1932

Abstract

Historically, the human sense of smell has been regarded as the odd stepchild of the senses, especially compared to the sensory bravado of seeing, touching, and hearing. The idea that the human olfaction has little to contribute to our experience of the world is commonplace, though with the emergence of COVID-19 there has rather been a sea change in this understanding. An ever increasing body of work has convincingly highlighted the keen capabilities of the human nose and the sophistication of the human olfactory system. Here, we provide a concise overview of the neuroscience of human olfaction spanning the last 10–15 years, with focus on the peripheral and central mechanisms that underlie how odor information is processed, packaged, parceled, predicted, and perturbed to serve odor-guided behaviors. We conclude by offering some guideposts for harnessing the next decade of olfactory research in all its shapes and forms.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-psych-042023-101155
2024-01-18
2024-10-14
Loading full text...

Full text loading...

/deliver/fulltext/psych/75/1/annurev-psych-042023-101155.html?itemId=/content/journals/10.1146/annurev-psych-042023-101155&mimeType=html&fmt=ahah

Literature Cited

  1. Adrian ED. 1942. Olfactory reactions in the brain of the hedgehog. J. Physiol. 100:4459–73
    [Google Scholar]
  2. Adrian ED. 1950. The electrical activity of the mammalian olfactory bulb. Electroencephalogr. Clin. Neurophysiol. 2:1377–88
    [Google Scholar]
  3. Allison AC. 1954. The secondary olfactory areas in the human brain. J. Anat. 88:Pt. 4481–488. 2
    [Google Scholar]
  4. Aprotosoaie AC, Luca SV, Miron A. 2016. Flavor chemistry of cocoa and cocoa products—an overview. Compr. Rev. Food Sci. Food Saf. 15:173–91
    [Google Scholar]
  5. Arshamian A, Iravani B, Majid A, Lundström JN. 2018. Respiration modulates olfactory memory consolidation in humans. J. Neurosci. 38:4810286–94
    [Google Scholar]
  6. Arzi A, Holtzman Y, Samnon P, Eshel N, Harel E, Sobel N. 2014. Olfactory aversive conditioning during sleep reduces cigarette-smoking behavior. J. Neurosci. 34:4615382–93
    [Google Scholar]
  7. Arzi A, Shedlesky L, Ben-Shaul M, Nasser K, Oksenberg A et al. 2012. Humans can learn new information during sleep. Nat. Neurosci. 15:101460–65
    [Google Scholar]
  8. Balleine BW, Ostlund SB. 2007. Still at the choice-point: action selection and initiation in instrumental conditioning. Ann. N. Y. Acad. Sci. 1104:1147–71
    [Google Scholar]
  9. Bao X, Gjorgieva E, Shanahan LK, Howard JD, Kahnt T, Gottfried JA. 2019. Grid-like neural representations support olfactory navigation of a two-dimensional odor space. Neuron 102:51066–75.e5
    [Google Scholar]
  10. Bar E, Marmelshtein A, Arzi A, Perl O, Livne E et al. 2020. Local targeted memory reactivation in human sleep. Curr. Biol. 30:81435–46.e5
    [Google Scholar]
  11. Behrens TEJ, Muller TH, Whittington JCR, Mark S, Baram AB et al. 2018. What is a cognitive map? Organizing knowledge for flexible behavior. Neuron 100:2490–509
    [Google Scholar]
  12. Bellmund JLS, Gärdenfors P, Moser EI, Doeller CF. 2018. Navigating cognition: spatial codes for human thinking. Science 362:6415eaat6766
    [Google Scholar]
  13. Bensafi M, Croy I, Phillips N, Rouby C, Sezille C et al. 2014. The effect of verbal context on olfactory neural responses. Hum. Brain Mapp. 35:3810–18
    [Google Scholar]
  14. Bensafi M, Rinck F, Schaal B, Rouby C. 2007. Verbal cues modulate hedonic perception of odors in 5-year-old children as well as in adults. Chem. Senses 32:9855–62
    [Google Scholar]
  15. Bhutani S, Howard JD, Reynolds R, Zee PC, Gottfried J, Kahnt T. 2019. Olfactory connectivity mediates sleep-dependent food choices in humans. eLife 8:e49053
    [Google Scholar]
  16. Billesbølle CB, de March CA, van der Velden WJC, Ma N, Tewari J et al. 2023. Structural basis of odorant recognition by a human odorant receptor. Nature 615:742–49
    [Google Scholar]
  17. Biskamp J, Bartos M, Sauer J-F. 2017. Organization of prefrontal network activity by respiration-related oscillations. Sci. Rep. 7:145508
    [Google Scholar]
  18. Buck LB. 2004. Olfactory receptors and odor coding in mammals. Nutr. Rev. 62:Suppl. 3S184–88
    [Google Scholar]
  19. Buck LB, Axel R. 1991. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:1175–87
    [Google Scholar]
  20. Buckner RL, Goodman J, Burock M, Rotte M, Koutstaal W et al. 1998. Functional-anatomic correlates of object priming in humans revealed by rapid presentation event-related fMRI. Neuron 20:2285–96
    [Google Scholar]
  21. Bushdid C, Magnasco MO, Vosshall LB, Keller A. 2014. Humans can discriminate more than 1 trillion olfactory stimuli. Science 343:61771370–72
    [Google Scholar]
  22. Buttery RG, Ling LC, Stern DJ. 1997. Studies on popcorn aroma and flavor volatiles. J. Agric. Food Chem. 45:3837–43
    [Google Scholar]
  23. Buzsáki G, Anastassiou CA, Koch C. 2012. The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13:6407–20
    [Google Scholar]
  24. Cain WS, Schmidt R, Wolkoff P. 2007. Olfactory detection of ozone and D-limonene: reactants in indoor spaces. Indoor Air 17:5337–47
    [Google Scholar]
  25. Carey RM, Verhagen JV, Wesson DW, Pírez N, Wachowiak M. 2009. Temporal structure of receptor neuron input to the olfactory bulb imaged in behaving rats. J. Neurophysiol. 101:21073–88
    [Google Scholar]
  26. Carmichael ST, Clugnet M-C, Price JL. 1994. Central olfactory connections in the macaque monkey. J. Comp. Neurol. 346:3403–34
    [Google Scholar]
  27. Chi VN, Müller C, Wolfenstetter T, Yanovsky Y, Draguhn A et al. 2016. Hippocampal respiration-driven rhythm distinct from theta oscillations in awake mice. J. Neurosci. 36:1162–77
    [Google Scholar]
  28. Cohen MX. 2017. Where does EEG come from and what does it mean?. Trends Neurosci. 40:4208–18
    [Google Scholar]
  29. Croy I, Drechsler E, Hamilton P, Hummel T, Olausson H. 2016. Olfactory modulation of affective touch processing—a neurophysiological investigation. NeuroImage 135:135–41
    [Google Scholar]
  30. Croy I, Nordin S, Hummel T. 2014. Olfactory disorders and quality of life—an updated review. Chem. Senses 39:3185–94
    [Google Scholar]
  31. Dikeçligil GN, Yang AI, Sanghani N, Lucas T, Chen HI et al. 2023. Piriform cortex takes sides: temporally-segregated odor representations from ipsilateral and contralateral nostrils within a single sniff. bioRxiv, Feb. 14. https://doi.org/10.1101/2023.02.14.528521
    [Crossref]
  32. Djordjevic J, Lundstrom JN, Clément F, Boyle JA, Pouliot S, Jones-Gotman M. 2008. A rose by any other name: Would it smell as sweet?. J. Neurophysiol. 99:1386–93
    [Google Scholar]
  33. Doeller CF, Barry C, Burgess N. 2010. Evidence for grid cells in a human memory network. Nature 463:7281657–61
    [Google Scholar]
  34. Dravnieks A. 1982. Odor quality: Semantically generated multidimensional profiles are stable. Science 218:4574799–801
    [Google Scholar]
  35. Dravnieks A. 1985. Atlas of Odor Character Profiles Philadelphia, PA: Am. Soc. Test. Mater.
    [Google Scholar]
  36. Dudareva N, Negre F, Nagegowda DA, Orlova I. 2006. Plant volatiles: recent advances and future perspectives. Crit. Rev. Plant Sci. 25:5417–40
    [Google Scholar]
  37. Dudareva N, Pichersky E, Gershenzon J. 2004. Biochemistry of plant volatiles. Plant Physiol. 135:41893–902
    [Google Scholar]
  38. Echevarria-Cooper SL, Zhou G, Zelano C, Pestilli F, Parrish TB, Kahnt T. 2022. Mapping the microstructure and striae of the human olfactory tract with diffusion MRI. J. Neurosci. 42:158–68
    [Google Scholar]
  39. Fontanini A, Bower JM. 2005. Variable coupling between olfactory system activity and respiration in ketamine/xylazine anesthetized rats. J. Neurophysiol. 93:63573–81
    [Google Scholar]
  40. Fontanini A, Spano P, Bower JM. 2003. Ketamine-xylazine-induced slow (<1.5 Hz) oscillations in the rat piriform (olfactory) cortex are functionally correlated with respiration. J. Neurosci. 23:227993–8001
    [Google Scholar]
  41. Fournel A, Iannilli E, Ferdenzi C, Werner A, Hummel T, Bensafi M. 2020. A methodological investigation of a flexible surface MRI coil to obtain functional signals from the human olfactory bulb. J. Neurosci. Methods 335:108624
    [Google Scholar]
  42. Freeman WJ. 1959. Distribution in time and space of prepyriform electrical activity. J. Neurophysiol. 22:6644–65
    [Google Scholar]
  43. Freeman WJ. 1979. EEG analysis gives model of neuronal template-matching mechanism for sensory search with olfactory bulb. Biol. Cybern. 35:4221–34
    [Google Scholar]
  44. Friston K. 2018. Does predictive coding have a future?. Nat. Neurosci. 21:81019–21
    [Google Scholar]
  45. Gerkin RC, Castro JB. 2015. The number of olfactory stimuli that humans can discriminate is still unknown. eLife 4:e08127
    [Google Scholar]
  46. Gordon HW, Sperry RW. 1969. Lateralization of olfactory perception in the surgically separated hemispheres of man. Neuropsychologia 7:2111–20
    [Google Scholar]
  47. Gottfried JA, Winston JS, Dolan RJ. 2006. Dissociable codes of odor quality and odorant structure in human piriform cortex. Neuron 49:3467–79
    [Google Scholar]
  48. Hafting T, Fyhn M, Molden S, Moser M-B, Moser EI. 2005. Microstructure of a spatial map in the entorhinal cortex. Nature 436:7052801–6
    [Google Scholar]
  49. Hauner KK, Howard JD, Zelano C, Gottfried JA. 2013. Stimulus-specific enhancement of fear extinction during slow-wave sleep. Nat. Neurosci. 16:111553–55
    [Google Scholar]
  50. Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P. 2001. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293:55392425–30
    [Google Scholar]
  51. Heck DH, McAfee SS, Liu Y, Babajani-Feremi A, Rezaie R et al. 2017. Breathing as a fundamental rhythm of brain function. Front. Neural Circuits. 10: https://doi.org/10.3389/fncir.2016.00115
    [Google Scholar]
  52. Heimer L. 1983. The Human Brain and Spinal Cord: Functional Neuroanatomy and Dissection Guide New York: Springer
    [Google Scholar]
  53. Herrero JL, Khuvis S, Yeagle E, Cerf M, Mehta AD. 2018. Breathing above the brain stem: volitional control and attentional modulation in humans. J. Neurophysiol. 119:1145–59
    [Google Scholar]
  54. Herz RS. 2003. The effect of verbal context on olfactory perception. J. Exp. Psychol. Gen. 132:595–606
    [Google Scholar]
  55. Howard JD, Kahnt T. 2017. Identity-specific reward representations in orbitofrontal cortex are modulated by selective devaluation. J. Neurosci. 37:102627–38
    [Google Scholar]
  56. Howard JD, Plailly J, Grueschow M, Haynes J-D, Gottfried JA. 2009. Odor quality coding and categorization in human posterior piriform cortex. Nat. Neurosci. 12:932–38
    [Google Scholar]
  57. Howard JD, Reynolds R, Smith DE, Voss JL, Schoenbaum G, Kahnt T. 2020. Targeted stimulation of human orbitofrontal networks disrupts outcome-guided behavior. Curr. Biol. 30:3490–98.e4
    [Google Scholar]
  58. Huang Y, Rao RPN. 2011. Predictive coding. WIREs Cogn. Sci. 2:5580–93
    [Google Scholar]
  59. Hudry J, Perrin F, Ryvlin P, Mauguière F, Royet J. 2003. Olfactory short-term memory and related amygdala recordings in patients with temporal lobe epilepsy. Brain 126:81851–63
    [Google Scholar]
  60. Hudry J, Ryvlin P, Royet J-P, Mauguière F. 2001. Odorants elicit evoked potentials in the human amygdala. Cereb. Cortex 11:7619–27
    [Google Scholar]
  61. Hughes JR, Andy OJ. 1979. The human amygdala. I. Electrophysiological responses to odorants. Electroencephalogr. Clin. Neurophysiol. 46:4428–43
    [Google Scholar]
  62. Hughes JR, Hendrix DE, Wetzel N. 1969. Electrophysiological studies of the olfactory bulb in man—a model for EEG investigation. Electroencephalogr. Clin. Neurophysiol. 27:7661
    [Google Scholar]
  63. Hughes JR, Hendrix DE, Wetzel N, Johnston JW. 1970. Correlations between electrophysiological activity from the human olfactory bulb and the subjective response to odoriferous stimuli. Electroencephalogr. Clin. Neurophysiol. 28:197–98
    [Google Scholar]
  64. Iravani B, Arshamian A, Lundqvist M, Kay LM, Wilson DA, Lundström JN. 2021a. Odor identity can be extracted from the reciprocal connectivity between olfactory bulb and piriform cortex in humans. NeuroImage 237:118130
    [Google Scholar]
  65. Iravani B, Arshamian A, Ohla K, Wilson DA, Lundström JN. 2020. Non-invasive recording from the human olfactory bulb. Nat. Commun. 11:1648
    [Google Scholar]
  66. Iravani B, Arshamian A, Schaefer M, Svenningsson P, Lundström JN. 2021b. A non-invasive olfactory bulb measure dissociates Parkinson's patients from healthy controls and discloses disease duration. Npj Park. Dis. 7:175
    [Google Scholar]
  67. Iravani B, Peter MG, Arshamian A, Olsson MJ, Hummel T et al. 2021c. Acquired olfactory loss alters functional connectivity and morphology. Sci. Rep. 11:116422
    [Google Scholar]
  68. Iravani B, Schaefer M, Wilson DA, Arshamian A, Lundström JN. 2021d. The human olfactory bulb processes odor valence representation and cues motor avoidance behavior. PNAS 118:42e2101209118
    [Google Scholar]
  69. Ito J, Roy S, Liu Y, Cao Y, Fletcher M et al. 2014. Whisker barrel cortex delta oscillations and gamma power in the awake mouse are linked to respiration. Nat. Commun. 5:13572
    [Google Scholar]
  70. Jackson AF, Bolger DJ. 2014. The neurophysiological bases of EEG and EEG measurement: a review for the rest of us. Psychophysiology 51:111061–71
    [Google Scholar]
  71. Jadauji JB, Djordjevic J, Lundström JN, Pack CC. 2012. Modulation of olfactory perception by visual cortex stimulation. J. Neurosci. 32:93095–100
    [Google Scholar]
  72. Jaeger SR, McRae JF, Bava CM, Beresford MK, Hunter D et al. 2013. A Mendelian trait for olfactory sensitivity affects odor experience and food selection. Curr. Biol. 23:161601–5
    [Google Scholar]
  73. Jiang H, Schuele S, Rosenow J, Zelano C, Parvizi J et al. 2017. Theta oscillations rapidly convey odor-specific content in human piriform cortex. Neuron 94:1207–19.e4
    [Google Scholar]
  74. Jung J, Hudry J, Ryvlin P, Royet J-P, Bertrand O, Lachaux J-P. 2006. Functional significance of olfactory-induced oscillations in the human amygdala. Cereb. Cortex 16:11–8
    [Google Scholar]
  75. Keller A, Gerkin RC, Guan Y, Dhurandhar A, Turu G et al. 2017. Predicting human olfactory perception from chemical features of odor molecules. Science 355:6327820–26
    [Google Scholar]
  76. Keller A, Zhuang H, Chi Q, Vosshall LB, Matsunami H. 2007. Genetic variation in a human odorant receptor alters odour perception. Nature 449:7161468–72
    [Google Scholar]
  77. Kepecs A, Uchida N, Mainen ZF. 2006. The sniff as a unit of olfactory processing. Chem. Senses 31:2167–79
    [Google Scholar]
  78. Khan RM, Luk C-H, Flinker A, Aggarwal A, Lapid H et al. 2007. Predicting odor pleasantness from odorant structure: pleasantness as a reflection of the physical world. J. Neurosci. 27:3710015–23
    [Google Scholar]
  79. Kluger DS, Balestrieri E, Busch NA, Gross J. 2021. Respiration aligns perception with neural excitability. eLife 10:e70907
    [Google Scholar]
  80. Kluger DS, Gross J. 2020. Depth and phase of respiration modulate cortico-muscular communication. NeuroImage 222:117272
    [Google Scholar]
  81. Kluger DS, Gross J. 2021. Respiration modulates oscillatory neural network activity at rest. PLOS Biol. 19:11e3001457
    [Google Scholar]
  82. Knötzele J, Riemann D, Frase L, Feige B, van Elst LT, Kornmeier J. 2023. Presenting rose odor during learning, sleep and retrieval helps to improve memory consolidation: a real-life study. Sci. Rep. 13:12371
    [Google Scholar]
  83. Koulakov A, Kolterman B, Enikolopov A, Rinberg D. 2011. In search of the structure of human olfactory space. Front. Syst. Neurosci. 5:65
    [Google Scholar]
  84. Kourtzi Z, Kanwisher N. 2001. Representation of perceived object shape by the human lateral occipital complex. Science 293:55341506–9
    [Google Scholar]
  85. Lane G, Zhou G, Noto T, Zelano C. 2020. Assessment of direct knowledge of the human olfactory system. Exp. Neurol. 329:113304
    [Google Scholar]
  86. Laska M. 2017. Human and animal olfactory capabilities compared. Springer Handbook of Odor A Buettner 81–82. Cham, Switz.: Springer
    [Google Scholar]
  87. Laska M, Liesen A, Teubner P. 1999. Enantioselectivity of odor perception in squirrel monkeys and humans. Am. J. Physiol. 277:4R1098–103
    [Google Scholar]
  88. Laska M, Teubner P. 1999. Olfactory discrimination ability of human subjects for ten pairs of enantiomers. Chem. Senses 24:2161–70
    [Google Scholar]
  89. Levy LM, Henkin RI, Hutter A, Lin CS, Martins D, Schellinger D. 1997. Functional MRI of human olfaction. J. Comput. Assist. Tomogr. 21:6849–56
    [Google Scholar]
  90. Li W, Howard JD, Parrish TB, Gottfried JA. 2008. Aversive learning enhances perceptual and cortical discrimination of indiscriminable odor cues. Science 319:58711842–45
    [Google Scholar]
  91. Lisman JE, Jensen O. 2013. The theta-gamma neural code. Neuron 77:61002–16
    [Google Scholar]
  92. Lockmann ALV, Laplagne DA, Leão RN, Tort ABL. 2016. A respiration-coupled rhythm in the rat hippocampus independent of theta and slow oscillations. J. Neurosci. 36:195338–52
    [Google Scholar]
  93. Logothetis NK. 2008. What we can do and what we cannot do with fMRI. Nature 453:7197869–78
    [Google Scholar]
  94. Mainland JD, Keller A, Li YR, Zhou T, Trimmer C et al. 2014. The missense of smell: functional variability in the human odorant receptor repertoire. Nat. Neurosci. 17:1114–20
    [Google Scholar]
  95. Mainland JD, Sobel N. 2006. The sniff is part of the olfactory percept. Chem. Senses 31:2181–96
    [Google Scholar]
  96. Manesse C, Fournel A, Bensafi M, Ferdenzi C. 2020. Visual priming influences olfactomotor response and perceptual experience of smells. Chem. Senses 45:3211–18
    [Google Scholar]
  97. McGann JP. 2017. Poor human olfaction is a 19th-century myth. Science 356:6338eaam7263
    [Google Scholar]
  98. McRae JF, Mainland JD, Jaeger SR, Adipietro KA, Matsunami H, Newcomb RD. 2012. Genetic variation in the odorant receptor OR2J3 is associated with the ability to detect the “grassy” smelling odor, cis-3-hexen-1-ol. Chem. Senses 37:7585–93
    [Google Scholar]
  99. Meister M. 2015. On the dimensionality of odor space. eLife 4:e07865
    [Google Scholar]
  100. Menashe I, Abaffy T, Hasin Y, Goshen S, Yahalom V et al. 2007. Genetic elucidation of human hyperosmia to isovaleric acid. PLOS Biol. 5:11e284
    [Google Scholar]
  101. Miao X, Paez AG, Rajan S, Cao D, Liu D et al. 2021. Functional activities detected in the olfactory bulb and associated olfactory regions in the human brain using T2-prepared BOLD functional MRI at 7T. Front. Neurosci. 15:723441
    [Google Scholar]
  102. Moberly AH, Schreck M, Bhattarai JP, Zweifel LS, Luo W, Ma M. 2018. Olfactory inputs modulate respiration-related rhythmic activity in the prefrontal cortex and freezing behavior. Nat. Commun. 9:11528
    [Google Scholar]
  103. Morrison EE, Costanzo RM. 1990. Morphology of the human olfactory epithelium. J. Comp. Neurol. 297:11–13
    [Google Scholar]
  104. Morrison EE, Costanzo RM. 1992. Morphology of olfactory epithelium in humans and other vertebrates. Microsc. Res. Tech. 23:149–61
    [Google Scholar]
  105. Morrot G, Brochet F, Dubourdieu D. 2001. The color of odors. Brain Lang. 79:2309–20
    [Google Scholar]
  106. Moser EI, Kropff E, Moser M-B. 2008. Place cells, grid cells, and the brain's spatial representation system. Annu. Rev. Neurosci. 31:69–89
    [Google Scholar]
  107. Mussinan CJ, Walradt JP. 1974. Volatile constituents of pressure cooked pork liver. J. Agric. Food Chem. 22:5827–31
    [Google Scholar]
  108. Nakamura NH, Fukunaga M, Oku Y. 2018. Respiratory modulation of cognitive performance during the retrieval process. PLOS ONE 13:9e0204021
    [Google Scholar]
  109. Neuland C, Bitter T, Marschner H, Gudziol H, Guntinas-Lichius O. 2011. Health-related and specific olfaction-related quality of life in patients with chronic functional anosmia or severe hyposmia. Laryngoscope 121:4867–72
    [Google Scholar]
  110. Nordin S, Blomqvist EH, Olsson P, Stjärne P, Ehnhage A. 2011. Effects of smell loss on daily life and adopted coping strategies in patients with nasal polyposis with asthma. Acta Otolaryngol. 131:8826–32
    [Google Scholar]
  111. Noto T, Zhou G, Yang Q, Lane G, Zelano C. 2021. Human primary olfactory amygdala subregions form distinct functional networks, suggesting distinct olfactory functions. Front. Syst. Neurosci. 15:752320
    [Google Scholar]
  112. Parma V, Ohla K, Veldhuizen MG, Niv MY, Kelly CE et al. 2020. More than smell—COVID-19 is associated with severe impairment of smell, taste, and chemesthesis. Chem. Senses 45:7609–22
    [Google Scholar]
  113. Perl O, Arzi A, Sela L, Secundo L, Holtzman Y et al. 2016. Odors enhance slow-wave activity in non-rapid eye movement sleep. J. Neurophysiol. 115:52294–302
    [Google Scholar]
  114. Perl O, Ravia A, Rubinson M, Eisen A, Soroka T et al. 2019. Human non-olfactory cognition phase-locked with inhalation. Nat. Hum. Behav. 3:5501–12
    [Google Scholar]
  115. Potter H, Butters N. 1980. An assessment of olfactory deficits in patients with damage to prefrontal cortex. Neuropsychologia 18:6621–28
    [Google Scholar]
  116. Raithel CU, Miller AJ, Epstein RA, Kahnt T, Gottfried JA. 2023. Recruitment of grid-like responses in human entorhinal and piriform cortices by odor landmark-based navigation. Curr. Biol. 33:173651–70.e4
    [Google Scholar]
  117. Rasch B, Büchel C, Gais S, Born J. 2007. Odor cues during slow-wave sleep prompt declarative memory consolidation. Science 315:58171426–29
    [Google Scholar]
  118. Ravia A, Snitz K, Honigstein D, Finkel M, Zirler R et al. 2020. A measure of smell enables the creation of olfactory metamers. Nature 588:7836118–23
    [Google Scholar]
  119. Rihm JS, Diekelmann S, Born J, Rasch B. 2014. Reactivating memories during sleep by odors: odor specificity and associated changes in sleep oscillations. J. Cogn. Neurosci. 26:81806–18
    [Google Scholar]
  120. Rombaux P, Mouraux A, Bertrand B, Duprez T, Hummel T. 2007. Can we smell without an olfactory bulb?. Am. J. Rhinol. 21:5548–50
    [Google Scholar]
  121. Rosen BR, Buckner RL, Dale AM. 1998. Event-related functional MRI: past, present, andfuture. PNAS 95:3773–80
    [Google Scholar]
  122. Rossiter KJ. 1996. Structure−odor relationships. Chem. Rev. 96:83201–40
    [Google Scholar]
  123. Saito H, Chi Q, Zhuang H, Matsunami H, Mainland JD. 2009. Odor coding by a mammalian receptor repertoire. Sci. Signal. 2:60ra9
    [Google Scholar]
  124. Saito H, Kubota M, Roberts RW, Chi Q, Matsunami H. 2004. RTP family members induce functional expression of mammalian odorant receptors. Cell 119:5679–91
    [Google Scholar]
  125. Saraiva LR, Riveros-McKay F, Mezzavilla M, Abou-Moussa EH, Arayata CJ et al. 2019. A transcriptomic atlas of mammalian olfactory mucosae reveals an evolutionary influence on food odor detection in humans. Sci. Adv. 5:7eaax0396
    [Google Scholar]
  126. Sarrafchi A, Odhammer AME, Salazar LTH, Laska M. 2013. Olfactory sensitivity for six predator odorants in CD-1 mice, human subjects, and spider monkeys. PLOS ONE 8:11e80621
    [Google Scholar]
  127. Sato-Akuhara N, Trimmer C, Keller A, Niimura Y, Shirasu M et al. 2023. Genetic variation in the human olfactory receptor OR5AN1 associates with the perception of musks. Chem. Senses 48:bjac037
    [Google Scholar]
  128. Seo H-S, Hummel T. 2011. Auditory-olfactory integration: Congruent or pleasant sounds amplify odor pleasantness. Chem. Senses 36:3301–9
    [Google Scholar]
  129. Shanahan LK, Kahnt T. 2022. On the state-dependent nature of odor perception. Front. Neurosci. 16:964742
    [Google Scholar]
  130. Snitz K, Yablonka A, Weiss T, Frumin I, Khan RM, Sobel N. 2013. Predicting odor perceptual similarity from odor structure. PLOS Comput. Biol. 9:9e1003184
    [Google Scholar]
  131. Sobel N, Prabhakaran V, Desmond JE, Glover GH, Goode RL et al. 1998. Sniffing and smelling: separate subsystems in the human olfactory cortex. Nature 392:6673282–86
    [Google Scholar]
  132. Sobel N, Prabhakaran V, Desmond JE, Glover GH, Sullivan EV, Gabrieli JDE. 1997. A method for functional magnetic resonance imaging of olfaction. J. Neurosci. Methods 78:1115–23
    [Google Scholar]
  133. Stettler DD, Axel R. 2009. Representations of odor in the piriform cortex. Neuron 63:6854–64
    [Google Scholar]
  134. Stevenson RJ. 2010. An initial evaluation of the functions of human olfaction. Chem. Senses 35:13–20
    [Google Scholar]
  135. Stowers L, Logan DW. 2010. Olfactory mechanisms of stereotyped behavior: on the scent of specialized circuits. Curr. Opin. Neurobiol. 20:3274–80
    [Google Scholar]
  136. Summerfield C, Egner T, Greene M, Koechlin E, Mangels J, Hirsch J. 2006. Predictive codes for forthcoming perception in the frontal cortex. Science 314:58031311–14
    [Google Scholar]
  137. Tholl D, Sohrabi R, Huh J-H, Lee S. 2011. The biochemistry of homoterpenes—common constituents of floral and herbivore-induced plant volatile bouquets. Phytochemistry 72:131635–46
    [Google Scholar]
  138. Tort ABL, Brankačk J, Draguhn A. 2018. Respiration-entrained brain rhythms are global but often overlooked. Trends Neurosci. 41:4186–97
    [Google Scholar]
  139. Trimmer C, Keller A, Murphy NR, Snyder LL, Willer JR et al. 2019. Genetic variation across the human olfactory receptor repertoire alters odor perception. PNAS 116:199475–80
    [Google Scholar]
  140. Verhagen JV, Wesson DW, Netoff TI, White JA, Wachowiak M. 2007. Sniffing controls an adaptive filter of sensory input to the olfactory bulb. Nat. Neurosci. 10:5631–39
    [Google Scholar]
  141. Wachowiak M. 2011. All in a sniff: olfaction as a model for active sensing. Neuron 71:6962–73
    [Google Scholar]
  142. Weiss T, Soroka T, Gorodisky L, Shushan S, Snitz K et al. 2020. Human olfaction without apparent olfactory bulbs. Neuron 105:135–45.e5
    [Google Scholar]
  143. Wilson DA. 1998. Habituation of odor responses in the rat anterior piriform cortex. J. Neurophysiol. 79:31425–40
    [Google Scholar]
  144. Winston JS, Henson RNA, Fine-Goulden MR, Dolan RJ. 2004. fMRI-adaptation reveals dissociable neural representations of identity and expression in face perception. J. Neurophysiol. 92:31830–39
    [Google Scholar]
  145. Wu KN, Tan BK, Howard JD, Conley DB, Gottfried JA. 2012. Olfactory input is critical for sustaining odor quality codes in human orbitofrontal cortex. Nat. Neurosci. 15:91313–19
    [Google Scholar]
  146. Yang AI, Dikeçligil GN, Jiang H, Das SR, Stein JM et al. 2021. The what and when of olfactory working memory in humans. Curr. Biol. 31:204499–511.e8
    [Google Scholar]
  147. Yang Q, Zhou G, Noto T, Templer JW, Schuele SU et al. 2022. Smell-induced gamma oscillations in human olfactory cortex are required for accurate perception of odor identity. PLOS Biol. 20:1e3001509
    [Google Scholar]
  148. Yang QX, Dardzinski BJ, Li S, Eslinger PJ, Smith MB. 1997. Multi-gradient echo with susceptibility inhomogeneity compensation (MGESIC): demonstration of fMRI in the olfactory cortex at 3.0 T. Magn. Reson. Med. 37:3331–35
    [Google Scholar]
  149. Yanovsky Y, Ciatipis M, Draguhn A, Tort ABL, Brankačk J. 2014. Slow oscillations in the mouse hippocampus entrained by nasal respiration. J. Neurosci. 34:175949–64
    [Google Scholar]
  150. Yousem DM, Williams SC, Howard RO, Andrew C, Simmons A et al. 1997. Functional MR imaging during odor stimulation: preliminary data. Radiology 204:3833–38
    [Google Scholar]
  151. Zatorre RJ, Jones-Gotman M. 1991. Human olfactory discrimination after unilateral frontal or temporal lobectomy. Brain 114A:171–84
    [Google Scholar]
  152. Zatorre RJ, Jones-Gotman M, Evans AC, Meyer E. 1992. Functional localization and lateralization of human olfactory cortex. Nature 360:6402339–40
    [Google Scholar]
  153. Zelano C, Jiang H, Zhou G, Arora N, Schuele S et al. 2016. Nasal respiration entrains human limbic oscillations and modulates cognitive function. J. Neurosci. 36:4912448–67
    [Google Scholar]
  154. Zelano C, Mohanty A, Gottfried JA. 2011. Olfactory predictive codes and stimulus templates in piriform cortex. Neuron 72:1178–87
    [Google Scholar]
  155. Zhou B, Feng G, Chen W, Zhou W. 2018. Olfaction warps visual time perception. Cereb. Cortex 28:51718–28
    [Google Scholar]
  156. Zhou G, Lane G, Cooper SL, Kahnt T, Zelano C. 2019a. Characterizing functional pathways of the human olfactory system. eLife 8:e47177
    [Google Scholar]
  157. Zhou G, Lane G, Noto T, Arabkheradmand G, Gottfried JA et al. 2019b. Human olfactory-auditory integration requires phase synchrony between sensory cortices. Nat. Commun. 10:11168
    [Google Scholar]
  158. Zhou W, Jiang Y, He S, Chen D. 2010. Olfaction modulates visual perception in binocular rivalry. Curr. Biol. 20:151356–58
    [Google Scholar]
  159. Ziegleder G. 2017. Flavour development in cocoa and chocolate. Beckett's Industrial Chocolate Manufacture and Use ST Beckett, MS Fowler, GR Ziegler 185–215. New York: Wiley
    [Google Scholar]
/content/journals/10.1146/annurev-psych-042023-101155
Loading
/content/journals/10.1146/annurev-psych-042023-101155
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error