1932

Abstract

The decisions we make are shaped by a lifetime of learning. Past experience guides the way that we encode information in neural systems for perception and valuation, and determines the information we retrieve when making decisions. Distinct literatures have discussed how lifelong learning and local context shape decisions made about sensory signals, propositional information, or economic prospects. Here, we build bridges between these literatures, arguing for common principles of adaptive rationality in perception, cognition, and economic choice. We discuss how a single common framework, based on normative principles of efficient coding and Bayesian inference, can help us understand a myriad of human decision biases, including sensory illusions, adaptive aftereffects, choice history biases, central tendency effects, anchoring effects, contrast effects, framing effects, congruency effects, reference-dependent valuation, nonlinear utility functions, and discretization heuristics. We describe a simple computational framework for explaining these phenomena.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-psych-020821-104057
2022-01-04
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/psych/73/1/annurev-psych-020821-104057.html?itemId=/content/journals/10.1146/annurev-psych-020821-104057&mimeType=html&fmt=ahah

Literature Cited

  1. Abrahamyan A, Silva LL, Dakin SC, Carandini M, Gardner JL 2016. Adaptable history biases in human perceptual decisions. PNAS 113:25E3548–57
    [Google Scholar]
  2. Akaishi R, Umeda K, Nagase A, Sakai K 2014. Autonomous mechanism of internal choice estimate underlies decision inertia. Neuron 81:1195–206
    [Google Scholar]
  3. Akrami A, Kopec CD, Diamond ME, Brody CD 2018. Posterior parietal cortex represents sensory history and mediates its effects on behaviour. Nature 554:7692368–72
    [Google Scholar]
  4. Albright TD. 2012. On the perception of probable things: neural substrates of associative memory, imagery, and perception. Neuron 74:2227–45
    [Google Scholar]
  5. Appelle S. 1972. Perception and discrimination as a function of stimulus orientation: the “oblique effect” in man and animals. Psychol. Bull. 78:4266–78
    [Google Scholar]
  6. Arieli D, Loewenstein D, Prelec D 2003. Coherent arbitrariness: stable demand curves without stable preferences. Q. J. Econ. 118:73–105
    [Google Scholar]
  7. Attneave F. 1954. Some informational aspects of visual perception. Psychol. Rev. 61:3183–93
    [Google Scholar]
  8. Barlow HB. 1961. Possible principles underlying the transformation of sensory messages. Sensory Communication WA Rosenblith 217–34 Cambridge, MA: MIT Press
    [Google Scholar]
  9. Barlow HB, Hill RM. 1963. Evidence for a physiological explanation of the waterfall phenomenon and figural after-effects. Nature 200:1345–47
    [Google Scholar]
  10. Basten U, Biele G, Heekeren HR, Fiebach CJ. 2010. How the brain integrates costs and benefits during decision making. PNAS 107:5021767–72
    [Google Scholar]
  11. Benford F. 1938. The law of anomalous numbers. Proc. Am. Philos. Soc. 78:4551–72
    [Google Scholar]
  12. Berkes P, Orban G, Lengyel M, Fiser J. 2011. Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science 331:601383–87
    [Google Scholar]
  13. Bhargava S, Fisman R. 2014. Contrast effects in sequential decisions: evidence from speed dating. Rev. Econ. Stat. 96:3444–57
    [Google Scholar]
  14. Bhui R, Gershman SJ. 2018. Decision by sampling implements efficient coding of psychoeconomic functions. Psychol. Rev. 125:6985–1001
    [Google Scholar]
  15. Blakemore C, Carpenter RHS, Georgeson MA. 1970. Lateral inhibition between orientation detectors in the human visual system. Nature 228:526637–39
    [Google Scholar]
  16. Bogacz R. 2007. Optimal decision-making theories: linking neurobiology with behaviour. Trends Cogn. Sci. 11:3118–25
    [Google Scholar]
  17. Botvinick MM, Braver TS, Barch DM, Carter CS, Cohen JD. 2001. Conflict monitoring and cognitive control. Psychol. Rev. 108:3624–52
    [Google Scholar]
  18. Bowers JS, Davis CJ. 2012. Bayesian just-so stories in psychology and neuroscience. Psychol. Bull. 138:3389–414
    [Google Scholar]
  19. Britten KH, Shadlen MN, Newsome WT, Movshon JA. 1992. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J. Neurosci. 12:124745–65
    [Google Scholar]
  20. Busemeyer JR, Gluth S, Rieskamp J, Turner BM 2019. Cognitive and neural bases of multi-attribute, multi-alternative, value-based decisions. Trends Cogn. Sci. 23:3251–63
    [Google Scholar]
  21. Caraco T. 1981. Energy budgets, risk and foraging preferences in dark-eyed juncos (Junco hyemalis). Behav. Ecol. Sociobiol. 8:213–17
    [Google Scholar]
  22. Carandini M, Ferster D. 1997. A tonic hyperpolarization underlying contrast adaptation in cat visual cortex. Science 276:5314949–52
    [Google Scholar]
  23. Carandini M, Heeger DJ. 2012. Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13:151–62
    [Google Scholar]
  24. Chau BKH, Kolling N, Hunt LT, Walton ME, Rushworth MFS 2014. A neural mechanism underlying failure of optimal choice with multiple alternatives. Nat. Neurosci. 17:3463–70
    [Google Scholar]
  25. Cheadle S, Wyart V, Tsetsos K, Myers N, de Gardelle V et al. 2014. Adaptive gain control during human perceptual choice. Neuron 81:61429–41
    [Google Scholar]
  26. Chopin A, Mamassian P. 2012. Predictive properties of visual adaptation. Curr. Biol. 22:7622–26
    [Google Scholar]
  27. Christian B. 2020. The Alignment Problem: Machine Learning and Human Values New York: Norton
    [Google Scholar]
  28. Clifford CWG, Wenderoth P, Spehar B. 2000. A functional angle on some after-effects in cortical vision. Proc. R. Soc. B 267:14541705–10
    [Google Scholar]
  29. Cox KM, Kable JW. 2014. BOLD subjective value signals exhibit robust range adaptation. J. Neurosci. 34:4916533–43
    [Google Scholar]
  30. Dasgupta I, Gershman SJ. 2021. Memory as a computational resource. Trends Cogn. Sci. 25:3240–51
    [Google Scholar]
  31. Daw ND, Niv Y, Dayan P. 2005. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat. Neurosci. 8:121704–11
    [Google Scholar]
  32. de Gardelle V, Kouider S, Sackur J 2010. An oblique illusion modulated by visibility: non-monotonic sensory integration in orientation processing. J. Vis. 10:106
    [Google Scholar]
  33. de Gardelle V, Summerfield C. 2011. Robust averaging during perceptual judgment. PNAS 108:3213341–46
    [Google Scholar]
  34. Dehaene S. 2003. The neural basis of the Weber-Fechner law: a logarithmic mental number line. Trends Cogn. Sci. 7:4145–47
    [Google Scholar]
  35. Dragoi V, Rivadulla C, Sur M. 2001. Foci of orientation plasticity in visual cortex. Nature 411:683380–86
    [Google Scholar]
  36. Drugowitsch J, Wyart V, Devauchelle AD, Koechlin E. 2016. Computational precision of mental inference as critical source of human choice suboptimality. Neuron 92:61398–411
    [Google Scholar]
  37. Dumbalska T, Li V, Tsetsos K, Summerfield C 2020. A map of decoy influence in human multialternative choice. PNAS 117:4025169–78
    [Google Scholar]
  38. Eriksen BA, Eriksen CW. 1974. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept. Psychophys. 16:1143–49
    [Google Scholar]
  39. Feldman NH, Griffiths TL, Morgan JL. 2009. The influence of categories on perception: explaining the perceptual magnet effect as optimal statistical inference. Psychol. Rev. 116:4752–82
    [Google Scholar]
  40. Fischer J, Whitney D. 2014. Serial dependence in visual perception. Nat. Neurosci. 17:5738–43
    [Google Scholar]
  41. Fleming SM, Thomas CL, Dolan RJ. 2010. Overcoming status quo bias in the human brain. PNAS 107:136005–9
    [Google Scholar]
  42. Franconeri SL, Alvarez GA, Cavanagh P. 2013. Flexible cognitive resources: competitive content maps for attention and memory. Trends Cogn. Sci. 17:3134–41
    [Google Scholar]
  43. Frankle J, Carbin M. 2019. The lottery ticket hypothesis: finding sparse, trainable neural networks. arXiv:1803.03635 [cs]
  44. Fritsche M, Spaak E, de Lange FP 2020. A Bayesian and efficient observer model explains concurrent attractive and repulsive history biases in visual perception. eLife 9:e55389
    [Google Scholar]
  45. Furmanski CS, Engel SA. 2000. An oblique effect in human primary visual cortex. Nat. Neurosci. 3:6535–36
    [Google Scholar]
  46. Geisler WS. 2008. Visual perception and the statistical properties of natural scenes. Annu. Rev. Psychol. 59:167–92
    [Google Scholar]
  47. Geisler WS, Ringach D. 2009. Natural systems analysis. Vis. Neurosci. 26:11–3
    [Google Scholar]
  48. Gershman SJ, Horvitz EJ, Tenenbaum JB. 2015. Computational rationality: a converging paradigm for intelligence in brains, minds, and machines. Science 349:6245273–78
    [Google Scholar]
  49. Gigerenzer G, Brighton H. 2009. Homo heuristicus: why biased minds make better inferences. Top. Cogn. Sci. 1:1107–43
    [Google Scholar]
  50. Gigerenzer G, Gaissmaier W. 2011. Heuristic decision making. Annu. Rev. Psychol. 62:451–82
    [Google Scholar]
  51. Girshick AR, Landy MS, Simoncelli EP. 2011. Cardinal rules: Visual orientation perception reflects knowledge of environmental statistics. Nat. Neurosci. 14:7926–32
    [Google Scholar]
  52. Haberman J, Whitney D. 2010. The visual system discounts emotional deviants when extracting average expression. Atten. Percept. Psychophys. 72:71825–38
    [Google Scholar]
  53. Hanks TD, Summerfield C. 2017. Perceptual decision making in rodents, monkeys, and humans. Neuron 93:115–31
    [Google Scholar]
  54. Heng JA, Woodford M, Polania R 2020. Efficient sampling and noisy decisions. eLife 9:e54962
    [Google Scholar]
  55. Hollingworth HL. 1910. The central tendency of judgement. J. Philos. Psychol. Sci. Methods 7:461–69
    [Google Scholar]
  56. Jazayeri M, Movshon JA. 2007. A new perceptual illusion reveals mechanisms of sensory decoding. Nature 446:7138912–15
    [Google Scholar]
  57. Jazayeri M, Shadlen MN. 2010. Temporal context calibrates interval timing. Nat. Neurosci. 13:81020–26
    [Google Scholar]
  58. Jones M, Love BC. 2011. Bayesian fundamentalism or enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition. Behav. Brain Sci. 34:4169–88; discussion 188–231
    [Google Scholar]
  59. Juechems K, Balaguer J, Spitzer B, Summerfield C. 2021. Optimal utility and probability functions for agents with finite computational precision. PNAS 118:2e2002232118
    [Google Scholar]
  60. Juechems K, Summerfield C. 2019. Where does value come from?. Trends Cogn. Sci. 23:10836–50
    [Google Scholar]
  61. Juslin P, Olsson H. 1997. Thurstonian and Brunswikian origins of uncertainty in judgment: a sampling model of confidence in sensory discrimination. Psychol. Rev. 104:2344–66
    [Google Scholar]
  62. Kahneman D. 2012. Thinking, Fast and Slow London: Penguin
    [Google Scholar]
  63. Kahneman D, Slovic P, Tversky A. 1982. Judgment Under Uncertainty: Heuristics and Biases New York: Cambridge Univ. Press
    [Google Scholar]
  64. Kahneman D, Tversky A. 1979. Prospect Theory: an analysis of decision under risk. Econometrica 47:226392
    [Google Scholar]
  65. Kaufman EL, Lord MW, Reese TW, Volkmann J 1949. The discrimination of visual number. Am. J. Psychol. 62:4498–525
    [Google Scholar]
  66. Kersten D, Mamassian P, Yuille A. 2004. Object perception as Bayesian inference. Annu. Rev. Psychol. 55:271–304
    [Google Scholar]
  67. Khaw MW, Li Z, Woodford M 2018. Cognitive imprecision and small-stakes risk aversion NBER Work. Pap. 24978
    [Google Scholar]
  68. Kiani R, Hanks TD, Shadlen MN. 2008. Bounded integration in parietal cortex underlies decisions even when viewing duration is dictated by the environment. J. Neurosci. 28:123017–29
    [Google Scholar]
  69. Kingdom FAA, Yoonessi A, Gheorghiu E 2007. The leaning tower illusion: a new illusion of perspective. Perception 36:3475–77
    [Google Scholar]
  70. Knudsen E, Wallis J. 2021. Hippocampal neurons construct a map of an abstract value space. Cell 184:184640–50.e10
    [Google Scholar]
  71. Kohn A. 2007. Visual adaptation: physiology, mechanisms, and functional benefits. J. Neurophysiol. 97:53155–64
    [Google Scholar]
  72. Kohn A, Movshon JA. 2004. Adaptation changes the direction tuning of macaque MT neurons. Nat. Neurosci. 7:7764–72
    [Google Scholar]
  73. Kok P, Turk-Browne NB. 2018. Associative prediction of visual shape in the hippocampus. J. Neurosci. 38:316888–99
    [Google Scholar]
  74. Kolling N, Wittmann M, Rushworth MFS. 2014. Multiple neural mechanisms of decision making and their competition under changing risk pressure. Neuron 81:51190–202
    [Google Scholar]
  75. Landry P, Webb R. 2021. Pairwise normalization: a neuroeconomic theory of multi-attribute choice. J. Econ. Theory 193:105221
    [Google Scholar]
  76. Lange RD, Chattoraj A, Beck JM, Yates JL, Haefner RM. 2019. A confirmation bias in perceptual decision-making due to hierarchical approximate inference. bioRxiv 440321. https://doi.org/10.1101/440321
    [Crossref]
  77. Laughlin S. 1981. A simple coding procedure enhances a neuron's information capacity. Z. Naturforschung. 36:9/10910–12
    [Google Scholar]
  78. Lebreton M, Abitbol R, Daunizeau J, Pessiglione M. 2015. Automatic integration of confidence in the brain valuation signal. Nat. Neurosci. 18:81159–67
    [Google Scholar]
  79. Li V, Herce Castanon S, Solomon JA, Vandormael H, Summerfield C. 2017. Robust averaging protects decisions from noise in neural computations. PLOS Comput. Biol. 13:8e1005723
    [Google Scholar]
  80. Li V, Michael E, Balaguer J, Herce Castanon S, Summerfield C 2018. Gain control explains the effect of distraction in human perceptual, cognitive, and economic decision making. PNAS 115:38E8825–34
    [Google Scholar]
  81. Lichtenstein S, Slovic P 2006. The Construction of Preference Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  82. Linsker R. 1988. Self-organization in a perceptual network. Computer 21:3105–17
    [Google Scholar]
  83. Louie K, Glimcher PW 2012. Efficient coding and the neural representation of value. Ann. N. Y. Acad. Sci. 1251:13–32
    [Google Scholar]
  84. Louie K, Grattan LE, Glimcher PW. 2011. Reward value-based gain control: divisive normalization in parietal cortex. J. Neurosci. 31:2910627–39
    [Google Scholar]
  85. Louie K, Khaw MW, Glimcher PW. 2013. Normalization is a general neural mechanism for context-dependent decision making. PNAS 110:156139–44
    [Google Scholar]
  86. Luce RD. 1959. Individual Choice Behavior: A Theoretical Analysis New York: Wiley
    [Google Scholar]
  87. Macknik SL, Livingstone MS. 1998. Neuronal correlates of visibility and invisibility in the primate visual system. Nat. Neurosci. 1:2144–49
    [Google Scholar]
  88. Mansfield RJW. 1974. Neural basis of orientation perception in primate vision. Science 186:41691133–35
    [Google Scholar]
  89. McDermott R, Fowler JH, Smirnov O. 2008. On the evolutionary origin of Prospect Theory. J. Politics 70:335–50
    [Google Scholar]
  90. McGrayne SB. 2011. The Theory That Would Not Die: How Bayes’ Rule Cracked the Enigma Code, Hunted Down Russian Submarines, and Emerged Triumphant from Two Centuries of Controversy New Haven, CT: Yale Univ. Press
    [Google Scholar]
  91. Michael E, de Gardelle V, Nevado-Holgado A, Summerfield C. 2015. Unreliable evidence: 2 sources of uncertainty during perceptual choice. Cereb. Cortex 25:4937–47
    [Google Scholar]
  92. Miyashita Y. 1988. Neuronal correlate of visual associative long-term memory in the primate temporal cortex. Nature 335:6193817–20
    [Google Scholar]
  93. Nickerson RS. 1998. Confirmation bias: a ubiquitous phenomenon in many guises. Rev. Gen. Psychol. 2:175–220
    [Google Scholar]
  94. Nieder A, Dehaene S. 2009. Representation of number in the brain. Annu. Rev. Neurosci. 32:185–208
    [Google Scholar]
  95. Oaksford M, Chater N. 1994. A rational analysis of the selection task as optimal data selection. Psychol. Rev. 101:608–31
    [Google Scholar]
  96. Oaksford M, Chater N. 2003. Optimal data selection: revision, review, and reevaluation. Psychon. Bull. Rev. 10:2289–318
    [Google Scholar]
  97. Oaksford M, Chater N. 2009. Précis of Bayesian rationality: the probabilistic approach to human reasoning. Behav. Brain Sci. 32:169–84; discussion 85–120
    [Google Scholar]
  98. Padoa-Schioppa C. 2009. Range-adapting representation of economic value in the orbitofrontal cortex. J. Neurosci. 29:4414004–14
    [Google Scholar]
  99. Parpart P, Jones M, Love BC. 2018. Heuristics as Bayesian inference under extreme priors. Cogn. Psychol. 102:127–44
    [Google Scholar]
  100. Pepitone A, DiNubile M. 1976. Contrast effects in judgments of crime severity and the punishment of criminal violators. J. Personal. Soc. Psychol. 33:4448–59
    [Google Scholar]
  101. Petzschner FH, Glasauer S, Stephan KE 2015. A Bayesian perspective on magnitude estimation. Trends Cogn. Sci. 19:5285–93
    [Google Scholar]
  102. Polanía R, Woodford M, Ruff CC. 2019. Efficient coding of subjective value. Nat. Neurosci. 22:134–42
    [Google Scholar]
  103. Polat U, Sagi D. 1994. Spatial interactions in human vision: from near to far via experience-dependent cascades of connections. PNAS 91:41206–9
    [Google Scholar]
  104. Prelec D. 1998. The probability weighting function. Econometrica 60:497–528
    [Google Scholar]
  105. Ramachandran VS. 1988. Perception of shape from shading. Nature 331:6152163–66
    [Google Scholar]
  106. Rangel A, Clithero JA. 2012. Value normalization in decision making: theory and evidence. Curr. Opin. Neurobiol. 22:6970–81
    [Google Scholar]
  107. Roe RM, Busemeyer JR, Townsend JT. 2001. Multialternative decision field theory: a dynamic connectionist model of decision making. Psychol. Rev. 108:2370–92
    [Google Scholar]
  108. Rouder JN, King JW. 2003. Flanker and negative flanker effects in letter identification. Percept. Psychophys. 65:2287–97
    [Google Scholar]
  109. Shadlen MN, Shohamy D. 2016. Decision making and sequential sampling from memory. Neuron 90:5927–39
    [Google Scholar]
  110. Shafir E. 1993. Choosing versus rejecting: why some options are both better and worse than others. Mem. Cogn. 21:4546–56
    [Google Scholar]
  111. Shepard RN, Kilpatric DW, Cunningham JP. 1975. The internal representation of numbers. Cogn. Psychol. 7:182–138
    [Google Scholar]
  112. Simon HA. 1955. A behavioral model of rational choice. Q. J. Econ. 69:199–118
    [Google Scholar]
  113. Simoncelli EP. 2003. Vision and the statistics of the visual environment. Curr. Opin. Neurobiol. 13:2144–49
    [Google Scholar]
  114. Simoncelli EP 2009. Optimal estimation in sensory systems. The Cognitive Neurosciences M Gazzaniga 525–35 Cambridge, MA: MIT Press, 4th ed..
    [Google Scholar]
  115. Simonsohn U, Loewenstein G. 2006. Mistake 37: the effect of previously encountered prices on current housing demand. Econ. J. 116:508175–99
    [Google Scholar]
  116. Sims CA. 2003. Implications of rational inattention. J. Monet. Econ. 50:665–90
    [Google Scholar]
  117. Smith SL. 1962. Angular estimation. J. Appl. Psychol. 46:4240–46
    [Google Scholar]
  118. Spitzer B, Waschke L, Summerfield C 2017. Selective overweighting of larger magnitudes during noisy numerical comparison. Nat. Hum. Behav. 1:0145
    [Google Scholar]
  119. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. 2014. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15:561929–58
    [Google Scholar]
  120. Steiner J, Stewart C. 2016. Perceiving prospects properly. Am. Econ. Rev. 106:1601–31
    [Google Scholar]
  121. Stephens DW, Krebs JR. 1986. Foraging Theory Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  122. Stevens SS. 1957. On the psychophysical law. Psychol. Rev. 64:3153–81
    [Google Scholar]
  123. Stewart N, Chater N, Brown GDA. 2006. Decision by sampling. Cogn. Psychol. 53:11–26
    [Google Scholar]
  124. Stocker AA, Simoncelli EP. 2006. Noise characteristics and prior expectations in human visual speed perception. Nat. Neurosci. 9:4578–85
    [Google Scholar]
  125. Stone LS, Thompson P. 1992. Human speed perception is contrast dependent. Vis. Res. 32:81535–49
    [Google Scholar]
  126. Stroop JR. 1935. Studies of interference in serial verbal reactions. J. Exp. Psychol. 18:6643–62
    [Google Scholar]
  127. Summerfield C, Tsetsos K. 2012. Building bridges between perceptual and economic decision-making: neural and computational mechanisms. Front. Neurosci. 6:70
    [Google Scholar]
  128. Sun J, Perona P. 1998. Where is the sun?. Nat. Neurosci. 1:3183–84
    [Google Scholar]
  129. Talluri BC, Urai AE, Bronfman ZZ, Brezis N, Tsetsos K et al. 2021. Choices change the temporal weighting of decision evidence. J. Neurophysiol. 125:41468–81
    [Google Scholar]
  130. Thaler RH. 2016. Misbehaving: The Making of Behavioural Economics London: Penguin
    [Google Scholar]
  131. Todd PM, Gigerenzer G. 2012. Ecological Rationality: Intelligence in the World Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  132. Tomassini A, Morgan MJ, Solomon JA. 2010. Orientation uncertainty reduces perceived obliquity. Vis. Res. 50:5541–47
    [Google Scholar]
  133. Tsetsos K, Chater N, Usher M. 2012a. Salience driven value integration explains decision biases and preference reversal. PNAS 109:249659–64
    [Google Scholar]
  134. Tsetsos K, Gao J, McClelland JL, Usher M. 2012b. Using time-varying evidence to test models of decision dynamics: bounded diffusion versus the leaky competing accumulator model. Front. Neurosci. 6:79
    [Google Scholar]
  135. Tsetsos K, Moran R, Moreland J, Chater N, Usher M, Summerfield C. 2016. Economic irrationality is optimal during noisy decision making. PNAS 113:113102–7
    [Google Scholar]
  136. Tversky A, Kahneman D. 1971. Belief in the law of small numbers. Psychol. Bull. 76:105–10
    [Google Scholar]
  137. Tversky A, Kahneman D. 1974. Judgment under uncertainty: heuristics and biases. Science 185:41571124–31
    [Google Scholar]
  138. Tversky A, Kahneman D. 1981. The framing of decisions and the psychology of choice. Science 211:4481453–58
    [Google Scholar]
  139. Urai AE, de Gee JW, Tsetsos K, Donner TH 2019. Choice history biases subsequent evidence accumulation. eLife 8:e46331
    [Google Scholar]
  140. Usher M, Tsetsos K, Glickman M, Chater N 2019. Selective integration: an attentional theory of choice biases and adaptive choice. Curr. Dir. Psychol. Sci. 28:6552–59
    [Google Scholar]
  141. Vlaev I, Seymour B, Dolan RJ, Chater N. 2009. The price of pain and the value of suffering. Psychol. Sci. 20:3309–17
    [Google Scholar]
  142. Volz KG, Gigerenzer G. 2012. Cognitive processes in decisions under risk are not the same as in decisions under uncertainty. Front. Neurosci. 6:105
    [Google Scholar]
  143. von Neumann J, Morgenstern O. 1944. Theory of Games and Economic Behavior Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  144. Wason PC. 1960. On the failure to eliminate hypotheses in a conceptual task. Q. J. Exp. Psychol. 12:129–40
    [Google Scholar]
  145. Weber AI, Krishnamurthy K, Fairhall AL. 2019. Coding principles in adaptation. Annu. Rev. Vis. Sci. 5:427–49
    [Google Scholar]
  146. Wei X-X, Stocker AA. 2015. A Bayesian observer model constrained by efficient coding can explain “anti-Bayesian” percepts. Nat. Neurosci. 18:101509–17
    [Google Scholar]
  147. Wei X-X, Stocker AA. 2017. Lawful relation between perceptual bias and discriminability. PNAS 114:3810244–49
    [Google Scholar]
  148. Wolpert DH. 1996. The existence of a priori distinctions between learning algorithms. Neural Comput 8:71391–420
    [Google Scholar]
  149. Woodford M. 2012. Prospect theory as efficient perceptual distortion. Am. Econ. Rev. 102:341–46
    [Google Scholar]
  150. Woodford M. 2020. Modeling imprecision in perception, valuation, and choice. Annu. Rev. Econ. 12:579–601
    [Google Scholar]
  151. Yang T, Shadlen MN 2007. Probabilistic reasoning by neurons. Nature 447:71481075–80
    [Google Scholar]
  152. Yu A, Cohen J 2009. Sequential effects: superstition or rational behavior?. Adv. Neural Inf. Proc. Syst. 21:1873–80
    [Google Scholar]
/content/journals/10.1146/annurev-psych-020821-104057
Loading
/content/journals/10.1146/annurev-psych-020821-104057
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error