1932

Abstract

Making decisions in environments with few choice options is easy. We select the action that results in the most valued outcome. Making decisions in more complex environments, where the same action can produce different outcomes in different conditions, is much harder. In such circumstances, we propose that accurate action selection relies on top-down control from the prelimbic and orbitofrontal cortices over striatal activity through distinct thalamostriatal circuits. We suggest that the prelimbic cortex exerts direct influence over medium spiny neurons in the dorsomedial striatum to represent the state space relevant to the current environment. Conversely, the orbitofrontal cortex is argued to track a subject's position within that state space, likely through modulation of cholinergic interneurons.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-psych-010418-102824
2019-01-04
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/psych/70/1/annurev-psych-010418-102824.html?itemId=/content/journals/10.1146/annurev-psych-010418-102824&mimeType=html&fmt=ahah

Literature Cited

  1. Alexander GE, Crutcher MD 1990. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–71
    [Google Scholar]
  2. Apicella P 2007. Leading tonically active neurons of the striatum from reward detection to context recognition. Trends Neurosci 30:299–306
    [Google Scholar]
  3. Baker PM, Ragozzino ME 2014. Contralateral disconnection of the rat prelimbic cortex and dorsomedial striatum impairs cue-guided behavioral switching. Learn. Mem. 21:368–79
    [Google Scholar]
  4. Balleine BW, Delgado MR, Hikosaka O 2007. The role of the dorsal striatum in reward and decision-making. J. Neurosci. 27:8161–65
    [Google Scholar]
  5. Balleine BW, Dickinson A 1998. Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37:407–19
    [Google Scholar]
  6. Balleine BW, O'Doherty JP 2010. Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology 35:148–69
    [Google Scholar]
  7. Barnes TD, Kubota Y, Hu D, Jin DZ, Graybiel AM 2005. Activity of striatal neurons reflects dynamic encoding and recoding of procedural memories. Nature 437:1158–61
    [Google Scholar]
  8. Baunez C, Robbins T 1999. Effects of dopamine depletion of the dorsal striatum and further interaction with subthalamic nucleus lesions in an attentional task in the rat. Neuroscience 92:1343–56
    [Google Scholar]
  9. Berger TW, Alger B, Thompson RF 1976. Neuronal substrate of classical conditioning in the hippocampus. Science 192:483–85
    [Google Scholar]
  10. Birrell JM, Brown VJ 2000. Medial frontal cortex mediates perceptual attentional set shifting in the rat. J. Neurosci. 20:4320–24
    [Google Scholar]
  11. Boulougouris V, Dalley JW, Robbins TW 2007. Effects of orbitofrontal, infralimbic and prelimbic cortical lesions on serial spatial reversal learning in the rat. Behav. Brain Res. 179:219–28
    [Google Scholar]
  12. Bradfield LA, Balleine BW 2017. Thalamic control of dorsomedial striatum regulates internal state to guide goal-directed action selection. J. Neurosci. 37:3721–33
    [Google Scholar]
  13. Bradfield LA, Bertran-Gonzalez J, Chieng B, Balleine BW 2013.a The thalamostriatal pathway and cholinergic control of goal-directed action: interlacing new with existing learning in the striatum. Neuron 79:153–66
    [Google Scholar]
  14. Bradfield LA, Hart G, Balleine BW 2013.b The role of the anterior, mediodorsal, and parafascicular thalamus in instrumental conditioning. Front. Syst. Neurosci. 7:51
    [Google Scholar]
  15. Brasted P, Bussey T, Murray E, Wise S 2003. Role of the hippocampal system in associative learning beyond the spatial domain. Brain 126:1202–23
    [Google Scholar]
  16. Brasted PJ, Wise SP 2004. Comparison of learning-related neuronal activity in the dorsal premotor cortex and striatum. Eur. J. Neurosci. 19:721–40
    [Google Scholar]
  17. Butter CM 1969. Perseveration in extinction and in discrimination reversal tasks following selective frontal ablations in Macaca mulatta. Physiol. Behav. 4:163–71
    [Google Scholar]
  18. Butter CM, Mishkin M, Rosvold HE 1963. Conditioning and extinction of a food-rewarded response after selective ablations of frontal cortex in rhesus monkeys. Exp. Neurol. 7:65–75
    [Google Scholar]
  19. Castañé A, Theobald DE, Robbins TW 2010. Selective lesions of the dorsomedial striatum impair serial spatial reversal learning in rats. Behav. Brain Res. 210:74–83
    [Google Scholar]
  20. Chase EA, Tait DS, Brown VJ 2012. Lesions of the orbital prefrontal cortex impair the formation of attentional set in rats. Eur. J. Neurosci. 36:2368–75
    [Google Scholar]
  21. Christakou A, Robbins TW, Everitt BJ 2001. Functional disconnection of a prefrontal cortical–dorsal striatal system disrupts choice reaction time performance: implications for attentional function. Behav. Neurosci. 115:812–25
    [Google Scholar]
  22. Chudasama Y, Bussey TJ, Muir JL 2001. Effects of selective thalamic and prelimbic cortex lesions on two types of visual discrimination and reversal learning. Eur. J. Neurosci. 14:1009–20
    [Google Scholar]
  23. Chudasama Y, Muir JL 2001. Visual attention in the rat: a role for the prelimbic cortex and thalamic nuclei. Behav. Neurosci. 115:417–28
    [Google Scholar]
  24. Clarke HF, Robbins TW, Roberts AC 2008. Lesions of the medial striatum in monkeys produce perseverative impairments during reversal learning similar to those produced by lesions of the orbitofrontal cortex. J. Neurosci. 28:10972–82
    [Google Scholar]
  25. Cohen JD, Dunbar K, McClelland JL 1990. On the control of automatic processes: a parallel distributed processing account of the Stroop effect. Psychol. Rev. 97:332–61
    [Google Scholar]
  26. Corbit LH, Muir JL, Balleine BW 2003. Lesions of mediodorsal thalamus and anterior thalamic nuclei produce dissociable effects on instrumental conditioning in rats. Eur. J. Neurosci. 18:1286–94
    [Google Scholar]
  27. Corcoran KA, Desmond TJ, Frey KA, Maren S 2005. Hippocampal inactivation disrupts the acquisition and contextual encoding of fear extinction. J. Neurosci. 25:8978–87
    [Google Scholar]
  28. Cornwall J, Cooper J, Phillipson O 1990. Afferent and efferent connections of the laterodorsal tegmental nucleus in the rat. Brain Res. Bull. 25:271–84
    [Google Scholar]
  29. Coyle JT, Snyder SH 1969. Antiparkinsonian drugs: inhibition of dopamine uptake in the corpus striatum as a possible mechanism of action. Science 166:899–901
    [Google Scholar]
  30. Cui G, Jun SB, Jin X, Pham MD, Vogel SS et al. 2013. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494:238–42
    [Google Scholar]
  31. Davachi L, Wagner AD 2002. Hippocampal contributions to episodic encoding: insights from relational and item-based learning. J. Neurophysiol. 88:982–90
    [Google Scholar]
  32. Daw ND, Niv Y, Dayan P 2005. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat. Neurosci. 8:1704–11
    [Google Scholar]
  33. Devan BD, Hong NS, McDonald RJ 2011. Parallel associative processing in the dorsal striatum: segregation of stimulus–response and cognitive control subregions. Neurobiol. Learn. Mem. 96:95–120
    [Google Scholar]
  34. Dickinson A, Balleine B 1994. Motivational control of goal-directed action. Anim. Learn. Behav. 22:1–18
    [Google Scholar]
  35. Dickinson A, Balleine B 2002. The role of learning in the operation of motivational systems. Stevens' Handbook of Experimental Psychology CR Gallistel 497–534 Hoboken, NJ: Wiley
    [Google Scholar]
  36. Dusek JA, Eichenbaum H 1997. The hippocampus and memory for orderly stimulus relations. PNAS 94:7109–14
    [Google Scholar]
  37. Eagle D, Robbins T 2003. Inhibitory control in rats performing a stop-signal reaction-time task: effects of lesions of the medial striatum and d-amphetamine. Behav. Neurosci. 117:1302–17
    [Google Scholar]
  38. Eagle DM, Wong JC, Allan ME, Mar AC, Theobald DE, Robbins TW 2011. Contrasting roles for dopamine D1 and D2 receptor subtypes in the dorsomedial striatum but not the nucleus accumbens core during behavioral inhibition in the stop-signal task in rats. J. Neurosci. 31:7349–56
    [Google Scholar]
  39. Eichenbaum H 2000. Hippocampus: mapping or memory. Curr. Biol. 10:R785–87
    [Google Scholar]
  40. Emmons EB, De Corte BJ, Kim Y, Parker KL, Matell MS, Narayanan NS 2017. Rodent medial frontal control of temporal processing in the dorsomedial striatum. J. Neurosci. 37:8718–33
    [Google Scholar]
  41. Floresco SB, Block AE, Maric T 2008. Inactivation of the medial prefrontal cortex of the rat impairs strategy set-shifting, but not reversal learning, using a novel, automated procedure. Behav. Brain Res. 190:85–96
    [Google Scholar]
  42. Fuchs RA, Branham RK, See RE 2006. Different neural substrates mediate cocaine seeking after abstinence versus extinction training: a critical role for the dorsolateral caudate–putamen. J. Neurosci. 26:3584–88
    [Google Scholar]
  43. Gallagher M, McMahan RW, Schoenbaum G 1999. Orbitofrontal cortex and representation of incentive value in associative learning. J. Neurosci. 19:6610–14
    [Google Scholar]
  44. Gardner MP, Conroy JS, Shaham MH, Styer CV, Schoenbaum G 2017. Lateral orbitofrontal inactivation dissociates devaluation-sensitive behavior and economic choice. Neuron 96:1192–203.e4
    [Google Scholar]
  45. Gershman SJ, Blei DM, Niv Y 2010. Context, learning, and extinction. Psychol. Rev. 117:197–209
    [Google Scholar]
  46. Gisquet-Verrier P, Delatour B 2006. The role of the rat prelimbic/infralimbic cortex in working memory: not involved in the short-term maintenance but in monitoring and processing functions. Neuroscience 141:585–96
    [Google Scholar]
  47. Gläscher J, Hampton AN, O'Doherty JP 2008. Determining a role for ventromedial prefrontal cortex in encoding action-based value signals during reward-related decision making. Cereb. Cortex 19:483–95
    [Google Scholar]
  48. Graybiel AM 2005. The basal ganglia: learning new tricks and loving it. Curr. Opin. Neurobiol. 15:638–44
    [Google Scholar]
  49. Grillner S, Hellgren J, Menard A, Saitoh K, Wikström MA 2005. Mechanisms for selection of basic motor programs: roles for the striatum and pallidum. Trends Neurosci 28:364–70
    [Google Scholar]
  50. Groenewegen HJ, Berendse HW 1994. The specificity of the “nonspecific” midline and intralaminar thalamic nuclei. Trends Neurosci 17:52–57
    [Google Scholar]
  51. Haddon JE, George D, Killcross S 2008. Contextual control of biconditional task performance: evidence for cue and response competition in rats. Q. J. Exp. Psychol. 61:1307–20
    [Google Scholar]
  52. Haddon JE, Killcross S 2006. Prefrontal cortex lesions disrupt the contextual control of response conflict. J. Neurosci. 26:2933–40
    [Google Scholar]
  53. Haddon JE, Killcross S 2011. Inactivation of the infralimbic prefrontal cortex in rats reduces the influence of inappropriate habitual responding in a response-conflict task. Neuroscience 199:205–12
    [Google Scholar]
  54. Hart G, Bradfield LA, Balleine BW 2018. Prefrontal corticostriatal disconnection blocks the acquisition of goal-directed action. J. Neurosci. 38:1311–22
    [Google Scholar]
  55. Jang AI, Costa VD, Rudebeck PH, Chudasama Y, Murray EA, Averbeck BB 2015. The role of frontal cortical and medial-temporal lobe brain areas in learning a Bayesian prior belief on reversals. J. Neurosci. 35:11751–60
    [Google Scholar]
  56. Jog MS, Kubota Y, Connolly CI, Hillegaart V, Graybiel AM 1999. Building neural representations of habits. Science 286:1745–49
    [Google Scholar]
  57. Kasanetz F, Riquelme LA, Della-Maggiore V, O'Donnell P, Murer MG 2008. Functional integration across a gradient of corticostriatal channels controls UP state transitions in the dorsal striatum. PNAS 105:8124–29
    [Google Scholar]
  58. Kasanetz F, Riquelme LA, O'Donnell P, Murer MG 2006. Turning off cortical ensembles stops striatal Up states and elicits phase perturbations in cortical and striatal slow oscillations in rat in vivo. J. Physiol. 577:97–113
    [Google Scholar]
  59. Killcross S, Coutureau E 2003. Coordination of actions and habits in the medial prefrontal cortex of rats. Cereb. Cortex 13:400–8
    [Google Scholar]
  60. Kimura M, Minamimoto T, Matsumoto N, Hori Y 2004. Monitoring and switching of cortico-basal ganglia loop functions by the thalamo-striatal system. Neurosci. Res. 48:355–60
    [Google Scholar]
  61. Kish SJ, Shannak K, Hornykiewicz O 1988. Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson's disease. N. Engl. J. Med. 318:876–80
    [Google Scholar]
  62. Langston RF, Ainge JA, Couey JJ, Canto CB, Bjerknes TL et al. 2010. Development of the spatial representation system in the rat. Science 328:1576–80
    [Google Scholar]
  63. Lapper S, Bolam J 1992. Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurons in the dorsal striatum of the rat. Neuroscience 51:533–45
    [Google Scholar]
  64. Liljeholm M, O'Doherty JP 2012. Contributions of the striatum to learning, motivation, and performance: an associative account. Trends Cogn. Sci. 16:467–75
    [Google Scholar]
  65. MacDonald AW, Cohen JD, Stenger VA, Carter CS 2000. Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288:1835–38
    [Google Scholar]
  66. MacLeod CM, Dunbar K 1988. Training and Stroop-like interference: evidence for a continuum of automaticity. J. Exp. Psychol. Learn. Mem. Cogn. 14:126–35
    [Google Scholar]
  67. Mahut H, Zola-Morgan S, Moss M 1982. Hippocampal resections impair associative learning and recognition memory in the monkey. J. Neurosci. 2:1214–20
    [Google Scholar]
  68. Marquis JP, Killcross S, Haddon JE 2007. Inactivation of the prelimbic, but not infralimbic, prefrontal cortex impairs the contextual control of response conflict in rats. Eur. J. Neurosci. 25:559–66
    [Google Scholar]
  69. Matus-Amat P, Higgins EA, Barrientos RM, Rudy JW 2004. The role of the dorsal hippocampus in the acquisition and retrieval of context memory representations. J. Neurosci. 24:2431–39
    [Google Scholar]
  70. McDonald RJ, White NM 1993. A triple dissociation of memory systems: hippocampus, amygdala, and dorsal striatum. Behav. Neurosci. 107:3–22
    [Google Scholar]
  71. McDonald RJ, White NM 1995. Information acquired by the hippocampus interferes with acquisition of the amygdala-based conditioned-cue preference in the rat. Hippocampus 5:189–97
    [Google Scholar]
  72. McIntyre CK, Pal SN, Marriott LK, Gold PE 2002. Competition between memory systems: acetylcholine release in the hippocampus correlates negatively with good performance on an amygdala-dependent task. J. Neurosci. 22:1171–76
    [Google Scholar]
  73. Miller EK, Cohen JD 2001. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24:167–202
    [Google Scholar]
  74. Miller KJ, Botvinick MM, Brody CD 2017. Dorsal hippocampus contributes to model-based planning. Nat. Neurosci. 20:1269–76
    [Google Scholar]
  75. Miller KJ, Shenhav A, Ludvig E 2018. Habits without values. bioRxiv 067603. https://doi.org/10.1101/067603
  76. Milner B, Corkin S, Teuber H-L 1968. Further analysis of the hippocampal amnesic syndrome: 14-year follow-up study of HM. Neuropsychologia 6:215–34
    [Google Scholar]
  77. Mishkin M, Vest B, Waxler M, Rosvold HE 1969. A re-examination of the effects of frontal lesions on object alternation. Neuropsychologia 7:357–63
    [Google Scholar]
  78. Miyachi S, Hikosaka O, Miyashita K, Kárádi Z, Rand MK 1997. Differential roles of monkey striatum in learning of sequential hand movement. Exp. Brain Res. 115:1–5
    [Google Scholar]
  79. Morris R, Garrud P, Rawlins JA, O'Keefe J 1982. Place navigation impaired in rats with hippocampal lesions. Nature 297:681–83
    [Google Scholar]
  80. Murray EA, O'Doherty JP, Schoenbaum G 2007. What we know and do not know about the functions of the orbitofrontal cortex after 20 years of cross-species studies. J. Neurosci. 27:8166–69
    [Google Scholar]
  81. Naumann M, Pirker W, Reiners K, Lange KW, Becker G, Brücke T 1998. Imaging the pre- and postsynaptic side of striatal dopaminergic synapses in idiopathic cervical dystonia: a SPECT study using [123I] epidepride and [123I] β-CIT. Mov. Disord. 13:319–23
    [Google Scholar]
  82. Neubert F-X, Mars RB, Thomas AG, Sallet J, Rushworth MF 2014. Comparison of human ventral frontal cortex areas for cognitive control and language with areas in monkey frontal cortex. Neuron 81:700–13
    [Google Scholar]
  83. Nieuwenhuis S, Heslenfeld DJ, von Geusau NJA, Mars RB, Holroyd CB, Yeung N 2005. Activity in human reward-sensitive brain areas is strongly context dependent. NeuroImage 25:1302–9
    [Google Scholar]
  84. O'Doherty JP 2011. Contributions of the ventromedial prefrontal cortex to goal-directed action selection. Ann. N. Y. Acad. Sci. 1239:118–29
    [Google Scholar]
  85. O'Doherty JP, Dayan P, Schultz J, Deichmann R, Friston K, Dolan RJ 2004. Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 304:452–54
    [Google Scholar]
  86. O'Keefe J, Nadel L 1978. The Hippocampus as a Cognitive Map Oxford, UK: Clarendon Press
  87. O'Keefe J, Speakman A 1987. Single unit activity in the rat hippocampus during a spatial memory task. Exp. Brain Res. 68:1–27
    [Google Scholar]
  88. Orsini CA, Kim JH, Knapska E, Maren S 2011. Hippocampal and prefrontal projections to the basal amygdala mediate contextual regulation of fear after extinction. J. Neurosci. 31:17269–77
    [Google Scholar]
  89. Ostlund SB, Balleine BW 2005. Lesions of medial prefrontal cortex disrupt the acquisition but not the expression of goal-directed learning. J. Neurosci. 25:7763–70
    [Google Scholar]
  90. Ostlund SB, Balleine BW 2007. Orbitofrontal cortex mediates outcome encoding in Pavlovian but not instrumental conditioning. J. Neurosci. 27:4819–25
    [Google Scholar]
  91. Padoa-Schioppa C, Assad JA 2006. Neurons in the orbitofrontal cortex encode economic value. Nature 441:223–26
    [Google Scholar]
  92. Palmiter RD 2008. Dopamine signaling in the dorsal striatum is essential for motivated behaviors. Ann. N. Y. Acad. Sci. 1129:35–46
    [Google Scholar]
  93. Parker NF, Cameron CM, Taliaferro JP, Lee J, Choi JY et al. 2016. Reward and choice encoding in terminals of midbrain dopamine neurons depends on striatal target. Nat. Neurosci. 19:845–54
    [Google Scholar]
  94. Parkes SL, Ravassard PM, Cerpa J-C, Wolff M, Ferreira G, Coutureau E 2017. Insular and ventrolateral orbitofrontal cortices differentially contribute to goal-directed behavior in rodents. Cereb. Cortex 28:2313–25
    [Google Scholar]
  95. Quinlan MG, Hussain D, Brake WG 2008. Use of cognitive strategies in rats: the role of estradiol and its interaction with dopamine. Horm. Behav. 53:185–91
    [Google Scholar]
  96. Ragozzino ME, Kim J, Hassert D, Minniti N, Kiang C 2003. The contribution of the rat prelimbic-infralimbic areas to different forms of task switching. Behav. Neurosci. 117:1054–65
    [Google Scholar]
  97. Ragozzino ME, Mohler EG, Prior M, Palencia CA, Rozman S 2009. Acetylcholine activity in selective striatal regions supports behavioral flexibility. Neurobiol. Learn. Mem. 91:13–22
    [Google Scholar]
  98. Ragozzino ME, Ragozzino KE, Mizumori SJ, Kesner RP 2002. Role of the dorsomedial striatum in behavioral flexibility for response and visual cue discrimination learning. Behav. Neurosci. 116:105–15
    [Google Scholar]
  99. Redish AD 1999. Beyond the Cognitive Map: From Place Cells to Episodic Memory Cambridge, MA: MIT Press
  100. Renteria R, Baltz ET, Gremel CM 2018. Chronic alcohol exposure disrupts top-down control over basal ganglia action selection to produce habits. Nat. Commun. 9:211
    [Google Scholar]
  101. Rudebeck PH, Murray EA 2008. Amygdala and orbitofrontal cortex lesions differentially influence choices during object reversal learning. J. Neurosci. 28:8338–43
    [Google Scholar]
  102. Rudebeck PH, Saunders RC, Prescott AT, Chau LS, Murray EA 2013. Prefrontal mechanisms of behavioral flexibility, emotion regulation and value updating. Nat. Neurosci. 16:1140–45
    [Google Scholar]
  103. Rudy JW, Sutherland RJ 1989. The hippocampal formation is necessary for rats to learn and remember configural discriminations. Behav. Brain Res. 34:97–109
    [Google Scholar]
  104. Samejima K, Ueda Y, Doya K, Kimura M 2005. Representation of action-specific reward values in the striatum. Science 310:1337–40
    [Google Scholar]
  105. Schendan HE, Searl MM, Melrose RJ, Stern CE 2003. An fMRI study of the role of the medial temporal lobe in implicit and explicit sequence learning. Neuron 37:1013–25
    [Google Scholar]
  106. Schoenbaum G, Chiba AA, Gallagher M 2000. Changes in functional connectivity in orbitofrontal cortex and basolateral amygdala during learning and reversal training. J. Neurosci. 20:5179–89
    [Google Scholar]
  107. Schoenbaum G, Eichenbaum H 1995. Information coding in the rodent prefrontal cortex. I. Single-neuron activity in orbitofrontal cortex compared with that in pyriform cortex. J. Neurophysiol. 74:733–50
    [Google Scholar]
  108. Schoenbaum G, Setlow B, Nugent SL, Saddoris MP, Gallagher M 2003. Lesions of orbitofrontal cortex and basolateral amygdala complex disrupt acquisition of odor-guided discriminations and reversals. Learn. Mem. 10:129–40
    [Google Scholar]
  109. Schuck NW, Cai MB, Wilson RC, Niv Y 2016. Human orbitofrontal cortex represents a cognitive map of state space. Neuron 91:1402–12
    [Google Scholar]
  110. Schultz W, Stauffer WR, Lak A 2017. The phasic dopamine signal maturing: from reward via behavioural activation to formal economic utility. Curr. Opin. Neurobiol. 43:139–48
    [Google Scholar]
  111. Sharpe MJ, Killcross S 2012. The prelimbic cortex contributes to the down-regulation of attention toward redundant cues. Cereb. Cortex 24:1066–74
    [Google Scholar]
  112. Sharpe MJ, Killcross S 2015.a The prelimbic cortex uses contextual cues to modulate responding towards predictive stimuli during fear renewal. Neurobiol. Learn. Mem. 118:20–29
    [Google Scholar]
  113. Sharpe MJ, Killcross S 2015.b The prelimbic cortex uses higher-order cues to modulate both the acquisition and expression of conditioned fear. Front. Syst. Neurosci. 8:235
    [Google Scholar]
  114. Sharpe MJ, Killcross S 2018. The modulation of attention and action in the medial prefrontal cortex of rats. Psychol. Rev. In press
  115. Sharpe MJ, Marchant NJ, Whitaker LR, Richie CT, Zhang YJ et al. 2017. Lateral hypothalamic GABAergic neurons encode reward predictions that are relayed to the ventral tegmental area to regulate learning. Curr. Biol. 27:2089–100.e5
    [Google Scholar]
  116. Sharpe MJ, Schoenbaum G 2016. Back to basics: making predictions in the orbitofrontal–amygdala circuit. Neurobiol. Learn. Mem. 131:201–6
    [Google Scholar]
  117. Smith KS, Virkud A, Deisseroth K, Graybiel AM 2012. Reversible online control of habitual behavior by optogenetic perturbation of medial prefrontal cortex. PNAS 109:18932–37
    [Google Scholar]
  118. Stalnaker TA, Berg B, Aujla N, Schoenbaum G 2016. Cholinergic interneurons use orbitofrontal input to track beliefs about current state. J. Neurosci. 36:6242–57
    [Google Scholar]
  119. Stalnaker TA, Cooch NK, Schoenbaum G 2015. What the orbitofrontal cortex does not do. Nat. Neurosci. 18:620–27
    [Google Scholar]
  120. Surmeier DJ, Ding J, Day M, Wang Z, Shen W 2007. D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 30:228–35
    [Google Scholar]
  121. Sutton RS, Barto AG 1998. Reinforcement Learning: An Introduction Cambridge, MA: MIT Press
  122. Tanaka SC, Balleine BW, O'Doherty JP 2008. Calculating consequences: brain systems that encode the causal effects of actions. J. Neurosci. 28:6750–55
    [Google Scholar]
  123. Thorn CA, Atallah H, Howe M, Graybiel AM 2010. Differential dynamics of activity changes in dorsolateral and dorsomedial striatal loops during learning. Neuron 66:781–95
    [Google Scholar]
  124. Tran-Tu-Yen DA, Marchand AR, Pape JR, Di Scala G, Coutureau E 2009. Transient role of the rat prelimbic cortex in goal-directed behaviour. Eur. J. Neurosci. 30:464–71
    [Google Scholar]
  125. Tricomi E, Balleine BW, O'Doherty JP 2009. A specific role for posterior dorsolateral striatum in human habit learning. Eur. J. Neurosci. 29:2225–32
    [Google Scholar]
  126. Uylings HB, Groenewegen HJ, Kolb B 2003. Do rats have a prefrontal cortex. Behav. Brain Res. 146:3–17
    [Google Scholar]
  127. Vertes RP 2004. Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51:32–58
    [Google Scholar]
  128. Volkow ND, Wang GJ, Fowler JS, Logan J, Jayne M et al. 2002. “Nonhedonic” food motivation in humans involves dopamine in the dorsal striatum and methylphenidate amplifies this effect. Synapse 44:175–80
    [Google Scholar]
  129. Voorn P, Vanderschuren LJ, Groenewegen HJ, Robbins TW, Pennartz CM 2004. Putting a spin on the dorsal–ventral divide of the striatum. Trends Neurosci 27:468–74
    [Google Scholar]
  130. Wallenstein GV, Hasselmo ME, Eichenbaum H 1998. The hippocampus as an associator of discontiguous events. Trends Neurosci 21:317–23
    [Google Scholar]
  131. Wallis JD 2012. Cross-species studies of orbitofrontal cortex and value-based decision-making. Nat. Neurosci. 15:13–19
    [Google Scholar]
  132. Whitaker LR, Warren BL, Venniro M, Harte TC, McPherson KB et al. 2017. Bidirectional modulation of intrinsic excitability in rat prelimbic cortex neuronal ensembles and non-ensembles after operant learning. J. Neurosci. 37:8845–56
    [Google Scholar]
  133. Wikenheiser AM, Marrero-Garcia Y, Schoenbaum G 2017. Suppression of ventral hippocampal output impairs integrated orbitofrontal encoding of task structure. Neuron 95:1197–207.e3
    [Google Scholar]
  134. Wikenheiser AM, Redish AD 2015. Hippocampal theta sequences reflect current goals. Nat. Neurosci. 18:289–94
    [Google Scholar]
  135. Wikenheiser AM, Schoenbaum G 2016. Over the river, through the woods: cognitive maps in the hippocampus and orbitofrontal cortex. Nat. Rev. Neurosci. 17:513–23
    [Google Scholar]
  136. Willcocks AL, McNally GP 2013. The role of medial prefrontal cortex in extinction and reinstatement of alcohol-seeking in rats. Eur. J. Neurosci. 37:259–68
    [Google Scholar]
  137. Wilson RC, Takahashi YK, Schoenbaum G, Niv Y 2014. Orbitofrontal cortex as a cognitive map of task space. Neuron 81:267–79
    [Google Scholar]
  138. Xu L, Anwyl R, Rowan MJ 1998. Spatial exploration induces a persistent reversal of long-term potentiation in rat hippocampus. Nature 394:891–94
    [Google Scholar]
  139. Yin HH, Knowlton BJ, Balleine BW 2004. Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur. J. Neurosci. 19:181–89
    [Google Scholar]
  140. Yin HH, Knowlton BJ, Balleine BW 2005. Blockade of NMDA receptors in the dorsomedial striatum prevents action–outcome learning in instrumental conditioning. Eur. J. Neurosci. 22:505–12
    [Google Scholar]
  141. Yin HH, Knowlton BJ, Balleine BW 2006. Inactivation of dorsolateral striatum enhances sensitivity to changes in the action–outcome contingency in instrumental conditioning. Behav. Brain Res. 166:189–96
    [Google Scholar]
  142. Yin HH, Mulcare SP, Hilário MR, Clouse E, Holloway T et al. 2009. Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill. Nat. Neurosci. 12:333–41
    [Google Scholar]
  143. Zelikowsky M, Bissiere S, Hast TA, Bennett RZ, Abdipranoto A et al. 2013. Prefrontal microcircuit underlies contextual learning after hippocampal loss. PNAS 110:9938–43
    [Google Scholar]
  144. Znamenskiy P, Zador AM 2013. Corticostriatal neurons in auditory cortex drive decisions during auditory discrimination. Nature 497:482–85
    [Google Scholar]
/content/journals/10.1146/annurev-psych-010418-102824
Loading
/content/journals/10.1146/annurev-psych-010418-102824
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error