boundary knowledge with path integration. PLOS Comput. Biol. 8:8e1002651 [Google Scholar]
  18. Cohen NJ, Squire LR. 1980. Preserved learning and retention of a pattern-analyzing skill in amnesia: dissociation of knowing how and knowing that. Science 210:207–10 [Google Scholar]
  19. Cohen SJ, Munchow AH, Rios LM, Zhang G, Asgeirsdottir HN, Stackman RW. 2013. The rodent hippocampus is essential for nonspatial object memory. Curr. Biol. 23:1685–90 [Google Scholar]
  20. Collin SH, Milivojevic B, Doeller CF. 2015. Memory hierarchies map onto the hippocampal long axis in humans. Nat. Neurosci. 18:1562–64 [Google Scholar]
  21. Collins AM, Quillian MR. 1969. Retrieval time from semantic memory. J. Verbal Learn. Verbal Behav. 8:240–47 [Google Scholar]
  22. Connolly AC, Guntupalli JS, Gors J, Hanke M, Halchenko YO. et al. 2012. The representation of biological classes in the human brain. J. Neurosci. 32:2608–18 [Google Scholar]
  23. Copara MS, Hassan AS, Kyle CT, Libby LA, Ranganath C, Ekstrom AD. 2014. Complementary roles of human hippocampal subregions during retrieval of spatiotemporal context. J. Neurosci. 34:6834–42 [Google Scholar]
  24. Davachi L. 2006. Item, context and relational episodic encoding in humans. Curr. Opin. Neurobiol. 16:693–700 [Google Scholar]
  25. Davachi L, DuBrow S. 2015. How the hippocampus preserves order: the role of prediction and context. Trends Cogn. Sci. 19:92–99 [Google Scholar]
  26. Davachi L, Mitchell JP, Wagner AD. 2003. Multiple routes to memory: Distinct medial temporal lobe processes build item and source memories. PNAS 100:2157–62 [Google Scholar]
  27. Depue BE. 2012. A neuroanatomical model of prefrontal inhibitory modulation of memory retrieval. Neurosci. Biobehav. Rev. 36:1382–99 [Google Scholar]
  28. DeVito LM, Lykken C, Kanter BR, Eichenbaum H. 2010. Prefrontal cortex: role in acquisition of overlapping associations and transitive inference. Learn. Mem. 17:161–67 [Google Scholar]
  29. Dias R, Robbins TW, Roberts AC. 1996. Dissociation in prefrontal cortex of affective and attentional shifts. Nature 380:69–72 [Google Scholar]
  30. Dickerson BC, Miller SL, Greve DN, Dale AM, Albert MS. et al. 2007. Prefrontal-hippocampal-fusiform activity during encoding predicts intraindividual differences in free recall ability: an event-related functional-anatomic MRI study. Hippocampus 17:1060–70 [Google Scholar]
  31. Dobbins IG, Foley H, Schacter DL, Wagner AD. 2002. Executive control during episodic retrieval: Multiple prefrontal processes subserve source memory. Neuron 35:989–96 [Google Scholar]
  32. DuBrow S, Davachi L. 2014. Temporal memory is shaped by encoding stability and intervening item reactivation. J. Neurosci. 34:13998–4005 [Google Scholar]
  33. Durstewitz D, Vittoz NM, Floresco SB, Seamans JK. 2010. Abrupt transitions between prefrontal neural ensemble states accompany behavioral transitions during rule learning. Neuron 66:438–48 [Google Scholar]
  34. Dusek JA, Eichenbaum H. 1997. The hippocampus and memory for orderly stimulus relations. PNAS 94:7109–14 [Google Scholar]
  35. Dusek JA, Eichenbaum H. 1998. The hippocampus and transverse patterning guided by olfactory cues. Behav. Neurosci. 112:762–71 [Google Scholar]
  36. Eacott MJ, Norman G. 2004. Integrated memory for object, place, and context in rats: a possible model of episodic-like memory. J. Neurosci. 24:1948–53 [Google Scholar]
  37. Eichenbaum H. 2014. Time cells in the hippocampus: a new dimension for mapping memories. Nat. Rev. Neurosci. 15:732–44 [Google Scholar]
  38. Eichenbaum H, Cohen NJ. 2014. Can we reconcile the declarative memory and spatial navigation views of hippocampal function. Neuron 83:764–70 [Google Scholar]
  39. Eichenbaum H, Cohen NJ, Otto T, Wible C. 1992. Memory representation in the hippocampus: functional domain and functional organization. Memory: Organization and Locus of Change LR Squire, G Lynch, NM Weinberger, JL McGaugh 163–204 New York: Oxford Univ. Press [Google Scholar]
  40. Eichenbaum H, Dudchencko P, Wood E, Shapiro M, Tanila H. 1999. The hippocampus, memory, and place cells: Is it spatial memory or a memory space. Neuron 23:209–26 [Google Scholar]
  41. Eichenbaum H, Fortin N, Sauvage M, Robitsek RJ, Farovik A. 2010. An animal model of amnesia that uses Receiver Operating Characteristics (ROC) analysis to distinguish recollection from familiarity deficits in recognition memory. Neuropsychologia 48:2281–89 [Google Scholar]
  42. Eichenbaum H, Yonelinas AR, Ranganath C. 2007. The medial temporal lobe and recognition memory. Annu. Rev. Neurosci. 30:123–52 [Google Scholar]
  43. Ergorul C, Eichenbaum H. 2004. The hippocampus and memory for “what,” “where,” and “when”. Learn. Mem. 11:397–405 [Google Scholar]
  44. Evensmoen HR, Lehn H, Xu J, Witter MP, Nadel L, Håberg AK. 2013. The anterior hippocampus supports a coarse, global environmental representation and the posterior hippocampus supports fine-grained, local environmental representations. J. Cogn. Neurosci. 25:1908–25 [Google Scholar]
  45. Ezzyat Y, Davachi L. 2014. Similarity breeds proximity: Pattern similarity within and across contexts is related to later mnemonic judgments of temporal proximity. Neuron 81:1179–89 [Google Scholar]
  46. Farovik A, Dupont LM, Arce M, Eichenbaum H. 2008. Medial prefrontal cortex supports recollection, but not familiarity, in the rat. J. Neurosci. 28:13428–34 [Google Scholar]
  47. Flegal KE, Marín-Gutiérrez A, Ragland JD, Ranganath C. 2014. Brain mechanisms of successful recognition through retrieval of semantic context. J. Cogn. Neurosci. 6:1694–704 [Google Scholar]
  48. Fortin NJ, Agster KL, Eichenbaum H. 2002. Critical role of the hippocampus in memory for sequences of events. Nat. Neurosci. 5:458–62 [Google Scholar]
  49. Fortin NJ, Wright SP, Eichenbaum H. 2004. Recollection-like memory retrieval in rats is dependent on the hippocampus. Nature 431:188–91 [Google Scholar]
  50. Gabrieli JD, Cohen NJ, Corkin S. 1988. The impaired learning of semantic knowledge following bilateral medial temporal-lobe resection. Brain Cogn 7:157–77 [Google Scholar]
  51. Gelbard-Sagiv H, Mukamel R, Harel M, Malach R, Fried I. 2008. Internally generated reactivation of single neurons in human hippocampus during free recall. Science 322:96–101 [Google Scholar]
  52. Graf P, Schacter DL. 1985. Implicit and explicit memory for new associations in normal and amnesic subjects. J. Exp. Psychol. Learn. Mem. Cogn. 11:501–18 [Google Scholar]
  53. Haxby JV, Connolly AC, Guntupalli JS. 2014. Decoding neural representational spaces using multivariate pattern analysis. Annu. Rev. Neurosci. 37:435–56 [Google Scholar]
  54. Hebb DO. 1949. The Organization of Behavior New York: Wiley [Google Scholar]
  55. Henke K, Buck A, Weber B, Wieser HG. 1997. Human hippocampus establishes associations in memory. Hippocampus 7:249–56 [Google Scholar]
  56. Henke K, Weber B, Kneifel S, Wieser HG, Buck A. 1999. Human hippocampus associates information in memory. PNAS 96:5884–89 [Google Scholar]
  57. Holland PC. 2008. Cognitive versus stimulus-response theories of learning. Learn. Behav. 36:227–41 [Google Scholar]
  58. Howard M, MacDonald C, Tiganj Z, Shankar K, Du Q. et al. 2014. A unified mathematical framework for coding time, space, and sequences in the medial temporal lobe. J. Neurosci. 34:4692–707 [Google Scholar]
  59. Hsieh LT, Gruber MJ, Jenkins LJ, Ranganath C. 2014. Hippocampal activity patterns carry information about objects in temporal context. Neuron 81:1165–78 [Google Scholar]
  60. Hyman JM, Ma L, Balaguer E, Durstewitz D, Seamans JK. 2012. Contextual encoding by ensembles of medial prefrontal cortex neurons. PNAS 109:5086–91 [Google Scholar]
  61. Hyman JM, Zilli EA, Paley AM, Hasselmo ME. 2005. Medial prefrontal cortex cells show dynamic modulation with the hippocampal theta rhythm dependent on behavior. Hippocampus 15:739–49 [Google Scholar]
  62. Ison MJ, Quian Quiroga R, Fried I. 2015. Rapid encoding of new memories by individual neurons in the human brain. Neuron 87:220–30 [Google Scholar]
  63. Jenkins LJ, Ranganath C. 2010. Prefrontal and medial temporal lobe activity at encoding predicts temporal context memory. J. Neurosci. 30:15558–65 [Google Scholar]
  64. Karlsson MP, Tervo DGR, Karpova AY. 2012. Network rests in medial prefrontal cortex mark the onset of behavioral uncertainty. Science 338:135–39 [Google Scholar]
  65. Kesner RP, Gilbert PE, Barua LA. 2002. The role of the hippocampus in memory for the temporal order of a sequence of odors. Behav. Neurosci. 116:286–90 [Google Scholar]
  66. Kiani R, Esteky H, Mirpour K, Tanaka K. 2007. Object category structure in response patterns of neuronal population in monkey inferior temporal cortex. J. Neurophysiol. 97:4296–309 [Google Scholar]
  67. Knierim JJ, Neunuebel JP, Deshmukh SS. 2013. Functional correlates of the lateral and medial entorhinal cortex: objects, path integration and local-global reference frames. Phil. Trans. R. Soc. Lond. B Biol. Sci. 369:163520130369 [Google Scholar]
  68. Komorowski RW, Garcia CG, Wilson A, Hattori S, Howard MW, Eichenbaum H. 2013. Ventral hippocampal neurons are shaped by experience to represent behaviorally relevant contexts. J. Neurosci. 33:8079–87 [Google Scholar]
  69. Komorowski RW, Manns JR, Eichenbaum H. 2009. Robust conjunctive item-place coding by hippocampal neurons parallels learning what happens. J. Neurosci. 29:9918–29 [Google Scholar]
  70. Koscik TR, Tranel D. 2012. The human ventromedial prefrontal cortex is critical for transitive inference. J. Cogn. Neurosci. 24:1191–204 [Google Scholar]
  71. Kraus BJ, Robinson RJ II, White JA, Eichenbaum H, Hasselmo ME. 2013. Hippocampal “time cells”: time versus path integration. Neuron 78:1090–101 [Google Scholar]
  72. Kriegeskorte N, Mur M, Bandettini P. 2008. Representational similarity analysis—connecting the branches of systems neuroscience. Front. Syst. Neurosci. 2:4 [Google Scholar]
  73. Kuhl BA, Wagner AD. 2009. Strategic control of memory. Encyclopedia of Neuroscience LR Squire 437–44 Amsterdam: Elsevier [Google Scholar]
  74. Kumaran D, Summerfield JJ, Hassabis D, Maguire EA. 2009. Tracking the emergence of conceptual knowledge during human decision making. Neuron 63:889–901 [Google Scholar]
  75. Kyle CT, Smuda DN, Hassan AS, Ekstrom AD. 2015. Roles of human hippocampal subfields in retrieval of spatial and temporal context. Behav. Brain Res. 278:549–58 [Google Scholar]
  76. Langston RF, Wood ER. 2010. Associative recognition and the hippocampus: differential effects of hippocampal lesions on object-place, object-context and object-place-context memory. Hippocampus 20:1139–53 [Google Scholar]
  77. Libby LA, Hannula DE, Ranganath C. 2014. Medial temporal lobe coding of item and spatial information during relational binding in working memory. J. Neurosci. 34:14233–42 [Google Scholar]
  78. MacDonald CJ, Carrow S, Place R, Eichenbaum H. 2013. Distinct hippocampal time cell sequences represent odor memories in immobilized rats. J. Neurosci. 33:14607–16 [Google Scholar]
  79. Macmillan NA, Creelman CD. 2005. Detection Theory: A User's Guide Mahwah, NJ: Lawrence Erlbaum Assoc, 2nd ed.. [Google Scholar]
  80. Mandler G. 1972. Organization, memory, and mental structures. Memory Organization and Structure CR Puff 303–19 New York: Academic [Google Scholar]
  81. Mandler G. 2011. From association to organization. Curr. Dir. Psych. Sci. 20:232–35 [Google Scholar]
  82. Manns JR, Eichenbaum H. 2009. A cognitive map for object memory in the hippocampus. Learn. Mem. 16:616–24 [Google Scholar]
  83. Manns JR, Howard M, Eichenbaum H. 2007. Gradual changes in hippocampal activity support remembering the order of events. Neuron 56:530–40 [Google Scholar]
  84. Marquis J-P, Killcross S, Haddon JE. 2007. Inactivation of the prelimbic, but not infralimbic, prefrontal cortex impairs the contextual control of response conflict in rats. Eur. J. Neurosci. 25:559–66 [Google Scholar]
  85. Mayes AR, Isaac CL, Holdstock JS, Hunkin NM, Montaldi D. et al. 2001. Memory for single items, word pairs, and temporal order of different kinds in a patient with selective hippocampal lesions. Cogn. Neuropsychol. 18:97–123 [Google Scholar]
  86. McClelland JL, McNaughton BL, O'Reilly RC. 1995. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psych. Rev. 102:419–57 [Google Scholar]
  87. McKenzie S, Frank AJ, Kinsky NR, Porter B, Rivière PD, Eichenbaum. 2014. Hippocampal representation of related and opposing memories develop within distinct, hierarchically-organized neural schemas. Neuron 83:202–15 [Google Scholar]
  88. McKenzie S, Keene CS, Farovik A, Bladon J, Place R. et al. 2016. Representation of memories in the cortical-hippocampal system: Results from the application of population similarity analyses. Neurobiol. Learn. Mem. 134:178–91 [Google Scholar]
  89. Milivojevic B, Doeller CF. 2013. Mnemonic networks in the hippocampal formation: from spatial maps to temporal and conceptual codes. J. Exp. Psychol. Gen. 142:1231–41 [Google Scholar]
  90. Milivojevic B, Vicente-Grabovetsky A, Doeller CF. 2015. Insight reconfigures hippocampal-prefrontal memories. Curr. Biol. 25:821–30 [Google Scholar]
  91. Miller EK. 1999. The prefrontal cortex: complex neural properties for complex behavior. Neuron 22:15–17 [Google Scholar]
  92. Miller EK, Cohen JD. 2001. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24:167–202 [Google Scholar]
  93. Moita MAP, Moisis S, Zhou Y, LeDoux JE, Blair HT. 2003. Hippocampal place cells acquire location-specific responses to the conditioned stimulus during auditory fear conditioning. Neuron 37:485–97 [Google Scholar]
  94. Moscovitch M. 1992. Memory and working-with-memory: a component process model based on modules and central systems. J. Cogn. Neurosci. 4:257–67 [Google Scholar]
  95. Moser EI, Kropff E, Moser M-B. 2008. Place cells, grid cells, and the brain's spatial representation system. Annu. Rev. Neurosci. 31:69–89 [Google Scholar]
  96. Navawongse R, Eichenbaum H. 2013. Distinct pathways support rule-based memory retrieval and spatial mapping by hippocampal neurons. J. Neurosci. 33:1002–13 [Google Scholar]
  97. Naya Y, Suzuki WA. 2011. Integrating what and when across the primate medial temporal lobe. Science 333:773–76 [Google Scholar]
  98. Nemanic S, Alvarado MC, Bachevalier J. 2004. The hippocampal/parahippocampal regions and recognition memory: insights from visual paired comparison versus object-delayed nonmatching in monkeys. J. Neurosci. 24:2013–26 [Google Scholar]
  99. Nielson DM, Smith TA, Sreekumar V, Dennis S, Sederberg PB. 2015. Human hippocampus represents space and time during retrieval of real-world memories. PNAS 112:11078–83 [Google Scholar]
  100. O'Kane G, Kensinger EA, Corkin S. 2004. Evidence for semantic learning in profound amnesia: an investigation with patient H.M. Hippocampus 14:417–25 [Google Scholar]
  101. O'Keefe JA, Nadel L. 1978. The Hippocampus as a Cognitive Map New York: Oxford Univ. Press [Google Scholar]
  102. Parker A, Gaffan D. 1998. Interaction of frontal and perirhinal cortices in visual object recognition memory in monkeys. Eur. J. Neurosci. 10:3044–57 [Google Scholar]
  103. Pascalis O, Hunkin NM, Holdstock JS, Isaac CL, Mayes AR. 2004. Visual paired comparison performance is impaired in a patient with selective hippocampal lesions and relatively intact item recognition. Neuropsychologia 42:1293–1300 [Google Scholar]
  104. Pastalkova E, Itskov V, Amarasingham A, Buzsáki G. 2008. Internally generated cell assembly sequences in the rat hippocampus. Science 321:1322–27 [Google Scholar]
  105. Paz R, Gelbard-Sagiv H, Mukamel R, Harel M, Malach R, Fried I. 2010. A neural substrate in the human hippocampus for linking successive events. PNAS 107:6046–51 [Google Scholar]
  106. Piaget J. 1928. Judgment and Reasoning in the Child London: K. Paul, Trench, Trubner & Co. [Google Scholar]
  107. Place R, Farovik A, Brockmann M, Eichenbaum H. 2016. Bidirectional prefrontal-hippocampal interactions support context-guided memory. Nat. Neurosci. 19:992–94 [Google Scholar]
  108. Poppenk J, Evensmoen HR, Moscovitch M, Nadel L. 2013. Long-axis specialization of the human hippocampus. Trends Cogn. Sci. 17:230–40 [Google Scholar]
  109. Postle BR. 2006. Working memory as an emergent property of the mind and brain. Neuroscience 139:23–38 [Google Scholar]
  110. Preston AR, Eichenbaum H. 2013. Interplay of the hippocampus and prefrontal cortex in memory. Curr. Biol. 23:R764–73 [Google Scholar]
  111. Preston AR, Shrager Y, Dudukovic NM, Gabrieli JD. 2004. Hippocampal contribution to the novel use of relational information in declarative memory. Hippocampus 14:148–52 [Google Scholar]
  112. Ragozzino ME, Kim J, Hassert D, Minniti N, Kiang C. 2003. The contribution of the rat prelimbic-infralimbic areas to different forms of task switching. Behav. Neurosci. 117:1054–65 [Google Scholar]
  113. Ranganath C, Blumenfeld R. 2008. Prefrontal cortex and memory. Learning and Memory: A Comprehensive Reference J Byrne 261–79 Oxford, UK: Academic [Google Scholar]
  114. Rich EL, Shapiro M. 2009. Rat prefrontal cortical neurons selectively code strategy switches. J. Neurosci. 29:7208–19 [Google Scholar]
  115. Rich EL, Shapiro ML. 2007. Prelimbic/infralimbic inactivation impairs memory for multiple task switches, but not flexible selection of familiar tasks. J. Neurosci. 27:4747–55 [Google Scholar]
  116. Richards BA, Xia F, Santoro A, Husse J, Woodin MA. et al. 2014. Patterns across multiple memories are identified over time. Nat. Neurosci. 17:981–86 [Google Scholar]
  117. Rickard TC, Verfaellie M, Grafman J. 2006. Transverse patterning and human amnesia. J. Cogn. Neurosci. 18:1723–33 [Google Scholar]
  118. Ritchey M, Libby LA, Ranganath C. 2015. Cortico-hippocampal systems involved in memory and cognition: the PMAT framework. Prog. Brain Res. 219:45–64 [Google Scholar]
  119. Robitsek JR, White J, Eichenbaum H. 2013. Place cell activation predicts subsequent memory. Behav. Brain Res. 254:65–72 [Google Scholar]
  120. Sauvage MM, Beer Z, Eichenbaum H. 2010. Recognition memory: Adding a response deadline eliminates recollection but spares familiarity. Learn. Mem. 17:104–8 [Google Scholar]
  121. Sauvage MM, Fortin NJ, Owens CB, Yonelinas AP, Eichenbaum H. 2008. Recognition memory: opposite effects of hippocampal damage on recollection and familiarity. Nat. Neurosci. 11:16–18 [Google Scholar]
  122. Schiller D, Eichenbaum H, Buffalo EA, Davachi L, Foster DJ. et al. 2015. Memory and space: towards an understanding of the cognitive map. J. Neurosci. 35:13904–11 [Google Scholar]
  123. Schlichting ML, Mumford JA, Preston AR. 2015. Learning-related representational changes reveal dissociable integration and separation signatures in the hippocampus and prefrontal cortex. Nat. Commun. 6:8151 [Google Scholar]
  124. Schlichting ML, Preston AR. 2016. Hippocampal-medial prefrontal circuit supports memory updating during learning and post-encoding rest. Neurobiol. Learn. Mem. 134:91–106 [Google Scholar]
  125. Shapiro ML, Kennedy PJ, Ferbinteanu J. 2006. Representing episodes in the mammalian brain. Curr. Opin. Neurobiol. 16:701–9 [Google Scholar]
  126. Shimamura AP, Jurica PJ, Mangels JA, Gershberg FB, Knight RT. 1995. Susceptibility to memory interference effects following frontal lobe damage: findings from tests of paired-associate learning. J. Cogn. Neurosci. 7:144–52 [Google Scholar]
  127. Shohamy D, Wagner AD. 2008. Integrating memories in the human brain: hippocampal-midbrain encoding of overlapping events. Neuron 60:378–89 [Google Scholar]
  128. Sigurdsson T, Stark KL, Karayiurgou M, Gogos JA, Gordon JA. 2010. Impaired hippocampal-prefrontal synchrony in a genetic mouse model of schizophrenia. Nature 464:763–67 [Google Scholar]
  129. Simons JS, Spiers HJ. 2003. Prefrontal and medial temporal lobe interactions in long-term memory. Nat. Rev. Neurosci. 4:637–48 [Google Scholar]
  130. Spence KW. 1950. Cognitive versus stimulus-response theories of learning. Psychol. Rev. 57:159–72 [Google Scholar]
  131. Sperling R, Chua E, Cocchiarella A, Rand-Giovannetti E, Poldrack R. et al. 2003. Putting names to faces: Successful encoding of associative memories activates the anterior hippocampal formation. NeuroImage 20:1400–10 [Google Scholar]
  132. Spiers HJ, Burgess N, Hartley T, Vargha-Khadem F, O'Keefe J. 2001. Bilateral hippocampal pathology impairs topographical and episodic memory but not visual pattern matching. Hippocampus 11:715–25 [Google Scholar]
  133. Staresina BP, Davachi L. 2008. Selective and shared contributions of the hippocampus and perirhinal cortex to episodic item and associative encoding. J. Cogn. Neurosci. 20:1478–89 [Google Scholar]
  134. Strange BA, Witter MP, Lein ES, Moser EI. 2014. Functional organization of the hippocampal longitudinal axis. Nat. Rev. Neurosci. 5:655–69 [Google Scholar]
  135. Swanson LW, Wyss JM, Cowan WM. 1978. An autoradiographic study of the organization of intrahippocampal association pathways in the rat. J. Comp. Neurol. 181:681–715 [Google Scholar]
  136. Tavares RM, Mendelsohn A, Grossman Y, Williams CH, Shapiro M. et al. 2015. A map for social navigation in the human brain. Neuron 7:231–43 [Google Scholar]
  137. Tolman EC. 1948. Cognitive maps in rats and men. Psychol. Rev. 55:189–208 [Google Scholar]
  138. Tse D, Langston RF, Kakeyama M, Bethus I, Spooner PA. et al. 2007. Schemas and memory consolidation. Science 316:76–82 [Google Scholar]
  139. Tse D, Takeuchi T, Kakeyama M, Kajii Y, Okuno H. et al. 2011. Schema-dependent gene activation and memory encoding in neocortex. Science 333:891–95 [Google Scholar]
  140. Tulving E. 1972. Episodic and semantic memory. Organization of Memory E Tulving, W Donaldson 381–402 New York: Academic [Google Scholar]
  141. Vargha-Khadem F, Gadian DG, Watkins KE, Connelly A, Van Paesschen W, Mishkin M. 1997. Differential effects of early hippocampal pathology on episodic and semantic memory. Science 277:376–80 [Google Scholar]
  142. Vertes RP. 2006. Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience 142:1–20 [Google Scholar]
  143. Wendelken C, Bunge SA. 2010. Transitive inference: distinct contributions of the rostrolateral prefrontal cortex and the hippocampus. J. Cogn. Neurosci. 22:837–47 [Google Scholar]
  144. Wixted J, Squire LR. 2011. The medial temporal lobe and attributes of memory. Trends Cogn. Sci. 15:210–17 [Google Scholar]
  145. Yonelinas AP. 2001. Components of episodic memory: the contribution of recollection and familiarity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356:1363–74 [Google Scholar]
  146. Yonelinas AP, Parks CM. 2007. Receiver operating characteristics (ROCs) in recognition memory: a review. Psychol. Bull. 133:800–32 [Google Scholar]
  147. Zalesak M, Heckers S. 2009. The role of the hippocampus in transitive inference. Psychiatry Res 172:24–30 [Google Scholar]
  148. Zeineh MM, Engel SA, Thompson PM, Brookheimer SY. 2003. Dynamics of the hippocampus during encoding and retrieval of face-name pairs. Science 299:577–80 [Google Scholar]
  149. Zeithamova D, Dominick AL, Preston AR. 2012. Hippocampal and ventral medial prefrontal activation during retrieval-mediated learning supports novel inference. Neuron 75:168–79 [Google Scholar]
  150. Zeithamova D, Preston AR. 2010. Flexible memories: differential roles for medial temporal lobe and prefrontal cortex in cross-episode binding. J. Neurosci. 30:14676–84 [Google Scholar]
  151. Zola SM, Squire LR, Teng E, Stefanacci L, Buffalo EA, Clark RE. 2000. Impaired recognition memory in monkeys after damage limited to the hippocampal region. J. Neurosci. 20:451–63 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error