1932

Abstract

Similarity and categorization are fundamental processes in human cognition that help complex organisms make sense of the cacophony of information in their environment. These processes are critical for tasks such as recognizing objects, making decisions, and forming memories. In this review, we provide an overview of the current state of knowledge on similarity and psychological spaces, discussing the theories, methods, and empirical findings that have been generated over the years. Although the concept of similarity has important limitations, it plays a key role in cognitive modeling. The review surfaces three key themes. First, similarity and mental representations are merely two sides of the same coin, existing as a similarity-representation duality that defines a psychological space. Second, both the brain's mental representations and the study of mental representations are made possible by exploiting second-order isomorphism. Third, similarity analysis has near-universal applicability across all levels of cognition, providing a common research language.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-psych-040323-115131
2024-01-18
2024-07-17
Loading full text...

Full text loading...

/deliver/fulltext/psych/75/1/annurev-psych-040323-115131.html?itemId=/content/journals/10.1146/annurev-psych-040323-115131&mimeType=html&fmt=ahah

Literature Cited

  1. Andrew G, Arora R, Bilmes J, Livescu K. 2013. Deep canonical correlation analysis. PMLR 28:31247–55
    [Google Scholar]
  2. Ashby FG, Lee WW. 1991. Predicting similarity and categorization from identification. J. Exp. Psychol. Gen. 120:2150–72
    [Google Scholar]
  3. Bach FR, Jordan MI. 2005. A probabilistic interpretation of canonical correlation analysis Tech. Rep. 688 Dep. Stat., Univ. Calif. Berkeley:
    [Google Scholar]
  4. Badre D, Bhandari A, Keglovits H, Kikumoto A. 2021. The dimensionality of neural representations for control. Curr. Opin. Behav. Sci. 38:20–28
    [Google Scholar]
  5. Balasubramanian M, Schwartz EL. 2002. The isomap algorithm and topological stability. Science 295:55527
    [Google Scholar]
  6. Bell AJ, Sejnowski TJ. 1995. An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7:61129–59
    [Google Scholar]
  7. Bernardi S, Benna MK, Rigotti M, Munuera J, Fusi S, Salzman CD. 2020. The geometry of abstraction in the hippocampus and prefrontal cortex. Cell 183:4954–67.e21
    [Google Scholar]
  8. Bobadilla-Suarez S, Ahlheim C, Mehrotra A, Panos A, Love BC. 2020. Measures of neural similarity. Comput. Brain Behav. 3:4369–83
    [Google Scholar]
  9. Boster JS, Johnson JC. 1989. Form or function: a comparison of expert and novice judgments of similarity among fish. Am. Anthropol. 91:4866–89
    [Google Scholar]
  10. Braunlich K, Love BC. 2022. Bidirectional influences of information sampling and concept learning. Psychol. Rev. 129:2213–34
    [Google Scholar]
  11. Brown T, Mann B, Ryder N, Subbiah M, Kaplan JD et al. 2020. Language models are few-shot learners. Advances in Neural Information Processing Systems, Vol. 33 H Larochelle, M Ranzato, R Hadsell, M Balcan, H Lin 1877–901. Red Hook, NY: Curran Assoc.
    [Google Scholar]
  12. Carroll JD. 1976. Spatial, non-spatial and hybrid models for scaling. Psychometrika 41:439–63
    [Google Scholar]
  13. Carroll JD, Chang JJ. 1970. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition. Psychometrika 35:3283–319
    [Google Scholar]
  14. Carroll JD, Wish M 1974. Models and methods for three-way multidimensional scaling. Contemporary Developments in Mathematical Psychology DH Krantz, RC Atkinson, RD Luce, P Suppes 57–105. San Francisco: W.H. Freeman
    [Google Scholar]
  15. Comon P. 1994. Independent component analysis, a new concept?. Signal Process. 36:3287–314
    [Google Scholar]
  16. Cortes C, Mohri M, Rostamizadeh A. 2012. Algorithms for learning kernels based on centered alignment. J. Mach. Learn. Res. 13:1795–828
    [Google Scholar]
  17. Cristianini N, Kandola J, Elisseeff A, Shawe-Taylor J 2006. On kernel target alignment. Innovations in Machine Learning: Theory and Apllications DE Holmes, LC Jain 205–56. New York: Springer
    [Google Scholar]
  18. Cunningham JP. 1978. Free trees and bidirectional trees as representations of psychological distance. J. Math. Psychol. 17:2165–88
    [Google Scholar]
  19. Cunningham JP, Yu BM. 2014. Dimensionality reduction for large-scale neural recordings. Nat. Neurosci. 17:111500–9
    [Google Scholar]
  20. Dalal N, Triggs B. 2005. Histograms of oriented gradients for human detection. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)886–93. New York: IEEE
    [Google Scholar]
  21. Devlin J, Chang MW, Lee K, Toutanova K. 2019. BERT: pre-training of deep bidirectional transformers for language understanding. Proceedings of NAACL-HLT4171–86. Stroudsburg, PA: ACL
    [Google Scholar]
  22. Diedrichsen J, Yokoi A, Arbuckle SA. 2018. Pattern component modeling: a flexible approach for understanding the representational structure of brain activity patterns. NeuroImage 180:119–33
    [Google Scholar]
  23. Dumais ST, Furnas GW, Landauer TK, Deerwester S, Harshman R 1988. Using latent semantic analysis to improve access to textual information. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems R Grinter, T Rodden, P Aoki, E Cutrell, R Jeffries, G Olson 281–85. New York: ACM
    [Google Scholar]
  24. Ennis DM. 1988. Confusable and discriminable stimuli: comment on Nosofsky (1986) and Shepard (1986). J. Exp. Psychol. Gen. 117:4408–11
    [Google Scholar]
  25. Ennis DM, Palen JJ, Mullen K. 1988. A multidimensional stochastic theory of similarity. J. Math. Psychol. 32:4449–65
    [Google Scholar]
  26. Esteban O, Markiewicz CJ, Blair RW, Moodie CA, Isik AI et al. 2019. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16:1111–16
    [Google Scholar]
  27. Fechner GT. 1860. Elemente der Psychophysik Leipzig, Ger.: Von Breitkopf Härtel
    [Google Scholar]
  28. Fukushima K. 1980. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybernet. 36:193–202
    [Google Scholar]
  29. Gallego JA, Perich MG, Miller LE, Solla SA. 2017. Neural manifolds for the control of movement. Neuron 94:5978–84
    [Google Scholar]
  30. Goodman N. 1972. Seven strictures on similarity. Problems and Projects N Goodman 437–47. New York: Bobbs-Merrill
    [Google Scholar]
  31. Guidolin A, Desroches M, Victor JD, Purpura KP, Rodrigues S. 2022. Geometry of spiking patterns in early visual cortex: a topological data analytic approach. J. R. Soc. Interface 19:19620220677
    [Google Scholar]
  32. Hardoon DR, Szedmak S, Shawe-Taylor J. 2004. Canonical correlation analysis: an overview with application to learning methods. Neural Comput. 16:122639–64
    [Google Scholar]
  33. Hebart MN, Zheng CY, Pereira F, Baker CI. 2020. Revealing the multidimensional mental representations of natural objects underlying human similarity judgements. Nat. Hum. Behav. 4:1173–85
    [Google Scholar]
  34. Hinton GE, Zemel RS. 1993. Autoencoders, minimum description length and Helmholtz free energy. Proceedings of the 6th International Conference on Neural Information Processing Systems3–10. San Francisco: Morgan Kaufmann
    [Google Scholar]
  35. Hornsby AN, Evans T, Riefer PS, Prior R, Love BC. 2020. Conceptual organization is revealed by consumer activity patterns. Comput. Brain Behav. 3:162–73
    [Google Scholar]
  36. Hornsby AN, Love BC. 2022. Sequential consumer choice as multi-cued retrieval. Sci. Adv. 8:8eabl9754
    [Google Scholar]
  37. Hotelling H. 1936. Relations between two sets of variates. Biometrika 28:3–4321–77
    [Google Scholar]
  38. Hubel DH, Wiesel TN. 1959. Receptive fields of single neurones in the cat's striate cortex. J. Physiol. 148:3574–91
    [Google Scholar]
  39. Jacob G, Pramod R, Katti H, Arun S. 2021. Qualitative similarities and differences in visual object representations between brains and deep networks. Nat. Commun. 12:11872
    [Google Scholar]
  40. Jäkel F, Schölkopf B, Wichmann FA. 2008. Generalization and similarity in exemplar models of categorization: insights from machine learning. Psychon. Bull. Rev. 15:256–71
    [Google Scholar]
  41. Jamieson KG, Jain L, Fernandez C, Glattard NJ, Nowak R 2015. Next: a system for real-world development, evaluation, and application of active learning. Advances in Neural Information Processing Systems C Cortes, N Lawrence, D Lee, M Sugiyama, R Garnett 2656–64. Red Hook, NY: Curran Assoc.
    [Google Scholar]
  42. Johansen MK, Palmeri TJ. 2002. Are there representational shifts during category learning?. Cogn. Psychol. 45:4482–553
    [Google Scholar]
  43. Josephs EL, Hebart MN, Konkle T. 2023. Dimensions underlying human understanding of the reachable world. Cognition 234:105368
    [Google Scholar]
  44. Kaniuth P, Hebart MN. 2022. Feature-reweighted representational similarity analysis: a method for improving the fit between computational models, brains, and behavior. NeuroImage 257:119294
    [Google Scholar]
  45. Kant I. 2000 (1781). Critique of Pure Reason transl. P Guyer, AW Wood Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  46. Kingma DP, Welling M. 2013. Auto-encoding variational Bayes. arXiv:1312.6114[stat.ML]
  47. Klami A, Virtanen S, Kaski S. 2013. Bayesian canonical correlation analysis. J. Mach. Learn. Res. 14:1965–1003
    [Google Scholar]
  48. Kornblith S, Norouzi M, Lee H, Hinton G. 2019. Similarity of neural network representations revisited. PMLR 97:3519–29
    [Google Scholar]
  49. Kriegeskorte N, Mur M, Bandettini P. 2008. Representational similarity analysis—connecting the branches of systems neuroscience. Front. Syst. Neurosci. 2:4
    [Google Scholar]
  50. Krizhevsky A, Sutskever I, Hinton GE. 2017. ImageNet classification with deep convolutional neural networks. Commun. ACM 60:684–90
    [Google Scholar]
  51. Krumhansl CL. 1978. Concerning the applicability of geometric models to similarity data: the interrelationship between similarity and spatial density. Psychol. Rev. 85:5445–63
    [Google Scholar]
  52. Kruschke JK. 1992. ALCOVE: an exemplar-based connectionist model of category learning. Psychol. Rev. 99:122–44
    [Google Scholar]
  53. Kruskal JB. 1964. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29:1–27
    [Google Scholar]
  54. Kubilius J, Schrimpf M, Kar K, Rajalingham R, Hong H et al. 2019. Brain-like object recognition with high-performing shallow recurrent ANNs. Advances in Neural Information Processing Systems H Wallach, H Larochelle, A Beygelzimer, F d'Alché-Buc, E Fox, R Garnett 12805–16. San Francisco: Curran Assoc.
    [Google Scholar]
  55. Laakso A, Cottrell G. 2000. Content and cluster analysis: assessing representational similarity in neural systems. Philos. Psychol. 13:147–76
    [Google Scholar]
  56. Lamberts K. 2000. Information-accumulation theory of speeded categorization. Psychol. Rev. 107:2227–60
    [Google Scholar]
  57. Love BC, Medin DL. 1998. SUSTAIN: A model of human category learning. Proceedings of the Fifteenth National Conference on Artificial Intelligence671–76. Palo Alto, CA: AAAI
    [Google Scholar]
  58. Love BC, Medin DL, Gureckis TM. 2004. SUSTAIN: a network model of category learning. Psychol. Rev. 111:2309–32
    [Google Scholar]
  59. Lowe D. 1999. Object recognition from local scale-invariant features. Proceedings of the Seventh IEEE International Conference on Computer Vision1150–57. Washington, DC: IEEE
    [Google Scholar]
  60. Luce RD. 1959. Individual Choice Behavior: A Theoretical Analysis New York: Wiley
    [Google Scholar]
  61. Luce RD 1963. Detection and recognition. Handbook of Mathematical Psychology, Vol. 1 RD Luce, RR Bush, E Galanter 103–90. New York: Wiley
    [Google Scholar]
  62. Mach E. 1914. The Analysis of Sensations, and the Relation of the Physical to the Psychical. Chicago: Open Court Publ. Co.
    [Google Scholar]
  63. Mack ML, Love BC, Preston AR. 2016. Dynamic updating of hippocampal object representations reflects new conceptual knowledge. PNAS 113:4613203–8
    [Google Scholar]
  64. Mack ML, Love BC, Preston AR. 2018. Building concepts one episode at a time: the hippocampus and concept formation. Neurosci. Lett. 680:31–38
    [Google Scholar]
  65. Mack ML, Preston AR, Love BC. 2020. Ventromedial prefrontal cortex compression during concept learning. Nat. Commun. 11:46
    [Google Scholar]
  66. Maruyama M, Girosi F, Poggio T. 1992. A connection between GRBF and MLP. Tech. Rep. AIM-1291 Mass. Inst. Technol. Cambridge:
    [Google Scholar]
  67. McConnell RK. 1986. Method of and apparatus for pattern recognition. US Patent 4,567,610
    [Google Scholar]
  68. Medin DL, Goldstone RL, Gentner D. 1993. Respects for similarity. Psychol. Rev. 100:2254–78
    [Google Scholar]
  69. Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J 2013. Distributed representations of words and phrases and their compositionality. Advances in Neural Information Processing Systems CJ Burges, L Bottou, M Welling, Z Ghahramani, KQ Weinberger 3111–19. San Francisco: Curran Assoc.
    [Google Scholar]
  70. Morcos A, Raghu M, Bengio S 2018. Insights on representational similarity in neural networks with canonical correlation. Advances in Neural Information Processing Systems S Bengio, H Wallach, H Larochelle, K Grauman, N Cesa-Bianchi, R Garnett 5732–41. San Francisco: Curran Assoc.
    [Google Scholar]
  71. Murphy GL, Medin DL. 1985. The role of theories in conceptual coherence. Psychol. Rev. 92:3289–316
    [Google Scholar]
  72. Nakayama H, Gerkin RC, Rinberg D. 2022. A behavioral paradigm for measuring perceptual distances in mice. Cell Rep. Methods 2:6100233
    [Google Scholar]
  73. Navarro DJ, Griffiths TL. 2008. Latent features in similarity judgments: a nonparametric Bayesian approach. Neural Comput. 20:112597–628
    [Google Scholar]
  74. Nogueira R, Rodgers CC, Bruno RM, Fusi S. 2023. The geometry of cortical representations of touch in rodents. Nat. Neurosci. 26:239–50
    [Google Scholar]
  75. Nosofsky RM. 1984. Choice, similarity, and the context theory of classification. J. Exp. Psychol. Learn. Mem. Cogn. 10:1104–14
    [Google Scholar]
  76. Nosofsky RM. 1986. Attention, similarity, and the identification-categorization relationship. J. Exp. Psychol. Gen. 115:39–57
    [Google Scholar]
  77. Nosofsky RM. 1988. On exemplar-based exemplar representations: reply to Ennis (1988). J. Exp. Psychol. Gen. 117:4412–14
    [Google Scholar]
  78. Nosofsky RM. 1992. Similarity scaling and cognitive process models. Annu. Rev. Psychol. 43:25–53
    [Google Scholar]
  79. Nosofsky RM, Sanders CA, Meagher BJ, Douglas BJ. 2018. Toward the development of a feature-space representation for a complex natural category domain. Behav. Res. Methods 50:530–56
    [Google Scholar]
  80. Open AI. 2023. Gpt-4 technical report. arXiv:2303.08774[cs.CL]
  81. Peng W, Varanka T, Mostafa A, Shi H, Zhao G. 2022. Hyperbolic deep neural networks: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44:1210023–44
    [Google Scholar]
  82. Pennington J, Socher R, Manning CD. 2014. GloVe: global vectors for word representation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)1532–43. Stroudsburg, PA: ACL
    [Google Scholar]
  83. Rajalingham R, Issa EB, Bashivan P, Kar K, Schmidt K, DiCarlo JJ. 2018. Large-scale, high-resolution comparison of the core visual object recognition behavior of humans, monkeys, and state-of-the-art deep artificial neural networks. J. Neurosci. 38:337255–69
    [Google Scholar]
  84. Ratliff F. 1965. Mach Bands: Quantitative Studies on Neural Networks San Francisco: Holden-Day
    [Google Scholar]
  85. Rau MA, Mason B, Nowak R. 2016. How to model implicit knowledge? Similarity learning methods to assess perceptions of visual representations Paper presented at the 9th International Conference on Educational Data Mining Raleigh, NC: June 29–July 2
    [Google Scholar]
  86. Riesenhuber M, Poggio T. 1999. Hierarchical models of object recognition in cortex. Nat. Neurosci. 2:111019–25
    [Google Scholar]
  87. Roads BD, Love BC. 2021. Enriching ImageNet with human similarity judgments and psychological embeddings.. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)3547–57. New York: IEEE
    [Google Scholar]
  88. Roads BD, Mozer MC. 2019. Obtaining psychological embeddings through joint kernel and metric learning. Behav. Res. Methods 51:2180–93
    [Google Scholar]
  89. Roads BD, Mozer MC. 2021. Predicting the ease of human category learning using radial basis function networks. Neural Comput. 33:2376–97
    [Google Scholar]
  90. Roads BD, Xu B, Robinson JK, Tanaka JW. 2018. The easy-to-hard training advantage with real-world medical images. Cogn. Res. Princ. Implic. 3:38
    [Google Scholar]
  91. Roweis ST, Saul LK. 2000. Nonlinear dimensionality reduction by locally linear embedding. Science 290:55002323–26
    [Google Scholar]
  92. Sattath S, Tversky A. 1977. Additive similarity trees. Psychometrika 42:3319–45
    [Google Scholar]
  93. Schrimpf M, Kubilius J, Lee MJ, Ratan Murty NA, Ajemian R, DiCarlo JJ 2020. Integrative benchmarking to advance neurally mechanistic models of human intelligence. Neuron 108:3413–23
    [Google Scholar]
  94. Sexton NJ, Love BC. 2022. Reassessing hierarchical correspondences between brain and deep networks through direct interface. Sci. Adv. 8:28eabm2219
    [Google Scholar]
  95. Shepard RN. 1957. Stimulus and response generalization: a stochastic model relating generalization to distance in psychological space. Psychometrika 22:4325–45
    [Google Scholar]
  96. Shepard RN. 1958. Stimulus and response generalization: tests of a model relating generalization to distance in psychological space. J. Exp. Psychol. 55:6509–23
    [Google Scholar]
  97. Shepard RN. 1962. The analysis of proximities: multidimensional scaling with an unknown distance function. II. Psychometrika 27:3219–46
    [Google Scholar]
  98. Shepard RN. 1980. Multidimensional scaling, tree-fitting, and clustering. Science 210:390–98
    [Google Scholar]
  99. Shepard RN. 1982. Geometrical approximations to the structure of musical pitch. Psychol. Rev. 89:4305–33
    [Google Scholar]
  100. Shepard RN. 1987. Toward a universal law of generalization for psychological science. Science 237:48201317–23
    [Google Scholar]
  101. Shepard RN. 1988. Time and distance in generalization and discrimination: reply to Ennis (1988). J. Exp. Psychol. Gen. 117:4415–16
    [Google Scholar]
  102. Shepard RN, Chipman S. 1970. Second-order isomorphism of internal representations: shapes of states. Cogn. Psychol. 1:11–17
    [Google Scholar]
  103. Shepard RN, Hovland CI, Jenkins HM. 1961. Learning and memorization of classifications. Psychol. Monogr. Gen. Appl. 75:131–42
    [Google Scholar]
  104. Sievert S, Ross D, Jain L, Jamieson K, Nowak R, Mankoff R. 2017. NEXT: a system to easily connect crowdsourcing and adaptive data collection Paper presented at the 16th Python in Science Conference Austin, TX: July 10–16
    [Google Scholar]
  105. Silva V, Tenenbaum J 2002. Global versus local methods in nonlinear dimensionality reduction. In Advances in Neural Information Processing Systems 15 S Becker, S Thrun, K Obermayer 705–12 Cambridge, MA: MIT Press
    [Google Scholar]
  106. Simonyan K, Zisserman A. 2015. Very deep convolutional networks for large-scale image recognition Paper presented at the International Conference on Learning Representations San Diego, CA: May 7–9
    [Google Scholar]
  107. Smith JD, Minda JP. 1998. Prototypes in the mist: the early epochs of category learning. J. Exp. Psychol. Learn. Mem. Cogn. 24:61411–36
    [Google Scholar]
  108. Sperry RW. 1952. Neurology and the mind-brain problem. Am. Sci. 40:2291–312
    [Google Scholar]
  109. Srinivasan Shipman AC, Boster JS. 2008. Recall, similarity judgment, and identification of trees: a comparison of experts and novices. Ethos 36:2171–93
    [Google Scholar]
  110. Storrs KR, Kietzmann TC, Walther A, Mehrer J, Kriegeskorte N. 2021. Diverse deep neural networks all predict human inferior temporal cortex well, after training and fitting. J. Cogn. Neurosci. 33:102044–64
    [Google Scholar]
  111. Stringer C, Pachitariu M, Steinmetz N, Carandini M, Harris KD. 2019. High-dimensional geometry of population responses in visual cortex. Nature 571:361–65
    [Google Scholar]
  112. Tamuz O, Liu C, Belongie S, Shamir O, Kalai AT. 2011. Adaptively learning the crowd kernel. arXiv:1105.1033[cs.LG]
  113. Tenenbaum JB, de Silva V, Langford JC. 2000. A global geometric framework for nonlinear dimensionality reduction. Science 290:55002319–23
    [Google Scholar]
  114. Tenenbaum JB, Griffiths TL. 2001. Generalization, similarity, and Bayesian inference. Behav. Brain Sci. 24:4629–40
    [Google Scholar]
  115. Thompson JAF, Bengio Y, Schönwiesner M. 2019. The effect of task and training on intermediate representations in convolutional neural networks revealed with modified RV similarity analysis Paper presented at the 2019 Conference on Cognitive Computational Neuroscience Berlin, Sept:13–16
    [Google Scholar]
  116. Tversky A. 1977. Features of similarity. Psychol. Rev. 84:4327–52
    [Google Scholar]
  117. Tversky A, Gati I. 1982. Similarity, separability, and the triangle inequality. Psychol. Rev. 89:2123–54
    [Google Scholar]
  118. Tversky A, Hutchinson JW. 1986. Nearest neighbor analysis of psychological spaces. Psychol. Rev. 93:13–22
    [Google Scholar]
  119. van der Maaten L, Hinton G. 2008. Visualizing data using t-SNE. J. Mach. Learn. Res. 9:862579–605
    [Google Scholar]
  120. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L et al. 2017. Attention is all you need. Advances in Neural Information Processing Systems, Vol. 30 I Guyon, UV Luxburg, S Bengio, H Wallach, R Fergus, S Vishwanathan, R Garnett 5999–6009. San Francisco: Curran Assoc.
    [Google Scholar]
  121. Von Uexküll J. 1926. Theoretical Biology SAn Diego, CA: Harcourt, Brace & Co.
    [Google Scholar]
  122. Wah C, Horn GV, Branson S, Maji S, Perona P, Belongie S. 2014. Similarity comparisons for interactive fine-grained categorization. Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition859–66. New York: IEEE
    [Google Scholar]
  123. Wang Z, Zhang J, Feng J, Chen Z. 2014. Knowledge graph embedding by translating on hyperplanes. Proceedings of the Twenty-Eight AAAI Conference on Artificial Intelligence1112–19. Palo Alto, CA: AAAI Press
    [Google Scholar]
  124. Wilber MJ, Kwak IS, Belongie SJ. 2014. Cost-effective HITs for relative similarity comparisons. Proceedings of the Second AAAI Conference on Human Computation and Crowdsourcing227–33. Palo Alto, CA: AAAI
    [Google Scholar]
  125. Witten DM, Tibshirani RJ. 2009. Extensions of sparse canonical correlation analysis with applications to genomic data. Stat. Appl. Genet. Mol. Biol. 8:128
    [Google Scholar]
/content/journals/10.1146/annurev-psych-040323-115131
Loading
/content/journals/10.1146/annurev-psych-040323-115131
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error