Full text loading...
Abstract
Using an autobiographical approach, I review several animal and human split-brain studies that have led me to change my long-term view on how best to understand mind/brain interactions. Overall, the view is consistent with the idea that complex neural systems, like other complex information processing systems, are highly modular. At the same time, how the modules come to interact and produce unitary goals is unknown. Here, I review the importance of self-cueing in that process of producing unitary goals from disparate functions. The role of self-cueing is demonstrably evident in the human neurologic patient and especially in patients with hemispheric disconnection. When viewed in the context of modularity, it may provide insights into how a highly parallel and distributed brain locally coordinates its activities to produce an apparent unitary output. Capturing and understanding how this is achieved will require shifting gears away from standard linear models and adopting a more dynamical systems view of brain function.