For decades, the dominant paradigm for studying decision making—the expected utility framework—has been burdened by an increasing number of empirical findings that question its validity as a model of human cognition and behavior. However, as Kuhn (1962) argued in his seminal discussion of paradigm shifts, an old paradigm cannot be abandoned until a new paradigm emerges to replace it. In this article, we argue that the recent shift in researcher attention toward basic cognitive processes that give rise to decision phenomena constitutes the beginning of that replacement paradigm. Models grounded in basic perceptual, attentional, memory, and aggregation processes have begun to proliferate. The development of this new approach closely aligns with Kuhn's notion of paradigm shift, suggesting that this is a particularly generative and revolutionary time to be studying decision science.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Anderson MC, Bjork RA, Bjork EL. 1994. Remembering can cause forgetting: retrieval dynamics in long-term memory. J. Exp. Psychol.: Learn. Mem. Cogn. 20:1063–87 [Google Scholar]
  2. Appelt KC, Hardisty DJ, Weber EU. 2011. Asymmetric discounting of gains and losses: a query theory account. J. Risk Uncertain. 43:2107–26 [Google Scholar]
  3. Bernoulli D. 1738. Specimen theoriae novae de mensura sortis. Comment. Acad. Sci. St. Petersburg 5:175–92 [Google Scholar]
  4. Bhatia S. 2013. Associations and the accumulation of preference. Psychol. Rev. 120:3522–43 [Google Scholar]
  5. Birnbaum MH. 1972. Morality judgments: tests of an averaging model. J. Exp. Psychol. 93:35–42 [Google Scholar]
  6. Bogacz R, Usher M, Zhang J, McClelland JL. 2007. Extending a biologically inspired model of choice: multi-alternatives, nonlinearity and value-based multidimensional choice. Philos. Trans. R. Soc. B 362:1655–70 [Google Scholar]
  7. Busemeyer JR, Bruza PD. 2012. Quantum Models of Cognition and Decision Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  8. Busemeyer JR, Diederich A. 2002. Survey of decision field theory. Math. Soc. Sci. 43:345–70 [Google Scholar]
  9. Busemeyer JR, Jessup RK, Johnson JG, Townsend JT. 2006a. Building bridges between neural models and complex human decision making behaviour. Neural Netw. 19:1047–58 [Google Scholar]
  10. Busemeyer JR, Matthew M, Wang ZA. 2006b. Quantum game theory explanation of disjunction effects. Proc. 28th Annu. Conf. Cogn. Sci. Soc.131–35 Mahwah, NJ: Erlbaum [Google Scholar]
  11. Busemeyer JR, Townsend JT. 1993. Decision field theory: a dynamic-cognitive approach to decision making in an uncertain environment. Psychol. Rev. 100:432–59 [Google Scholar]
  12. Busemeyer JR, Townsend JT, Diederich A, Barkan R. 2005. Contrast effects of loss aversion? Comment on Usher and McClelland (2004). Psychol. Rev. 112:1253–55 [Google Scholar]
  13. Busemeyer J, Wang Z. 2010. Quantum probability applied to the social and behavioral sciences. Proc. First Interdiscip. Chess Interact. Conf.115–25 Singapore: World Sci. Publ. [Google Scholar]
  14. Busemeyer JR, Wang Z, Townsend JT. 2006c. Quantum dynamics of human decision-making. J. Math. Psychol. 50:220–41 [Google Scholar]
  15. Chew SH, MacCrimmon KR. 1979. Alpha-nu choice theory: a generalization of expected utility theory Work. Pap. 669, Univ. Br. Columbia, Vancouver [Google Scholar]
  16. Diederich A. 1997. Dynamic stochastic models for decision making under time constraints. J. Math. Psychol. 41:3260–74 [Google Scholar]
  17. Dougherty MR, Gettys CF, Ogden EE. 1999. MINERVA-DM: a memory processes model for judgments of likelihood. Psychol. Rev. 106:180–209 [Google Scholar]
  18. Dufau S, Grainger J, Ziegler JC. 2012. How to say “no” to a nonword: a leaky competing accumulator model of lexical decision. J. Exp. Psychol.: Learn. Mem. Cogn. 38:41117–28 [Google Scholar]
  19. Fishburn PC. 1982. The Foundations of Expected Utility. Theory and Decision Library 31 Dordrecht, Neth: Reidel [Google Scholar]
  20. Freedman SA, Foster KI. 1985. The psychological status of overgenerated sentences. Cognition 19:101–31 [Google Scholar]
  21. Gao J, Tortell R, McClelland JL. 2011. Dynamic integration of reward and stimulus information in decision making. PLOS ONE 6:3e16749 [Google Scholar]
  22. Gigerenzer G, Gaissmaier W. 2011. Heuristic decision making. Annu. Rev. Psychol. 62:451–82 [Google Scholar]
  23. Gigerenzer G, Todd P. The ABC Research Group 1999. Simple Heuristics That Make Us Smart New York: Oxford Univ. Press [Google Scholar]
  24. Glöckner A, Betsch T. 2008. Modeling option and strategy choices with connectionist networks: towards an integrative model of automatic and deliberate decision making. Judgm. Decis. Mak. 3:215–28 [Google Scholar]
  25. González-Vallejo C. 2002. Making trade-offs: a probabilistic and context-sensitive model of choice behavior. Psychol. Rev. 109137–55 [Google Scholar]
  26. Griffiths TL, Kemp C, Tenenbaum JB. 2008. Bayesian models of cognition. The Cambridge Handbook of Computational Psychology R Sun 59–100 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  27. Guo FY, Holyoak KJ, Gray WD, Schunn CD. 2002. Understanding similarity in choice behavior: a connectionist model. Proc. 24th Annu. Conf. Cogn. Sci. Soc.393–98 Mahwah, NJ: Erlbaum [Google Scholar]
  28. Hagen EH, Chater N, Gallistel CR, Houston A, Kacelnik A. et al. 2012. Decision making: What can evolution do for us?. Evolution and the Mechanisms of Decision Making P Hammerstein, J Stevens 97–126 Cambridge, MA: MIT Press [Google Scholar]
  29. Hagmayer Y, Sloman SA. 2009. Decision makers conceive of their choices as interventions. J. Exp. Psychol.: Gen. 138:22–38 [Google Scholar]
  30. Hardisty DJ, Johnson EJ, Weber EU. 2010. A dirty word or a dirty world? Attribute framing, political affiliation, and query theory. Psychol. Sci. 21:186–92 [Google Scholar]
  31. Hintzman DL. 1984. Minerva 2: a simulation model of human memory. Behav. Res. Methods Instrum. Comput. 16:96–101 [Google Scholar]
  32. Huang K, Sen S, Szidarovszky F. 2012. Connections among decision field theory models of cognition. J. Math. Psychol. 56:5287–96 [Google Scholar]
  33. Huber J, Payne J, Puto C. 1982. Adding asymmetrically dominated alternatives: violations of regularity and the similarity hypothesis. J. Consum. Res. 9:90–98 [Google Scholar]
  34. Janis IL, Mann L. 1977. Decision Making: A Psychological Analysis of Conflict, Choice, and Commitment New York: Free Press [Google Scholar]
  35. Johnson EJ, Häubl G, Keinan A. 2007. Aspects of endowment: a query theory of value construction. J. Exp. Psychol.: Learn. Mem. Cogn. 33:461–74 [Google Scholar]
  36. Johnson JG, Busemeyer JR. 2005. A dynamic, stochastic, computational model of preference reversal phenomena. Psychol. Rev. 112:4841–61 [Google Scholar]
  37. Kahneman D, Tversky A. 1979. Prospect theory: an analysis of decision under risk. Econometrica 47:263–92 [Google Scholar]
  38. Keeney RL, Raiffa H. 1976. Decisions with Multiple Objectives: Preferences and Value Tradeoffs New York: Wiley [Google Scholar]
  39. Khemlani S, Oppenheimer DM. 2011. When one model casts doubt on another: a levels-of-analysis approach to causal discounting. Psychol. Bull. 137:195–210 [Google Scholar]
  40. Krajbich I, Armel C, Rangel A. 2010. Visual fixations and the computation and comparison of value in simple choice. Nat. Neurosci. 13:1292–98 [Google Scholar]
  41. Krajbich I, Lu D, Camerer C, Rangel A. 2012. The attentional drift-diffusion model extends to simple purchasing decisions. Front. Psychol. 3:1931–18 [Google Scholar]
  42. Krajbich I, Rangel A. 2011. Multialternative drift-diffusion model predicts the relationship between visual fixations and choice in value-based decisions. Proc. Natl. Acad. Sci. USA 108:3313852–57 [Google Scholar]
  43. Kuhn TS. 1962. The Structure of Scientific Revolutions Chicago: Univ. Chicago Press, 3rd ed.. [Google Scholar]
  44. Lawson RM. 2004. Science in the Ancient World: An Encyclopedia. Santa Barbara, CA: ABC-CLIO [Google Scholar]
  45. Lee MD. 2006. A hierarchical Bayesian model of human decision-making on an optimal stopping problem. Cogn. Sci. 30:555–80 [Google Scholar]
  46. Lee S, Son Y-J, Jin J. 2008. Decision field theory extensions for behavior modeling in dynamic environment using Bayesian belief network. J. Inf. Sci.: Int. J. 10:1782297–314 [Google Scholar]
  47. Lewin K. 1935. A Dynamic Theory of Personality. New York: McGraw-Hill [Google Scholar]
  48. Loomes G, Sugden R. 1982. Regret theory: an alternative theory of rational choice under uncertainty. Econ. J. 92:805–24 [Google Scholar]
  49. Machina MJ. 1982. “Expected utility” analysis without the independence axiom. Econometrica 50:277–323 [Google Scholar]
  50. Mazurek ME, Roitman JD, Ditterich J, Shadlen MN. 2003. A role for neural integrators in perceptual decision making. Cereb. Cortex 13:1257–69 [Google Scholar]
  51. Mellers BA, Biagini K. 1994. Similarity and choice. Psychol. Rev. 101:505–18 [Google Scholar]
  52. Milosavljevic M, Malmaud J, Huth A, Koch C, Rangel A. 2010. The drift diffusion model can account for the accuracy and reaction time of value-based choices under high and low time pressure. Judgm. Decis. Mak. 5:437–49 [Google Scholar]
  53. Olivola CY, Sagara N. 2009. Distributions of observed death tolls govern sensitivity to human fatalities. Proc. Natl. Acad. Sci. USA 106:22151–56 [Google Scholar]
  54. Pearl J. 2000. Causality: Models, Reasoning and Inference Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  55. Pettibone JC. 2012. Testing the effect of time pressure on asymmetric dominance and compromise decoys in choice. Judgm. Decis. Mak. 7:513–23 [Google Scholar]
  56. Poggio T, Gamble EB, Little JJ. 1988. Parallel integration of visual modules. Science 242:436–40 [Google Scholar]
  57. Quiggin J. 1982. A theory of anticipated utility. J. Econ. Behav. Organ. 3:4323–43 [Google Scholar]
  58. Rangel A, Hare T. 2010. Neural computations associated with goal-directed choice. Curr. Opin. Neurobiol. 20:262–70 [Google Scholar]
  59. Roe R, Busemeyer JR, Townsend JT. 2001. Multialternative decision field theory: a dynamic connectionist model of decision-making. Psychol. Rev. 108:370–92 [Google Scholar]
  60. Saari DG. 1994. Geometry of Voting Berlin: Springer [Google Scholar]
  61. Savage LJ. 1954. The Foundations of Statistics New York: Wiley [Google Scholar]
  62. Schneider AS, Oppenheimer DM, Detre GJ. 2007. Application of voting geometry to multialternative choice. Proc. 29th Annu. Meet. Cogn. Sci. Soc.635–40 Mahwah, NJ: Erlbaum http://csjarchive.cogsci.rpi.edu/Proceedings/2007/docs/p635.pdf [Google Scholar]
  63. Shah AK, Oppenheimer DM. 2008. Heuristics made easy: an effort-reduction framework. Psychol. Bull. 134:207–22 [Google Scholar]
  64. Simon D, Krawczyk DC, Holyoak KJ. 2004a. Construction of preferences by constraint satisfaction. Psychol. Sci. 15:331–36 [Google Scholar]
  65. Simon D, Snow CJ, Read SJ. 2004b. The redux of cognitive consistency theories: evidence judgments by constraint satisfaction. J. Personal. Soc. Psychol. 86:814–37 [Google Scholar]
  66. Simonson I. 1989. Choice based on reasons: the case of attraction and compromise effects. J. Consum. Res. 16:2158–74 [Google Scholar]
  67. Soltani A, de Martino B, Camerer CF. 2012. A range-normalization model of context-dependent choice: a new model and evidence. PLOS Comput. Biol. 8:e1002607 [Google Scholar]
  68. Stewart N, Chater N, Brown GDA. 2006. Decision by sampling. Cogn. Psychol. 53:1–26 [Google Scholar]
  69. Svenson O. 1992. Differentiation and consolidation theory of human decision making: a frame of reference for the study of pre- and post-decision processes. Acta Psychol. 80:143–68 [Google Scholar]
  70. Svenson O, Edland A. 1987. Change of preferences under time pressure: choices and judgments. Scand. J. Psychol. 29:322–330 [Google Scholar]
  71. Thagard PR. 1989. Explanatory coherence. Behav. Brain Sci. 12:435–502 [Google Scholar]
  72. Thaler RH. 1999. Mental accounting matters. J. Behav. Decis. Mak. 12:3183–206 [Google Scholar]
  73. Thaler RH, Johnson EJ. 1990. Gambling with the house money and trying to break even: the effects of prior outcomes on risky choice. Manag. Sci. 36:643–60 [Google Scholar]
  74. Ting H, Wallsten TS. 2011. A query theory account of the effect of memory retrieval on the sunk cost bias. Psychon. Bull. Rev. 18:767–73 [Google Scholar]
  75. Trueblood JS, Brown SD, Heathcote A. 2014. The multiattribute linear ballistic accumulator model of context effects in multialternative choice. Psychol. Rev. 121:179–205 [Google Scholar]
  76. Tsetsos K, Usher M, McClelland JL. 2011. Testing multi-alternative decision models with non-stationary evidence. Front. Neurosci. 5:63 [Google Scholar]
  77. Tversky A. 1972. Elimination by aspects: a theory of choice. Psychol. Rev. 79:281–99 [Google Scholar]
  78. Tversky A, Kahneman D. 1974. Decisions under uncertainty: heuristics and biases. Science 185:1124–31 [Google Scholar]
  79. Tversky A, Kahneman D. 1992. Advances in prospect theory: cumulative representation of uncertainty. J. Risk Uncertain. 5:297–323 [Google Scholar]
  80. Ungemach C, Stewart N, Reimers S. 2011. How incidental values from our environment affect decisions about money, risk, and delay. Psychol. Sci. 22:253–60 [Google Scholar]
  81. Usher M, McClelland JL. 2001. The time course of perceptual choice: the leaky, competing accumulator model. Psychol. Rev. 108:3550–92 [Google Scholar]
  82. Usher M, McClelland JL. 2004. Loss aversion and inhibition in dynamical models of multialternative choice. Psychol. Rev. 111:3757–69 [Google Scholar]
  83. Von Neumann J, Morgenstern O. 1944. Theory of Games and Economic Behavior Princeton, NJ: Princeton Univ. Press [Google Scholar]
  84. Wallsten TS. 1983. The theoretical status of judgmental heuristics. Decision Making Under Uncertainty RW Scholz 21–38 Amsterdam: North-Holland Publ. Co. [Google Scholar]
  85. Weber EU, Johnson EJ, Milch KF, Chang H, Brodscholl JC, Goldstein DG. 2007. Asymmetrical discounting in intertemporal choice: a query-theory account. Psychol. Sci. 18:516–23 [Google Scholar]
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error