The urge to move to music is universal among humans. Unlike visual art, which is manifest across space, music is manifest across time. When listeners get carried away by the music, either through movement (such as dancing) or through reverie (such as trance), it is usually the temporal qualities of the music—its pulse, tempo, and rhythmic patterns—that put them in this state. In this article, we review studies addressing rhythm, meter, movement, synchronization, entrainment, the perception of groove, and other temporal factors that constitute a first step to understanding how and why music literally moves us. The experiments we review span a range of methodological techniques, including neuroimaging, psychophysics, and traditional behavioral experiments, and we also summarize the current studies of animal synchronization, engaging an evolutionary perspective on human rhythmic perception and cognition.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abel SM. 1972. Duration discrimination of noise and tone bursts. J. Acoust. Soc. Am. 51:4B1219–23 [Google Scholar]
  2. Abrams DA, Ryali S, Chen T, Chordia P, Khouzam A. et al. 2013. Inter‐subject synchronization of brain responses during natural music listening. Eur. J. Neurosci. 37:91458–69 [Google Scholar]
  3. Adkins A, Kurstin G. 2015. Hello. Recorded by Adele, 25. London: XL Recordings [Google Scholar]
  4. Allen GD. 1975. Speech rhythms: its relation to performance universals and articulatory timing. J. Phon. 3:275–86 [Google Scholar]
  5. Becker W, Fagen D. 1973. Bodhisattva. Recorded by Steely Dan, Countdown to Ecstasy Los Angeles: ABC Records [Google Scholar]
  6. Bergeson TR, Trehub SE. 2002. Absolute pitch and tempo in mothers’ songs to infants. Psychol. Sci. 13:72–75 [Google Scholar]
  7. Besson M, Schön D. 2001. Comparison between language and music. Ann. N. Y. Acad. Sci. 930:1232–58 [Google Scholar]
  8. Bhatara A, Tirovolas AK, Duan LM, Levy B, Levitin DJ. 2011. Perception of emotional expression in musical performance. J. Exp. Psychol. Hum. Percept. Perform. 37:3921–34 [Google Scholar]
  9. Bhattacharya J, Petsche H. 2005. Phase synchrony analysis of EEG during music perception reveals changes in functional connectivity due to musical expertise. Signal Process 85:112161–77 [Google Scholar]
  10. Brochard R, Abecasis D, Potter D, Ragot R, Drake C. 2003. The “ticktock” of our internal clock: direct brain evidence of subjective accents in isochronous sequences. Psychol. Sci. 14:4362–66 [Google Scholar]
  11. Burger B, Thompson MR, Luck G, Saarikallio S, Toiviainen P. 2013. Influences of rhythm- and timbre-related musical features on characteristics of music-induced movement. Front. Psychol. 4:183 [Google Scholar]
  12. Burghardt H. 1973. Die subjektive Dauer schmalbandiger Schalle bei verschiedenen Frequenzlagen. Acustica 28:278–84 [Google Scholar]
  13. Butterfield MW. 2010. Participatory discrepancies and the perception of beats in jazz. Music Percept 27:157–76 [Google Scholar]
  14. Cage J. 2011 (1961). Silence: Lectures and Writings Middletown, CT: Wesleyan Univ. Press [Google Scholar]
  15. Cameron DJ, Grahn JA. 2014. Neuroscientific investigations of musical rhythm. Acoust. Aust. 42:2111 [Google Scholar]
  16. Cameron DJ, Pickett KA, Earhart GM, Grahn JA. 2016. The effect of dopaminergic medication on beat-based auditory timing in Parkinson's disease. Front. Neurol. 7:19 [Google Scholar]
  17. Carr KW, Tierney A, White-Schwoch T, Kraus N. 2016. Intertrial auditory neural stability supports beat synchronization in preschoolers. Dev. Cogn. Neurosci. 17:76–82 [Google Scholar]
  18. Carr KW, White-Schwoch T, Tierney A, Strait DL, Kraus N. 2014. Beat synchronization predicts neural speech encoding and reading readiness in preschoolers. PNAS 111:4014559–64 [Google Scholar]
  19. Chanda ML, Levitin DJ. 2013. The neurochemistry of music. Trends Cogn. Sci. 17:479–93 [Google Scholar]
  20. Chemin B, Mouraux A, Nozaradan S. 2014. Body movement selectively shapes the neural representation of musical rhythms. Psychol. Sci. 25:2147–59 [Google Scholar]
  21. Chen JL, Penhune VB, Zatorre RJ. 2008a. Listening to musical rhythms recruits motor regions of the brain. Cereb. Cortex 18:122844–54 [Google Scholar]
  22. Chen JL, Penhune VB, Zatorre RJ. 2008b. Moving on time: brain network for auditory-motor synchronization is modulated by rhythm complexity and musical training. J. Cogn. Neurosci. 20:2226–39 [Google Scholar]
  23. Chen JL, Zatorre RJ, Penhune VB. 2006. Interactions between auditory and dorsal premotor cortex during synchronization to musical rhythms. NeuroImage 32:1771–81 [Google Scholar]
  24. Chopin F. 1839. Piano Sonata No. 2, Op. 35
  25. Clark R, Resnick A. 1966. Good Lovin’. Recorded by The Rascals, The Young Rascals New York: Atlantic Records [Google Scholar]
  26. Cohen J. 1954. The experience of time. Acta. Psychol. 10:207–19 [Google Scholar]
  27. Colavita FB. 1974. Human sensory dominance. Atten. Percept. Psychophys. 16:2409–12 [Google Scholar]
  28. Collyer CE, Broadbent HA, Church RM. 1994. Preferred rates of repetitive tapping and categorical time production. Atten. Percept. Psychophys. 55:4443–53 [Google Scholar]
  29. Cook P, Rouse A, Wilson M, Reichmuth CJ. 2013. A California sea lion (Zalophus californianus) can keep the beat: motor entrainment to rhythmic auditory stimuli in a non vocal mimic. J. Comp. Psychol. 127:1–16 [Google Scholar]
  30. Cope TE, Grube M, Singh B, Burn DJ, Griffiths TD. 2014. The basal ganglia in perceptual timing: timing performance in multiple system atrophy and Huntington's disease. Neuropsychologia 52:10073–81 [Google Scholar]
  31. Cross I. 2005. Music and meaning, ambiguity and evolution. Musical Communication D Miell, R MacDonald, DJ Hargreaves 27–43 Oxford, UK: Oxford Univ. Press [Google Scholar]
  32. Day S. 2005. Some demographic and socio-cultural aspects of synesthesia. Synesthesia: Perspectives from Cognitive Neuroscience L Robertson, N Sagiv 11–33 Oxford, UK: Oxford Univ. Press [Google Scholar]
  33. Diaconescu AO, Hasher L, McIntosh AR. 2013. Visual dominance and multisensory integration changes with age. NeuroImage 65:152–66 [Google Scholar]
  34. Drake C, Botte MC. 1993. Tempo sensitivity in auditory sequences: evidence for a multiple-look model. Atten. Percept. Psychophys. 54:3277–86 [Google Scholar]
  35. Drake C, Gros L, Penel A. 1999. How fast is that music? The relation between physical and perceived tempo. Music, Mind, and Science SW Yi 190–203 Seoul, South Korea: Seoul Univ. Press [Google Scholar]
  36. Drake C, Jones MR, Baruch C. 2000. The development of rhythmic attending in auditory sequences: attunement, referent period, focal attending. Cognition 77:251–88 [Google Scholar]
  37. Eck D. 2002. Finding downbeats with a relaxation oscillator. Psychol. Res. 66:118–25 [Google Scholar]
  38. Eerola T, Luck G, Toiviainen P. 2006. An investigation of pre-schoolers’ corporeal synchronization with music. Proc. Int. Conf. Music Percept. Cogn., 9th, Bologna, Italy472–76 Bologna, Italy: Soc. Music Percept. Cogn./Eur. Soc. Cogn. Sci. Music [Google Scholar]
  39. Fechner GT. 1860. Elemente der Psychophysik Leipzig, Ger.: Breitkopf und Härtel [Google Scholar]
  40. Franěk M, Van Noorden L, Režný L. 2014. Tempo and walking speed with music in the urban context. Front. Psychol. 5:1361 [Google Scholar]
  41. Friberg A, Sundberg J. 1993. Perception of just noticeable time displacement of a tone presented in a metrical sequence at different tempos. Quarterly Progress and Status Report Kunglinga Tek. Högsk. Speech Transm. Lab 49–55 Stockholm: R. Inst. Technol. [Google Scholar]
  42. Friberg A, Sundberg J. 1995. Time discrimination in a monotonic, isochronous sequence. J. Acoust. Soc. Am. 98:52524–31 [Google Scholar]
  43. Friberg A, Sundströöm A. 2002. Swing ratios and ensemble timing in jazz performance: evidence for a common rhythmic pattern. Music Percept 19:3333–49 [Google Scholar]
  44. Fruhauf J, Kopiez R, Platz F. 2013. Music on the timing grid: the influence of microtiming on the perceived groove quality of a simple drum pattern performance. Music Sci 17:2246–60 [Google Scholar]
  45. Fujioka T, Ross B, Trainor LJ. 2015. Beta-band oscillations represent auditory beat and its metrical hierarchy in perception and imagery. J. Neurosci. 35:15187–98 [Google Scholar]
  46. Gjerdingen RO. 1994. Apparent motion in music?. Music Percept 11:4335–70 [Google Scholar]
  47. Glass L, Mackey MC. 1988. From Clocks to Chaos: The Rhythms of Life Princeton, NJ: Princeton Univ. Press [Google Scholar]
  48. Grahn JA. 2012. See what I hear? Beat perception in auditory and visual rhythms. Exp. Brain Res. 220:151–61 [Google Scholar]
  49. Grahn JA, Brett M. 2007. Rhythm perception in motor areas of the brain. J. Cogn. Neurosci. 19:5893–906 [Google Scholar]
  50. Grahn JA, Brett M. 2009. Impairment of beat-based rhythm discrimination in Parkinson's disease. Cortex 45:154–61 [Google Scholar]
  51. Grahn JA, Henry MJ, McAuley JD. 2011. FMRI investigation of cross-modal interactions in beat perception: Audition primes vision, but not vice versa. NeuroImage 54:1231–43 [Google Scholar]
  52. Grahn JA, Rowe JB. 2009. Feeling the beat: premotor and striatal interactions in musicians and non-musicians during beat processing. J. Neurosci. 29:237540–48 [Google Scholar]
  53. Grahn JA, Rowe JB. 2012. Finding and feeling the musical beat: striatal dissociations between detection and prediction of regularity. Cereb Cortex 23:4913–21 [Google Scholar]
  54. Gratton I, Brandimonte MA, Bruno N. 2016. Absolute memory for tempo in musicians and non-musicians. PLOS ONE 11:10e0163558 [Google Scholar]
  55. Griffiths TD, Warren JD, Scott SK, Nelken I, King AJ. 2004. Cortical processing of complex sound: a way forward?. Trends Neurosci 27:4181–85 [Google Scholar]
  56. Grondin S, McAuley JD. 2009. Duration discrimination in crossmodal sequences. Perception 38:101542–59 [Google Scholar]
  57. Halpern AR, Andrews MW. 2008. Melody recognition at fast and slow tempos: effects of age, experience, and familiarity. Atten. Percept. Psychophys. 70:496–502 [Google Scholar]
  58. Halpern AR, Müllensiefen D. 2008. Effects of timbre and tempo change on memory for music. Q. J. Exp. Psychol. 61:91371–84 [Google Scholar]
  59. Hancock H. 1973. Chameleon. Recorded by Herbie Hancock, Headhunters New York: Columbia Records [Google Scholar]
  60. Hasegawa A, Okanoya K, Hasegawa T, Seki Y. 2011. Rhythmic synchronization tapping to an audio-visual metronome in budgerigars. Sci. Rep. 1:120 [Google Scholar]
  61. Hattori Y, Tomonaga M, Matsuzawa T. 2013. Spontaneous synchronized tapping to an auditory rhythm in a chimpanzee. Sci. Rep. 3:1566 [Google Scholar]
  62. Henry MJ, Herrmann B, Grahn JA. 2017. What can we learn about beat perception by comparing brain signals and stimulus envelopes?. PLOS ONE 12:2e0172454 [Google Scholar]
  63. Hibi S. 1983. Rhythm perception in repetitive sound sequence. J. Acoust. Soc. Jpn. 4:83–95 [Google Scholar]
  64. Himberg T. 2014. Interaction in Musical Time PhD Thesis Univ. Cambridge UK: [Google Scholar]
  65. Hirsh I, Sherrick C. 1961. Perceived order in difference sense modalities. J. Exp. Psychol. 62:423–32 [Google Scholar]
  66. Houlihan K, Levitin DJ. 2011. Recognition of melodies from rhythm and pitch Presented at Bi-Annu. Meet. Soc. Music Percept. Cogn. Rochester, NY: [Google Scholar]
  67. Hove MJ, Balasubramaniam R, Keller PE. 2014. The time course of phase correction: a kinematic investigation of motor adjustment to timing perturbations during sensorimotor synchronization. J. Exp. Psychol. Hum. Percept. Perform. 40:2243–51 [Google Scholar]
  68. Hove MJ, Iversen JR, Zhang A, Repp BH. 2013. Synchronization with competing visual and auditory rhythms: Bouncing ball meets metronome. Psychol. Res. 77:4388–98 [Google Scholar]
  69. Huron D. 2006. Sweet Anticipation: Music and the Psychology of Expectation Cambridge, MA: MIT Press [Google Scholar]
  70. Iversen JR, Patel AD, Nicodemus B, Emmorey K. 2015. Synchronization to auditory and visual rhythms in hearing and deaf individuals. Cognition 134:232–44 [Google Scholar]
  71. Iversen JR, Repp BH, Patel AD. 2009. Top-down control of rhythm perception modulates early auditory responses. Ann. N. Y. Acad. Sci. 1169:58–73 [Google Scholar]
  72. Iyer V. 2002. Embodied mind, situated cognition, and expressive microtiming in African-American music. Music Percept 19:3387–414 [Google Scholar]
  73. Jackson M. 1983. Beat It. Recorded by Michael Jackson, Thriller New York: Epic Records [Google Scholar]
  74. Janata P, Tomic ST, Haberman J. 2012. Sensorimotor coupling in music and the psychology of the groove. J. Exp. Psychol. Gen. 141:154–75 [Google Scholar]
  75. Jeannerod M. 2006. Motor Cognition: What Actions Tell to the Self Oxford, UK: Oxford Univ. Press [Google Scholar]
  76. Jeon JY, Fricke FR. 1997. Duration of perceived and performed sounds. Psychol. Music 25:170–83 [Google Scholar]
  77. Judkis M. 2011. World's longest concert will last 639 years. The Washington Post November 21. https://www.washingtonpost.com/blogs/arts-post/post/worlds-longest-concert-will-last-639-years/2011/11/21/gIQAWrdXiN_blog.html [Google Scholar]
  78. Keil C. 1987. Participatory discrepancies and the power of music. Cult. Anthropol. 2:275–83 [Google Scholar]
  79. Konvalinka I, Vuust P, Roepstorff A, Frith CD. 2010. Follow you, follow me: continuous mutual prediction and adaptation in joint tapping. Q. J. Exp. Psychol. 63:2220–30 [Google Scholar]
  80. Korte A. 1915. Kinematoskopische Untersuchungen [Cinematoscopic investigations]. Z. Psychol. 72:193–296 [Google Scholar]
  81. Kosonen K, Raisamo R. 2006. Rhythm perception through different modalities. Proc. Eurohaptics, July 3–6, Paris365–70 Aarhus, Den.: Interact. Des. Found. [Google Scholar]
  82. Kuchenbuch A, Paraskevopoulos E, Herholz SC, Pantev C. 2012. Electromagnetic correlates of musical expertise in processing of tone patterns. PLOS ONE 7:1e30171 [Google Scholar]
  83. Kung SJ, Chen JL, Zatorre RJ, Penhune VB. 2013. Interacting cortical and basal ganglia networks underlying finding and tapping to the musical beat. J. Cogn. Neurosci. 25:3401–20 [Google Scholar]
  84. Lametti DR, Ostry DJ. 2010. Postural constraints on movement variability. J. Neurophys. 104:21061–67 [Google Scholar]
  85. Langer S. 1953. Feeling and Form New York: Scribners [Google Scholar]
  86. Large EW. 2008. Resonating to musical rhythm: theory and experiment. Psychology of Time S Grondin 189–232 Bingley, UK: Emerald [Google Scholar]
  87. Large EW, Almonte F, Velasco M. 2010. A canonical model for gradient frequency neural networks. Physica D 239:905–11 [Google Scholar]
  88. Large EW, Gray PM. 2015. Spontaneous tempo and rhythmic entrainment in a bonobo (Pan paniscus). J. Comp. Psychol. 129:4317–28 [Google Scholar]
  89. Large EW, Kolen JF. 1994. Accent structures in music performance. Connect. Sci. 6:177–208 [Google Scholar]
  90. Large EW, Palmer C. 2002. Perceiving temporal regularity in music. Cogn. Sci. 26:1–37 [Google Scholar]
  91. Leman M, Maes PJ. 2015. The role of embodiment in the perception of music. Empir. Music. Rev. 9:3–4236–46 [Google Scholar]
  92. Leman M, Moelants D, Varewyck M, Styns F, van Noorden L, Martens JP. 2013. Activating and relaxing music entrains the speed of beat synchronized walking. PLOS ONE 8:7e67932 [Google Scholar]
  93. Leow LA, Parrott T, Grahn JA. 2014. Individual differences in beat perception affect gait responses to low- and high-groove music. Front. Hum. Neurosci. 8:811 [Google Scholar]
  94. Leow LA, Rinchon VE, Grahn JA. 2015. Familiarity with music increases walking speed in rhythmic auditory cueing. Ann. N. Y. Acad. Sci. 1337:53–61 [Google Scholar]
  95. Levitin DJ. 1999. Tone deafness: failures of musical anticipation and self-reference. Int. J. Comput. Anticip. Syst. 4:243–54 [Google Scholar]
  96. Levitin DJ, Cook PR. 1996. Memory for musical tempo: additional evidence that auditory memory is absolute. Atten. Percept. Psychophys. 58:6927–35 [Google Scholar]
  97. Levitin DJ, McAdams S, Adams RL. 2002. Control parameters for musical instruments: a foundation for new mappings of gesture to sound. Organ. Sound 7:2171–89 [Google Scholar]
  98. Levitin DJ, Menon V. 2003. Musical structure is processed in “language” areas of the brain: a possible role for Brodmann Area 47 in temporal coherence. NeuroImage 20:42142–52 [Google Scholar]
  99. Levitin DJ, Rogers SE. 2005. Absolute pitch: perception, coding, and controversies. Trends Cogn. Sci. 9:126–33 [Google Scholar]
  100. London J. 2011. Tactus ≠ tempo: some dissociations between attentional focus, motor behavior. Empir. Musicol. Rev. 6:143–55 [Google Scholar]
  101. London J, Burger B, Thompson M, Toiviainen P. 2016. Speed on the dance floor: auditory and visual cues for musical tempo. Acta Psychol 164:70–80 [Google Scholar]
  102. London JM. 1993. Loud rests and other strange metric phenomena (or, meter as heard). Music Theory Online 0:21067–3040 [Google Scholar]
  103. London JM. 2012. Hearing in Time: Psychological Aspects of Musical Meter Oxford, UK: Oxford Univ. Press, 2nd ed.. [Google Scholar]
  104. Luck G, Sloboda JA. 2009. Spatio-temporal cues for visually mediated synchronization. Music Percept 26:5465–73 [Google Scholar]
  105. Madison G. 2006. Experiencing groove induced by music: consistency and phenomenology. Music Percept 24:2201–8 [Google Scholar]
  106. Madison G, Sioros G. 2014. What musicians do to induce the sensation of groove in simple and complex melodies, and how listeners perceive it. Front. Psychol. 5:894 [Google Scholar]
  107. Mallik A, Chanda ML, Levitin DJ. 2017. Anhedonia to music and mu-opioids: evidence from the administration of naltrexone. Sci. Rep. 7:41952 [Google Scholar]
  108. Manning F, Schutz M. 2013. “Moving to the beat” improves timing perception. Psychon. B 20:1133–39 [Google Scholar]
  109. Manning FC, Schutz M. 2016. Trained to keep a beat: movement-related enhancements to timing perception in percussionists and non-percussionists. Psychol. Res. 80:4532–42 [Google Scholar]
  110. Martens PA. 2011. The ambiguous tactus: tempo, subdivision, benefits, and three listener strategies. Music Percept 28:5433–48 [Google Scholar]
  111. Martin JH. 2005. The corticospinal system: from development to motor control. Neuroscientist 11:2161–73 [Google Scholar]
  112. Mates J, Muller U, Radil T, Poppel E. 1994. Temporal integration in sensorimotor synchronization. J. Cogn. Neurosci. 6:4332–40 [Google Scholar]
  113. Mbongwana Star 2015. Malukayi. Recorded by Mbongwana Star,. From Kinshasa. London: World Circuit [Google Scholar]
  114. McAuley JD. 2010. Tempo and rhythm. Music Perception MR Jones 165–99 New York: Springer [Google Scholar]
  115. McAuley JD, Henry MJ, Tkach J. 2012. Tempo mediates the involvement of motor areas in beat perception. Ann. N. Y. Acad. Sci. 1252:177–84 [Google Scholar]
  116. McAuley JD, Jones MR, Holub S, Johnston HM, Miller NS. 2006. The time of our lives: life span development of timing and event tracking. J. Exp. Psychol. Gen. 135:3348–67 [Google Scholar]
  117. McGurk H, MacDonald J. 1976. Hearing lips and seeing voices. Nature 264:746–48 [Google Scholar]
  118. McNeill W. 1995. Keeping Together in Time: Dance and Drill in Human History Cambridge, MA: Harvard Univ. Press [Google Scholar]
  119. Mendonça C, Oliveira M, Fontes L, Santos J. 2014. The effect of instruction to synchronize over step frequency while walking with auditory cues on a treadmill. Hum. Mov. Sci. 33:33–42 [Google Scholar]
  120. Merchant H, Honing H. 2014. Are non-human primates capable of rhythmic entrainment? Evidence for the gradual audiomotor evolution hypothesis. Front. Neurosci. 7:274 [Google Scholar]
  121. Merchant H, Pérez O, Zarco W, Gámez J. 2013. Interval tuning in the primate medial premotor cortex as a general timing mechanism. J. Neurosci. 33:219082–96 [Google Scholar]
  122. Miller NS, McAuley JD. 2005. Tempo sensitivity in isochronous tone sequences: the multiple-look model revisited. Percept. Psychophys. 67:71150–60 [Google Scholar]
  123. Mills PF, van der Steen MC, Schultz BG, Keller PE. 2015. Individual differences in temporal anticipation and adaptation during sensorimotor synchronization. Timing Time Percept 3:1–213–31 [Google Scholar]
  124. Mitchell J. 1970. Woodstock. Recorded by Crosby, Stills, Nash & Young, Déjà Vu New York: Atlantic Records [Google Scholar]
  125. Mitrani L, Shekerdijiiski S, Yakimoff N. 1986. Mechanisms and asymmetries in visual perception of simultaneity and temporal order. Biol. Cybernet. 54:159–65 [Google Scholar]
  126. Näätänen R, Paavilainen P, Rinne T, Alho K. 2007. The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin. Neurophysiol. 118:122544–90 [Google Scholar]
  127. Nowicki L, Prinz W, Grosjean M, Repp BH, Keller PE. 2013. Mutual adaptive timing in interpersonal action coordination. Psychomusicol. Music Mind Brain 23:6–20 [Google Scholar]
  128. Nozaradan S, Peretz I, Missal M, Mouraux A. 2011. Tagging the neuronal entrainment to beat and meter. J. Neurosci. 31:10234–40 [Google Scholar]
  129. Nozaradan S, Peretz I, Mouraux A. 2012. Selective neuronal entrainment to the beat and meter embedded in a musical rhythm. J. Neurosci. 32:17572–81 [Google Scholar]
  130. Palmer C, Lidji P, Peretz I. 2014. Losing the beat: deficits in temporal coordination. Philos. Trans. R. Soc. B 369:20130405 [Google Scholar]
  131. Parker C. 1949. Bird Gets the Worm. Recorded by Charlie “Bird” Parker, Bird Gets the Worm Newark, NJ: Savoy Records [Google Scholar]
  132. Patel AD. 2006. Musical rhythm, linguistic rhythm, and human evolution. Music Percept 24:99–104 [Google Scholar]
  133. Patel AD, Iversen JR. 2014. The evolutionary neuroscience of musical beat perception: the Action Simulation for Auditory Prediction (ASAP) hypothesis. Front. Sys. Neurosci. 8:57 [Google Scholar]
  134. Patel AD, Iversen JR, Bregman MR, Schulz I. 2009. Experimental evidence for synchronization to a musical beat in a nonhuman animal. Curr. Biol. 19:10827–30 [Google Scholar]
  135. Pecenka N, Keller PE. 2011. The role of temporal prediction abilities in interpersonal sensorimotor synchronization. Exp. Brain. Res. 211:3505–15 [Google Scholar]
  136. Petrides M, Pandya DN. 2002. Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. Eur. J. Neurosci. 16:2291–310 [Google Scholar]
  137. Phillips-Silver J, Toiviainen P, Gosselin N, Piché O, Nozaradan S. et al. 2011. Born to dance but beat deaf: a new form of congenital amusia. Neuropsychologia 49:961–69 [Google Scholar]
  138. Phillips-Silver J, Trainor LJ. 2005. Feeling the beat: Movement influences infant rhythm perception. Science 308:1430 [Google Scholar]
  139. Phillips-Silver J, Trainor LJ. 2007. Hearing what the body feels: auditory encoding of rhythmic movement. Cognition 105:533–46 [Google Scholar]
  140. Phillips-Silver J, Trainor LJ. 2008. Vestibular influence on auditory metrical interpretation. Brain Cogn 67:194–102 [Google Scholar]
  141. Poon M, Schutz M. 2015. Cueing musical emotions: An empirical analysis of 24-piece sets by Bach and Chopin documents parallels with emotional speech. Front. Psychol. 6:1419 [Google Scholar]
  142. Posner MI, Nissen MJ, Klein RM. 1976. Visual dominance: an information-processing account of its origins and significance. Psychol. Rev. 83:2157–71 [Google Scholar]
  143. Povel DJ. 1981. Internal representation of simple temporal patterns. J. Exp. Psychol. Hum. Percept. Perform. 7:13–18 [Google Scholar]
  144. Radiohead. 1997. Paranoid Android. Recorded by Radiohead, OK Computer. London: Parlophone [Google Scholar]
  145. Repp BH. 2000. Subliminal temporal discrimination revealed in sensorimotor coordination. Rhythm Perception and Production P Desain, WL Windsor 129–42 Lisse: Swets & Zeitlinger [Google Scholar]
  146. Repp BH. 2002. Phase correction following a perturbation in sensorimotor synchronization depends on sensory information. J. Mot. Behav. 34:3291–98 [Google Scholar]
  147. Repp BH. 2005. Sensorimotor synchronization: a review of the tapping literature. Psychon. Bull. Rev. 12:969–92 [Google Scholar]
  148. Repp BH, Doggett R. 2007. Tapping to a very slow beat: a comparison of musicians and non-musicians. Music Percept 24:367–76 [Google Scholar]
  149. Repp BH, Keller PE. 2004. Adaptation to tempo changes in sensorimotor synchronization: effects of intention, attention, and awareness. Q. J. Exp. Psychol. 57:3499–521 [Google Scholar]
  150. Repp BH, Penel A. 2002. Auditory dominance in temporal processing: new evidence from synchronization with simultaneous visual and auditory sequences. J. Exp. Psychol. Hum. Percept. Perform. 28:51085–99 [Google Scholar]
  151. Repp BH, Su YH. 2013. Sensorimotor synchronization: a review of recent research (2006–2012). Psychon. Bull. Rev. 20:403–52 [Google Scholar]
  152. Roholt T. 2014. Groove: A Phenomenology of Musical Nuance New York: Bloomsbury [Google Scholar]
  153. Rosch E. 1978. Principles of categorization. Cognition and Categorization 1 E Rosch, BB Lloyd 27–48 Hillsdale, NJ: Lawrence Erlbaum Assoc. [Google Scholar]
  154. Rouse AA, Cook PF, Large EW, Reichmuth C. 2016. Beat keeping in a sea lion as coupled oscillation: implications for comparative understanding of human rhythm. Front. Neurosci. 10:257 [Google Scholar]
  155. Salmelin R, Hari R. 1994. Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related to thumb movements. Neuroscience 60:537–50 [Google Scholar]
  156. Schachner A, Brady TF, Pepperberg IM, Hauser MD. 2009. Spontaneous motor entrainment to music in multiple vocal mimicking species. Curr. Biol. 19:10831–36 [Google Scholar]
  157. Scharf B, Buus S. 1986. Audition. Handbook of Perception and Human Performance 1 KR Boff, L Kaufman, JP Thomas 14–114-71 Hoboken, NJ: Wiley [Google Scholar]
  158. Schulkind MD. 1999. Long-term memory for temporal structure: evidence from the identification of well-known and novel songs. Mem. Cogn. 27:5896–906 [Google Scholar]
  159. Schuller G. 1968. Early Jazz: Its Roots and Musical Development Oxford, UK: Oxford Univ. Press [Google Scholar]
  160. Schutz M, Kubovy M. 2009. Causality and cross-modal integration. J. Exp. Psychol. Hum. Percept. Perform. 35:61791–810 [Google Scholar]
  161. Schutz M, Lipscomb S. 2007. Hearing gestures, seeing music: Vision influences perceived tone duration. Perception 36:6888–97 [Google Scholar]
  162. Schwartze M, Keller PE, Patel AD, Kotz SA. 2011. The impact of basal ganglia lesions on sensorimotor synchronization, spontaneous motor tempo, and the detection of tempo changes. Behav. Brain Res. 216:2685–91 [Google Scholar]
  163. Selezneva E, Deike S, Knyazeva S, Scheich H, Brechmann A, Brosch M. 2013. Rhythm sensitivity in macaque monkeys. Front. Syst. Neurosci. 7:49 [Google Scholar]
  164. Senn O, Kilchenmann L, Von Georgi R, Bullerjahn C. 2016. The effect of expert performance microtiming on listeners' experience of groove in swing or funk music. Front. Psychol. 7:1487 [Google Scholar]
  165. Sevdalis V, Keller PE. 2014. Know thy sound: perceiving self and others in musical contexts. Acta Psychol 152:67–74 [Google Scholar]
  166. Shiffrar M. 2005. Movement and event perception. The Blackwell Handbook of Perception and Cognition EB Goldstein 237–71 Hoboken, NJ: Wiley [Google Scholar]
  167. Sowiński J, Dalla Bella S. 2013. Poor synchronization to the beat may result from deficient auditory-motor mapping. Neuropsychologia 51:101952–63 [Google Scholar]
  168. Styns F, van Noorden L, Moelants D, Leman M. 2007. Walking on music. Hum. Mov. Sci. 26:5769–85 [Google Scholar]
  169. Su YH. 2014. Audiovisual beat induction in complex auditory rhythms: point-light figure movement as an effective visual beat. Acta Psychol 151:40–50 [Google Scholar]
  170. Su YH, Jonikaitis D. 2011. Hearing the speed: Visual motion biases the perception of auditory tempo. Exp. Brain Res. 214:3357–71 [Google Scholar]
  171. Su YH, Pöppel E. 2012. Body movement enhances the extraction of temporal structures in auditory sequences. Psychol. Res. 76:3373–82 [Google Scholar]
  172. Su YH, Salazar-López E. 2016. Visual timing of structured dance movements resembles auditory rhythm perception. Neural Plast 2016:1678390 [Google Scholar]
  173. Swaminathan S, Schellenberg EG. 2015. Current emotion research in music psychology. Emot. Rev. 7:2189–97 [Google Scholar]
  174. Talsma D, Senkowski D, Woldorff MG. 2009. Intermodal attention affects the processing of the temporal alignment of audiovisual stimuli. Exp. Brain Res. 198:2–3313–28 [Google Scholar]
  175. Teki S, Grube M, Kumar S, Griffiths TD. 2011. Distinct neural substrates of duration-based and beat-based auditory timing. J. Neurosci. 31:3805–12 [Google Scholar]
  176. Thomson JM, Fryer B, Maltby J, Goswami U. 2006. Auditory and motor rhythm awareness in adults with dyslexia. J. Res. Read. 29:334–48 [Google Scholar]
  177. Thomson JM, Goswami U. 2008. Rhythmic processing in children with developmental dyslexia: Auditory and motor rhythms link to reading and spelling. J. Physiol. Paris 102:120–29 [Google Scholar]
  178. Thompson WF. 2014. Music in the Social and Behavioral Sciences: An Encyclopedia Thousand Oaks, CA: SAGE Publ. [Google Scholar]
  179. Tierney A, Kraus N. 2013. The ability to tap to a beat relates to cognitive, linguistic, and perceptual skills. Brain Lang 124:225–31 [Google Scholar]
  180. Toiviainen P, Luck G, Thompson MR. 2010. Embodied meter: hierarchical eigenmodes in music-induced movement. Music Percept 28:59–70 [Google Scholar]
  181. Toiviainen P, Snyder JS. 2003. Tapping to Bach: resonance-based model of pulse. Music Percept 21:143–80 [Google Scholar]
  182. Trainor LJ, Gao X, Lei JJ, Lehtovaara K, Harris LR. 2009. The primal role of the vestibular system in determining musical rhythm. Cortex 45:135–43 [Google Scholar]
  183. van der Steen MC, Schwartze M, Kotz SA, Keller PE. 2015. Modeling effects of cerebellar and basal ganglia lesions on adaptation and anticipation during sensorimotor synchronization. Ann. N. Y. Acad. Sci. 1337:1101–10 [Google Scholar]
  184. van Noorden L, Moelants D. 1999. Resonance in the perception of musical pulse. J. New Music Res. 28:143–66 [Google Scholar]
  185. Varèse E, Wen-Chung C. 1966. The liberation of sound. Perspect. New Music 5:111–19 [Google Scholar]
  186. Varlet M, Marin L, Issartel J, Schmidt RC, Bardy BG. 2012. Continuity of visual and auditory rhythms influences sensorimotor coordination. PLOS ONE 7:9e44082 [Google Scholar]
  187. Vines BW, Krumhansl CL, Wanderley MM, Dalca IM, Levitin DJ. 2011. Music to my eyes: cross-modal interactions in the perception of emotions in musical performance. Cognition 118:2157–70 [Google Scholar]
  188. Von Ehrenfels CF. 1988 (1890). On “gestalt qualities”. Foundations of Gestalt Theory B Smith 14–17 Munich: Philosophia Verlag [Google Scholar]
  189. von Helmholtz H. 1954 (1863). On the Sensations of Tone New York: Dover [Google Scholar]
  190. Vuust P, Roepstorff A, Wallentin M, Mouridsen K, Ostergaard L. 2006. It don't mean a thing… Keeping the rhythm during polyrhythmic tension activates language areas (BA47). NeuroImage 31:832–41 [Google Scholar]
  191. Warren RM, Gardner DA, Brubaker BS, Bashford JA Jr.. 1991. Melodic and nonmelodic sequences of tones: effects of duration on perception. Music Percept 8:277–90 [Google Scholar]
  192. Welch B. 1973. Hypnotized. Recorded by Fleetwood Mac, Mystery to Me Burbank: Reprise Records [Google Scholar]
  193. Wing AM, Endo S, Bradbury A, Vorberg D. 2014. Optimal feedback correction in string quartet synchronization. J. R. Soc. 11:9320131125 [Google Scholar]
  194. Winkler I, Háden GP, Ladinig O, Sziller I, Honing H. 2009. Newborn infants detect the beat in music. PNAS 106:2468–71 [Google Scholar]
  195. Witek MA, Clarke EF, Wallentin M, Kringelbach ML, Vuust P. 2014. Syncopation, body-movement and pleasure in groove music. PLOS ONE 9:4e94446 [Google Scholar]
  196. Zarco W, Merchant H, Prado L, Mendez JC. 2009. Subsecond timing in primates: comparison of interval production between human subjects and rhesus monkeys. J. Neurophysiol. 102:63191–202 [Google Scholar]
  197. Zentner M, Eerola T. 2010. Rhythmic engagement with music in infancy. PNAS 107:135768–73 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error