Auditory perception is our main gateway to communication with others via speech and music, and it also plays an important role in alerting and orienting us to new events. This review provides an overview of selected topics pertaining to the perception and neural coding of sound, starting with the first stage of filtering in the cochlea and its profound impact on perception. The next topic, pitch, has been debated for millennia, but recent technical and theoretical developments continue to provide us with new insights. Cochlear filtering and pitch both play key roles in our ability to parse the auditory scene, enabling us to attend to one auditory object or stream while ignoring others. An improved understanding of the basic mechanisms of auditory perception will aid us in the quest to tackle the increasingly important problem of hearing loss in our aging population.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Allen EJ, Burton PC, Olman CA, Oxenham AJ. 2017. Representations of pitch and timbre variation in human auditory cortex. J. Neurosci. 37:1284–93 [Google Scholar]
  2. Allen EJ, Oxenham AJ. 2014. Symmetric interactions and interference between pitch and timbre. J. Acoust. Soc. Am. 135:1371–79 [Google Scholar]
  3. ANSI (Am. Nat. Stand. Inst.). 2013. American National Standard: acoustical terminology Rep. S1.1-2013, Am. Nat. Stand. Inst./Accredit. Stand. Comm. Acoust., Acoust. Soc. Am Washington, DC/Melville, NY: [Google Scholar]
  4. Attneave F, Olson RK. 1971. Pitch as a medium: a new approach to psychophysical scaling. Am. J. Psychol. 84:147–66 [Google Scholar]
  5. Bendor D, Wang X. 2005. The neuronal representation of pitch in primate auditory cortex. Nature 436:1161–65 [Google Scholar]
  6. Bentsen T, Harte JM, Dau T. 2011. Human cochlear tuning estimates from stimulus-frequency otoacoustic emissions. J. Acoust. Soc. Am. 129:3797–807 [Google Scholar]
  7. Bernstein JG, Oxenham AJ. 2003. Pitch discrimination of diotic and dichotic tone complexes: harmonic resolvability or harmonic number. J. Acoust. Soc. Am. 113:3323–34 [Google Scholar]
  8. Bernstein JG, Oxenham AJ. 2006. The relationship between frequency selectivity and pitch discrimination: sensorineural hearing loss. J. Acoust. Soc. Am. 120:3929–45 [Google Scholar]
  9. Bharadwaj HM, Masud S, Mehraei G, Verhulst S, Shinn-Cunningham BG. 2015. Individual differences reveal correlates of hidden hearing deficits. J. Neurosci. 35:2161–72 [Google Scholar]
  10. Bianchi F, Fereczkowski M, Zaar J, Santurette S, Dau T. 2016. Complex-tone pitch discrimination in listeners with sensorineural hearing loss. Trends Hear 20:2331216516655793 [Google Scholar]
  11. Bierer JA, Litvak L. 2016. Reducing channel interaction through cochlear implant programming may improve speech perception: current focusing and channel deactivation. Trends Hear 20:2331216516653389 [Google Scholar]
  12. Bingabr M, Espinoza-Varas B, Loizou PC. 2008. Simulating the effect of spread of excitation in cochlear implants. Hear. Res. 241:73–79 [Google Scholar]
  13. Blauert J. 1997. Spatial Hearing: The Psychophysics of Human Sound Localization Cambridge, MA: MIT Press [Google Scholar]
  14. Bregman AS. 1990. Auditory Scene Analysis: The Perceptual Organisation of Sound Cambridge, MA: MIT Press [Google Scholar]
  15. Bregman MR, Patel AD, Gentner TQ. 2016. Songbirds use spectral shape, not pitch, for sound pattern recognition. PNAS 113:1666–71 [Google Scholar]
  16. Burns EM, Feth LL. 1983. Pitch of sinusoids and complex tones above 10 kHz. Hearing—Physiological Bases and Psychophysics R Klinke, R Hartmann 327–33 Berlin: Springer Verlag [Google Scholar]
  17. Cedolin L, Delgutte B. 2010. Spatiotemporal representation of the pitch of harmonic complex tones in the auditory nerve. J. Neurosci. 30:12712–24 [Google Scholar]
  18. Chait M, de Cheveigne A, Poeppel D, Simon JZ. 2010. Neural dynamics of attending and ignoring in human auditory cortex. Neuropsychologia 48:3262–71 [Google Scholar]
  19. Chambers AR, Resnik J, Yuan Y, Whitton JP, Edge AS. et al. 2016. Central gain restores auditory processing following near-complete cochlear denervation. Neuron 89:867–79 [Google Scholar]
  20. Cherry EC. 1953. Some experiments on the recognition of speech, with one and two ears. J. Acoust. Soc. Am. 25:975–79 [Google Scholar]
  21. Christiansen SK, Oxenham AJ. 2014. Assessing the effects of temporal coherence on auditory stream formation through comodulation masking release. J. Acoust. Soc. Am. 135:3520–29 [Google Scholar]
  22. Cohen MR, Kohn A. 2011. Measuring and interpreting neuronal correlations. Nat. Neurosci. 14:811–19 [Google Scholar]
  23. Crew JD, Galvin JJ III, Fu QJ. 2012. Channel interaction limits melodic pitch perception in simulated cochlear implants. J. Acoust. Soc. Am. 132:EL429–35 [Google Scholar]
  24. Cusack R. 2005. The intraparietal sulcus and perceptual organization. J. Cogn. Neurosci. 17:641–51 [Google Scholar]
  25. Dallos P, Zheng J, Cheatham MA. 2006. Prestin and the cochlear amplifier. J. Physiol. 576:37–42 [Google Scholar]
  26. Darwin CJ. 2005. Pitch and auditory grouping. Pitch: Neural Coding and Perception CJ Plack, AJ Oxenham, R Fay, AN Popper 278–305 Berlin: Springer Verlag [Google Scholar]
  27. Deeks JM, Gockel HE, Carlyon RP. 2013. Further examination of complex pitch perception in the absence of a place-rate match. J. Acoust. Soc. Am. 133:377–88 [Google Scholar]
  28. Delgutte B. 1984. Speech coding in the auditory nerve: II. Processing schemes for vowel-like sounds. J. Acoust. Soc. Am. 75:879–86 [Google Scholar]
  29. Durlach NI, Mason CR, Kidd G Jr., Arbogast TL, Colburn HS, Shinn-Cunningham BG. 2003. Note on informational masking. J. Acoust. Soc. Am. 113:2984–87 [Google Scholar]
  30. Elhilali M, Ma L, Micheyl C, Oxenham AJ, Shamma SA. 2009. Temporal coherence in the perceptual organization and cortical representation of auditory scenes. Neuron 61:317–29 [Google Scholar]
  31. Evans EF. 2001. Latest comparisons between physiological and behavioural frequency selectivity. Physiological and Psychophysical Bases of Auditory Function J Breebaart, AJM Houtsma, A Kohlrausch, VF Prijs, R Schoonhoven 382–87 Maastricht: Shaker [Google Scholar]
  32. Feng L, Wang X. 2017. Harmonic template neurons in primate auditory cortex underlying complex sound processing. PNAS 114:E840–48 [Google Scholar]
  33. Fishman YI, Volkov IO, Noh MD, Garell PC, Bakken H. et al. 2001. Consonance and dissonance of musical chords: neural correlates in auditory cortex of monkeys and humans. J. Neurophysiol. 86:2761–88 [Google Scholar]
  34. Friesen LM, Shannon RV, Baskent D, Wang X. 2001. Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants. J. Acoust. Soc. Am. 110:1150–63 [Google Scholar]
  35. Furman AC, Kujawa SG, Liberman MC. 2013. Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. J. Neurophysiol. 110:577–86 [Google Scholar]
  36. Goman AM, Lin FR. 2016. Prevalence of hearing loss by severity in the United States. Am. J. Public Health 106:1820–22 [Google Scholar]
  37. Gutschalk A, Micheyl C, Melcher JR, Rupp A, Scherg M, Oxenham AJ. 2005. Neuromagnetic correlates of streaming in human auditory cortex. J. Neurosci. 25:5382–88 [Google Scholar]
  38. Gutschalk A, Micheyl C, Oxenham AJ. 2008. Neural correlates of auditory perceptual awareness under informational masking. PLOS Biol 6:1156–65 [Google Scholar]
  39. Hartmann WM, Johnson D. 1991. Stream segregation and peripheral channeling. Music Percept 9:155–84 [Google Scholar]
  40. Hausfeld L, Gutschalk A, Formisano E, Riecke L. 2017. Effects of cross-modal asynchrony on informational masking in human cortex. J. Cogn. Neurosci. 29:6980–90 [Google Scholar]
  41. Heil P, Peterson AJ. 2015. Basic response properties of auditory nerve fibers: a review. Cell Tissue Res 361:129–58 [Google Scholar]
  42. Heinz MG, Colburn HS, Carney LH. 2001. Evaluating auditory performance limits: I. One-parameter discrimination using a computational model for the auditory nerve. Neural Comput 13:2273–316 [Google Scholar]
  43. Hight AE, Kozin ED, Darrow K, Lehmann A, Boyden E. et al. 2015. Superior temporal resolution of Chronos versus channelrhodopsin-2 in an optogenetic model of the auditory brainstem implant. Hear Res 322:235–41 [Google Scholar]
  44. Houtsma AJM, Smurzynski J. 1990. Pitch identification and discrimination for complex tones with many harmonics. J. Acoust. Soc. Am. 87:304–10 [Google Scholar]
  45. Joris P, Bergevin C, Kalluri R, McLaughlin M, Michelet P. et al. 2011. Frequency selectivity in Old-World monkeys corroborates sharp cochlear tuning in humans. PNAS 108:17516–20 [Google Scholar]
  46. Kamil RJ, Betz J, Powers BB, Pratt S, Kritchevsky S. et al. 2016. Association of hearing impairment with incident frailty and falls in older adults. J. Aging Health 28:644–60 [Google Scholar]
  47. Kersten D, Mamassian P, Yuille A. 2004. Object perception as Bayesian inference. Annu. Rev. Psychol. 55:271–304 [Google Scholar]
  48. Kidd G Jr., Mason CR, Swaminathan J, Roverud E, Clayton KK, Best V. 2016. Determining the energetic and informational components of speech-on-speech masking. J. Acoust. Soc. Am. 140:132–44 [Google Scholar]
  49. Kong YY, Cruz R, Jones JA, Zeng FG. 2004. Music perception with temporal cues in acoustic and electric hearing. Ear Hear 25:173–85 [Google Scholar]
  50. Kreft HA, Nelson DA, Oxenham AJ. 2013. Modulation frequency discrimination with modulated and unmodulated interference in normal hearing and in cochlear-implant users. J. Assoc. Res. Otolaryngol. 14:591–601 [Google Scholar]
  51. Kujawa SG, Liberman MC. 2009. Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J. Neurosci. 29:14077–85 [Google Scholar]
  52. Lau BK, Mehta AH, Oxenham AJ. 2017. Superoptimal perceptual integration suggests a place-based representation of pitch at high frequencies. J. Neurosci. 37:9013–21 [Google Scholar]
  53. Liberman MC, Epstein MJ, Cleveland SS, Wang H, Maison SF. 2016. Toward a differential diagnosis of hidden hearing loss in humans. PLOS ONE 11:e0162726 [Google Scholar]
  54. Lin FR, Niparko JK, Ferrucci L. 2011. Hearing loss prevalence in the United States. Arch. Intern. Med. 171:1851–52 [Google Scholar]
  55. Liu LF, Palmer AR, Wallace MN. 2006. Phase-locked responses to pure tones in the inferior colliculus. J. Neurophysiol. 95:1926–35 [Google Scholar]
  56. Loeb GE, White MW, Merzenich MM. 1983. Spatial cross correlation: a proposed mechanism for acoustic pitch perception. Biol. Cybern. 47:149–63 [Google Scholar]
  57. Lopez-Poveda EA, Eustaquio-Martin A. 2013. On the controversy about the sharpness of human cochlear tuning. J. Assoc. Res. Otolaryngol. 14:673–86 [Google Scholar]
  58. Lorenzi C, Gilbert G, Carn H, Garnier S, Moore BCJ. 2006. Speech perception problems of the hearing impaired reflect inability to use temporal fine structure. PNAS 103:18866–69 [Google Scholar]
  59. Lu K, Xu Y, Yin P, Oxenham AJ, Fritz JB, Shamma SA. 2017. Temporal coherence structure rapidly shapes neuronal interactions. Nat. Commun. 8:13900 [Google Scholar]
  60. Lu T, Wang X. 2000. Temporal discharge patterns evoked by rapid sequences of wide-and narrowband clicks in the primary auditory cortex of cat. J. Neurophysiol. 84:1236–46 [Google Scholar]
  61. Mackersie CL. 2003. Talker separation and sequential stream segregation in listeners with hearing loss: patterns associated with talker gender. J. Speech Lang. Hear. Res. 46:912–18 [Google Scholar]
  62. Marmel F, Plack CJ, Hopkins K, Carlyon RP, Gockel HE, Moore BC. 2015. The role of excitation-pattern cues in the detection of frequency shifts in bandpass-filtered complex tones. J. Acoust. Soc. Am. 137:2687–97 [Google Scholar]
  63. McDermott HJ. 2004. Music perception with cochlear implants: a review. Trends Amplif 8:49–82 [Google Scholar]
  64. McDermott JH, Lehr AJ, Oxenham AJ. 2010. Individual differences reveal the basis of consonance. Curr. Biol. 20:1035–41 [Google Scholar]
  65. McDermott JH, Oxenham AJ. 2008. Music perception, pitch, and the auditory system. Curr. Opin. Neurobiol. 18:452–63 [Google Scholar]
  66. McDermott JH, Schultz AF, Undurraga EA, Godoy RA. 2016. Indifference to dissonance in native Amazonians reveals cultural variation in music perception. Nature 535:547–50 [Google Scholar]
  67. McDermott JH, Wrobleski D, Oxenham AJ. 2011. Recovering sound sources from embedded repetition. PNAS 108:1188–93 [Google Scholar]
  68. McKay CM, McDermott HJ, Carlyon RP. 2000. Place and temporal cues in pitch perception: Are they truly independent. Acoust. Res. Lett. Online 1:25–30 [Google Scholar]
  69. Mehta AH, Oxenham AJ. 2017. Vocoder simulations explain complex pitch perception limitations experienced by cochlear implant users. J. Assoc. Res. Otolaryngol. In press [Google Scholar]
  70. Mehta AH, Yasin I, Oxenham AJ, Shamma S. 2016. Neural correlates of attention and streaming in a perceptually multistable auditory illusion. J. Acoust. Soc. Am. 140:2225 [Google Scholar]
  71. Mesgarani N, Chang EF. 2012. Selective cortical representation of attended speaker in multi-talker speech perception. Nature 485:233–36 [Google Scholar]
  72. Micheyl C, Delhommeau K, Perrot X, Oxenham AJ. 2006. Influence of musical and psychoacoustical training on pitch discrimination. Hear. Res. 219:36–47 [Google Scholar]
  73. Micheyl C, Hanson C, Demany L, Shamma S, Oxenham AJ. 2013a. Auditory stream segregation for alternating and synchronous tones. J. Exp. Psychol. Hum. Percept. Perform. 39:1568–80 [Google Scholar]
  74. Micheyl C, Schrater PR, Oxenham AJ. 2013b. Auditory frequency and intensity discrimination explained using a cortical population rate code. PLOS Comput. Biol. 9:e1003336 [Google Scholar]
  75. Micheyl C, Xiao L, Oxenham AJ. 2012. Characterizing the dependence of pure-tone frequency difference limens on frequency, duration, and level. Hear. Res. 292:1–13 [Google Scholar]
  76. Middlebrooks JC, Snyder RL. 2010. Selective electrical stimulation of the auditory nerve activates a pathway specialized for high temporal acuity. J. Neurosci. 30:1937–46 [Google Scholar]
  77. Moerel M, De Martino F, Formisano E. 2014. An anatomical and functional topography of human auditory cortical areas. Front. Neurosci. 8:225 [Google Scholar]
  78. Moore BCJ. 2007. Cochlear Hearing Loss: Physiological, Psychological and Technical Issues Chichester, UK: Wiley [Google Scholar]
  79. Moore BCJ, Ernst SM. 2012. Frequency difference limens at high frequencies: evidence for a transition from a temporal to a place code. J. Acoust. Soc. Am. 132:1542–47 [Google Scholar]
  80. Moore BCJ, Gockel H. 2002. Factors influencing sequential stream segregation. Acta Acust. Unit. Acust. 88:320–33 [Google Scholar]
  81. Moore BCJ, Sek A. 1996. Detection of frequency modulation at low modulation rates: evidence for a mechanism based on phase locking. J. Acoust. Soc. Am. 100:2320–31 [Google Scholar]
  82. Norman-Haignere S, Kanwisher N, McDermott JH. 2013. Cortical pitch regions in humans respond primarily to resolved harmonics and are located in specific tonotopic regions of anterior auditory cortex. J. Neurosci. 33:19451–69 [Google Scholar]
  83. O'Sullivan JA, Power AJ, Mesgarani N, Rajaram S, Foxe JJ. et al. 2015. Attentional selection in a cocktail party environment can be decoded from single-trial EEG. Cereb. Cortex 25:1697–706 [Google Scholar]
  84. Oxenham AJ. 2012. Pitch perception. J. Neurosci. 32:13335–38 [Google Scholar]
  85. Oxenham AJ. 2016. Predicting the perceptual consequences of hidden hearing loss. Trends Hear 20:2331216516686768 [Google Scholar]
  86. Oxenham AJ, Bacon SP. 2003. Cochlear compression: perceptual measures and implications for normal and impaired hearing. Ear Hear 24:352–66 [Google Scholar]
  87. Oxenham AJ, Bernstein JGW, Penagos H. 2004. Correct tonotopic representation is necessary for complex pitch perception. PNAS 101:1421–25 [Google Scholar]
  88. Oxenham AJ, Fligor BJ, Mason CR, Kidd G Jr. 2003. Informational masking and musical training. J. Acoust. Soc. Am. 114:1543–49 [Google Scholar]
  89. Oxenham AJ, Kreft HA. 2014. Speech perception in tones and noise via cochlear implants reveals influence of spectral resolution on temporal processing. Trends Hear 18:2331216514553783 [Google Scholar]
  90. Oxenham AJ, Micheyl C, Keebler MV, Loper A, Santurette S. 2011. Pitch perception beyond the traditional existence region of pitch. PNAS 108:7629–34 [Google Scholar]
  91. Oxenham AJ, Plack CJ. 1997. A behavioral measure of basilar-membrane nonlinearity in listeners with normal and impaired hearing. J. Acoust. Soc. Am. 101:3666–75 [Google Scholar]
  92. Patterson RD. 1976. Auditory filter shapes derived with noise stimuli. J. Acoust. Soc. Am. 59:640–54 [Google Scholar]
  93. Penagos H, Melcher JR, Oxenham AJ. 2004. A neural representation of pitch salience in non-primary human auditory cortex revealed with fMRI. J. Neurosci. 24:6810–15 [Google Scholar]
  94. Pinyon JL, Tadros SF, Froud KE, Wong ACY, Tompson IT. et al. 2014. Close-field electroporation gene delivery using the cochlear implant electrode array enhances the bionic ear. Sci. Transl. Med. 6:233ra54 [Google Scholar]
  95. Plack CJ, Leger A, Prendergast G, Kluk K, Guest H, Munro KJ. 2016. Toward a diagnostic test for hidden hearing loss. Trends Hear 20:2331216516657466 [Google Scholar]
  96. Plantinga J, Trehub SE. 2014. Revisiting the innate preference for consonance. J. Exp. Psychol. Hum. Percept. Perf. 40:40–49 [Google Scholar]
  97. Plomp R. 1967. Pitch of complex tones. J. Acoust. Soc. Am. 41:1526–33 [Google Scholar]
  98. Plomp R, Levelt WJM. 1965. Tonal consonance and critical bandwidth. J. Acoust. Soc. Am. 38:548–60 [Google Scholar]
  99. Prendergast G, Guest H, Munro KJ, Kluk K, Leger A. et al. 2017. Effects of noise exposure on young adults with normal audiograms: I. Electrophysiology. Hear. Res. 344:68–81 [Google Scholar]
  100. Pressnitzer D, Hupe JM. 2006. Temporal dynamics of auditory and visual bistability reveal common principles of perceptual organization. Curr. Biol. 16:1351–57 [Google Scholar]
  101. Qin MK, Oxenham AJ. 2005. Effects of envelope-vocoder processing on F0 discrimination and concurrent-vowel identification. Ear Hear 26:451–60 [Google Scholar]
  102. Rhode WS, Oertel D, Smith PH. 1983. Physiological response properties of cells labeled intracellularly with horseradish peroxidase in cat ventral cochlear nucleus. J. Comp. Neurol. 213:448–63 [Google Scholar]
  103. Roberts B, Glasberg BR, Moore BCJ. 2002. Primitive stream segregation of tone sequences without differences in fundamental frequency or passband. J. Acoust. Soc. Am. 112:2074–85 [Google Scholar]
  104. Rose JE, Brugge JF, Anderson DJ, Hind JE. 1967. Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey. J. Neurophysiol. 30:769–93 [Google Scholar]
  105. Ruggero MA. 1992. Responses to sound of the basilar membrane of the mammalian cochlea. Curr. Opin. Neurobiol. 2:449–56 [Google Scholar]
  106. Ruggero MA, Temchin AN. 2005. Unexceptional sharpness of frequency tuning in the human cochlea. PNAS 102:18614–19 [Google Scholar]
  107. Ruggles D, Bharadwaj H, Shinn-Cunningham BG. 2011. Normal hearing is not enough to guarantee robust encoding of suprathreshold features important in everyday communication. PNAS 108:15516–21 [Google Scholar]
  108. Sayles M, Winter IM. 2008. Reverberation challenges the temporal representation of the pitch of complex sounds. Neuron 58:789–801 [Google Scholar]
  109. Schaette R, McAlpine D. 2011. Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. J. Neurosci. 31:13452–57 [Google Scholar]
  110. Shackleton TM, Carlyon RP. 1994. The role of resolved and unresolved harmonics in pitch perception and frequency modulation discrimination. J. Acoust. Soc. Am. 95:3529–40 [Google Scholar]
  111. Shamma S, Klein D. 2000. The case of the missing pitch templates: how harmonic templates emerge in the early auditory system. J. Acoust. Soc. Am. 107:2631–44 [Google Scholar]
  112. Shamma SA. 1985. Speech processing in the auditory system: II. Lateral inhibition and the central processing of speech evoked activity in the auditory nerve. J. Acoust. Soc. Am. 78:1622–32 [Google Scholar]
  113. Shannon RV, Zeng FG, Kamath V, Wygonski J, Ekelid M. 1995. Speech recognition with primarily temporal cues. Science 270:303–4 [Google Scholar]
  114. Shera CA, Guinan JJ, Oxenham AJ. 2002. Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements. PNAS 99:3318–23 [Google Scholar]
  115. Shera CA, Guinan JJ Jr., Oxenham AJ. 2010. Otoacoustic estimation of cochlear tuning: validation in the chinchilla. J. Assoc. Res. Otolaryngol. 11:343–65 [Google Scholar]
  116. Shofner WP, Chaney M. 2013. Processing pitch in a nonhuman mammal (Chinchillalaniger). J. Comp. Psychol. 127:142–53 [Google Scholar]
  117. Smith ZM, Delgutte B, Oxenham AJ. 2002. Chimaeric sounds reveal dichotomies in auditory perception. Nature 416:87–90 [Google Scholar]
  118. Stamper GC, Johnson TA. 2015. Auditory function in normal-hearing, noise-exposed human ears. Ear Hear 36:172–84 [Google Scholar]
  119. Sumner CJ, Wells T, Bergevin C, Palmer AR, Oxenham AJ, Shera CA. 2014. Comparing otoacoustic, auditory-nerve, and behavioral estimates of cochlear tuning in the ferret. Proc. Midwinter Meet. Assoc. Res. Otolaryngol., San Diego, CA 123 San Diego, CA: Assoc. Res. Otolaryngol. [Google Scholar]
  120. Sung YK, Li L, Blake C, Betz J, Lin FR. 2016. Association of hearing loss and loneliness in older adults. J. Aging Health 28:979–94 [Google Scholar]
  121. Trainor LJ, Heinmiller BM. 1998. The development of evaluative responses to music: Infants prefer to listen to consonance over dissonance. Infant Behav. Dev. 21:77–88 [Google Scholar]
  122. Tramo MJ, Cariani PA, Delgutte B, Braida LD. 2001. Neurobiological foundations for the theory of harmony in Western tonal music. Ann. N. Y. Acad. Sci. 930:92–116 [Google Scholar]
  123. Vliegen J, Oxenham AJ. 1999. Sequential stream segregation in the absence of spectral cues. J. Acoust. Soc. Am. 105:339–46 [Google Scholar]
  124. von Békésy G. 1960. Experiments in Hearing New York: McGraw-Hill [Google Scholar]
  125. Walker KM, Bizley JK, King AJ, Schnupp JW. 2011. Multiplexed and robust representations of sound features in auditory cortex. J. Neurosci. 31:14565–76 [Google Scholar]
  126. Wayne RV, Johnsrude IS. 2015. A review of causal mechanisms underlying the link between age-related hearing loss and cognitive decline. Aging Res. Rev. 23:154–66 [Google Scholar]
  127. Whiteford KL, Oxenham AJ. 2015. Using individual differences to test the role of temporal and place cues in coding frequency modulation. J. Acoust. Soc. Am. 138:3093–104 [Google Scholar]
  128. Whitney D, Levi DM. 2011. Visual crowding: a fundamental limit on conscious perception and object recognition. Trends Cogn. Sci. 15:160–68 [Google Scholar]
  129. WHO (World Health Organ.). 2012. Hearing loss in persons 65 years and older based on WHO global estimates on prevalence of hearing loss: mortality and burden of diseases and prevention of blindness and deafness Rep., World Health Organ Geneva: http://www.who.int/pbd/deafness/news/GE_65years.pdf [Google Scholar]
  130. Yin P, Fritz JB, Shamma SA. 2010. Do ferrets perceive relative pitch. J. Acoust. Soc. Am. 127:1673–80 [Google Scholar]
  131. Yin P, Fritz JB, Shamma SA. 2014. Rapid spectrotemporal plasticity in primary auditory cortex during behavior. J. Neurosci. 34:4396–408 [Google Scholar]
  132. Young ED, Sachs MB. 1979. Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory-nerve fibres. J. Acoust. Soc. Am. 66:1381–403 [Google Scholar]
  133. Zentner MR, Kagan J. 1996. Perception of music by infants. Nature 383:29 [Google Scholar]
  134. Zwicker E. 1970. Masking and psychological excitation as consequences of the ear's frequency analysis. Frequency Analysis and Periodicity Detection in Hearing R Plomp, GF Smoorenburg 376–94 Leiden: Sijthoff [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error